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In recent, quasi-steady analyses of the spherical, ablative corona of a la-
ser-irradiated pellet, absorption was assumed to occur at the critical den-
gity ner /1/-/4/. Both classical and saturated heat-flux, and ion-electron
energy exchange where taken inte account. If the ion charge number Z; and
mass per unit charge Wz my/Zy, the instantaneous S:eﬂet radius ra and laser
ower W, and its wavelength {or equivaiently ng.), are given, one can ob-
tain quantities of interest such as the ablation pressure Py, the critical
radius reps gnd the mass ablation rate 4mmp, as dimensionless functiogs
(Pa= Pa/PcrV<, rop/ry, and T=u/rénc, V) of the parameters Zj, W= Hi_/rgp
and heat-flux 1imt fac}% f. He have introduced p..=Tingy, @ convenien
speed V2 (rancy/M>/ EK)/4, and the factor K of Spitzer's classical heat-flux
E KT15/2¢t/dr, the electron temperature T being in energy units).
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Lately the search for more ablative conditions”in laser-irradiation of tar-
gets has moved the interest into shorter wavelengths {larger ngy) and larger
pellet radii. For such conditions inverse Bremsstrahlung absorption in the
underdense flow can be substantial /5/. Here we attempt to quantitatively
determine that absorption using the mode! of Refs. f3/ and /4/. Inverse
Bremsstrahlung introduces into the model the electron mass me and the light
speed ¢, and is found here to be parametrized by the ratio W¥/mp¢, which lies
close to unity for all cases of interest. Large values of ncy and vy Tead to
relatively low W (1-10% typicaily). Recently Sanmartin et al. have considered
effects due to a suprathermal electron Bopulation generated by resonant ab-
sorption, at higher values of W (105-108); it was found that hot-electron * -
effects are parametrized by the ratio W/mec too J6/. .
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Using the continuity equation nvr‘zrp {independent of r), the momentum and
energy equations for the quasineutral ion-electron fiuid read ~
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where v is the ion velocity and I the laser irradiance, which is given by
1d 2 ...
?z“a*‘:‘l‘ I=KI (3}

here K is the absorption coefficient /7/. Equations {1}-{3) can be solved for

v(r}, T{r}, and w(rg\s 4xrcI{r), and the eigenvalues p, rgp, and Py, by using

the conditions - K
] H X - +

T=0, v/T=u/r‘32Pa at r, "9
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T+0, N-rNL A5 reoe
"’"2=“/“cr at  r..

efther r= Fep O 2=dinT/dInr where mv2=T.
In Egs, (2b) and (3) we assumed that the light power W, reaching the criti-
cal surface {s absorbed there by some unspecified anomafcus process. We also
assumed that Zj >>1; in this way the fon temperature {s uncoupled {ion pres-
sure and internal energy are negligible) and the problem 1s simplified. ae
use classical heat-flux everywhere, an approximation justified, for the
values of inferest, in Refs, /47 and /6/.

The ratio rep/ry decreases as W decreases with mV/mgc fixed. We find that
for rcr>1.555 ra the flow at rcpe is supersonic {the sonic speed is reached
at v=1,215 ra); the solution for the range rj<r<vep is the same one given
in Ref. f3/. The flow at r¢p is sonic if n*ra<rcr<i.215 ras here n* is &
function of ﬁ‘a‘/mec, and Ties within the range 1--1.215, For ry <r..<n*ry
the flow at rep is subsonic, When (re-ra)/ry is small heat conduction i
restrictied to a thin layer surrounding the pellet.

If ("'cr/‘”a; - 1=0(1), the results of Ref, /3/ are T‘ECOVE{ed for mV/mﬁﬁ small.
If (r¢p/ra) - 1<<1, those rgsults are recovered when 104 x (mX/mec) is
small. The ratio (mV/mec)/W is proportional to the quantity Ia%fry (A= wave-
length) introduced by Mora /5/. 3 -
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In Fig. 1{(2) we have represented the fr-action of laser power absorbed by in-
verse Bremsstrahlung, as a function of W for several values of m¥/mgc; also
shown is the ratio rep/ry. In Fig. l(l_:e we represented the ablation pressure

Pa normalized to its value for W-0, mV/mgc~0, The curves change behaviour
wﬁen rerfra=1.216, and again when rep/r =n*(fn"\'/mec). Numerical data for
rep/ty<n* are not shown in the figure. Asymptotic results for low 0 {r rfra+l)
are a?so presented. The mass ablation rate 4mwm is the same of Ref. /3/ for
rep/ra> 1,215, i s

We have also considered large focal-spot irradiation of slabs, leading to
one-dimensional, unsteady problems. We approximated the irradiance I in the
rising-half of the Taser puise by a Taw I{t)=Io{t/7)%. For Targe Zi and clas-
sical heat-flux one has the equations {x>0, t>0)
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There are two d'imension'!ess parameters, as in the spherical case, -
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where U= (rncrﬂ?ﬁs/z)lls. 1t T<< 1, conduction is restricted to a thin def—
lagration layer, which is quasisteady /8/. If, in addition, s=23/2 the flow
%utside that layer }5 self-simiTar. We have determined all guantities for

<<1 and (ﬁU/mec)3 /T large angd small {when the resuits of §?£ /8/ are
recovered). The ratio (WU/mec)3/ €71 is proportional to 1oa%/13/2 a quantity
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Fig.1{a) Ratio of critical to ge11et radius r¢p/ra and inverse Bremsstrahlung

absorption {W| -Wcp)/WL, and (b) ablation pressure P, {normalized), versus la-
ser power H| %1n dimensionless form), for values ofaEV/mec indicated; ---,

behaviour at low power.
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introduced by Mora /5/. For the ahlation pressure Py at t=1 we get

P, 8 'rﬁU/mec )
AT I A s
1 5 1
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