
Change-Impact driven Agile Architecting 

Jessica Diaz, Jennifer Perez, Juan Garbajosa, Agustin Yagiie 

Abstract 
Software architecture is a key factor to scale up 

Agile Software Development (ASD) in large software-
intensive systems. Currently, software architectures 
are more often approached through mechanisms that 
enable to incrementally design and evolve software 
architectures (aka. agile architecting). Agile 
architecting should be a light-weight decision-making 
process, which could be achieved by providing 
knowledge to assist agile architects in reasoning about 
changes. This paper presents the novel solution of 
using change-impact knowledge as the main driver for 
agile architecting. The solution consists of a Change 
Impact Analysis technique and a set of models to assist 
agile architects in the change (decision-making) 
process by retrieving the change-impact architectural 
knowledge resulting from adding or changing features 
iteration after iteration. To validate our approach, we 
have put our solution into practice by running a 
project of a metering management system in electric 
power networks in an i-smart software factory. 

1. Introduction 

Software architecture is a key factor to scale up 
Agile Software Development (ASD) in large software-
intensive systems. Several works propose the 
coexistence of software architectures and ASD [1] 
[3][5][13][14][19], and a few approaches present 
successful cases of agile architecture [18] or iterative 
architecture [8]. Agile architecture can defined as "the 
one that develops with the system, and includes only 
features that are necessary for the current iteration or 
delivery" [8]. However, how to perform this iterative 
architecture refinement is still a challenge [1]. This 
challenge is addressed in this paper. 

Aligning fruitfully software architectures and ASD 
requires leveraging the inherent qualities of software 
architectures (e.g. abstraction, communication, 
analysis) while complying with agile principles (e.g. 
open to change). This alignment can be achieved as 

long as practitioners are able to count on mechanisms 
for enabling: (i) Incremental design of features, i.e. 
flexible construction of the architecture by adding 
small increments1, (ii) Accommodation of new features 
or customizations on existing features. We refer to both 
of them as agile architecting, because although 
conceptually different, require the same mechanisms to 
carry them out. The reason is that, in both cases, these 
mechanisms must be able to cope with change, though 
in the first case the change is planned (feature 
increment), and in the second case the change is 
unplanned (feature evolution). 

It would be highly convenient and desirable that the 
mechanisms for enabling agile architecting would 
assist and guide agile architects, specifically in (i) the 
decision-making process of implementing changes in 
each agile iteration, and (ii) the maintenance of the 
architecture integrity, i.e. the preservation of earlier 
architectural design decisions iteration after iteration. 
Regarding the former, the knowledge about the effects 
of a change upon the architecture provides architects 
with information that can be advantageously deployed 
to reason about how and where to implement that 
change. It also allows architects to make better 
evolution decisions based on risks, cost or viability of 
the change. Regarding the latter, the continuous 
process of architecting should never result in the 
software degradation as a consequence of intentionally 
or accidentally violation of earlier design decisions or 
constraints. In this sense, agile architects need 
knowledge about dependencies between design 
decisions, constraints, tradeoffs, etc., which can assist 
them in countering or even avoiding several well-
known negative effects of software evolution such as 
architectural erosion and degradation [25]. 

This paper presents the novel solution of using 
change-impact architectural knowledge as the main 
driver for agile architecting. This solution provides 
agile architects with knowledge to (i) assist and guide 
them in the change (decision-making) process, and 

1 An increment is often smaller than a feature —prominent or 
distinctive user-visible characteristic or quality of a software system. 



(ii) favor the preservation of the architecture integrity 
during the iterative architecting process. This 
knowledge results from analyzing the impact that 
changes —feature increment and/or evolution— 
introduce into the architecture, iteration after iteration 
in an agile process. The solution consists of a Change 
Impact Analysis (CIA) technique and modeling 
artifacts for: (i) documenting architectural knowledge 
—the design decisions and rationale driving the 
iterative architecture solution—, and (ii) tracing 
architecturally significant features with their realization 
in the architecture. These models are traversed using 
the proposed CIA technique to retrieve the 
architectural design decisions and architectural 
components and connections that are impacted as a 
consequence of changing features. This solution is 
implemented in a modeling framework called FPLA2. 

The novelty of this paper is to prove how the output 
from a CIA technique can be effectively used to assist 
and guide agile software architecting. This CIA 
technique was deployed in the agile method Scrum 
[29] and built on the results from previous works 
[23][11] that provide flexible mechanisms to design 
iteratively and incrementally software architectures. 

To empirically validate our approach we have 
conducted a case study in an i-smart software factory, 
combining both academic and industry efforts. The 
results show that our approach for agile architecting is 
viable in an industry project in the energy power 
networks domain, and effectively assists and guides 
architects in the tasks of making-decisions about 
changes and maintaining the architecture integrity. 

The structure of the paper is as follows: Section 2 
describes the background. Section 3 discusses related 
work. Section 4 presents the CIA technique, and 
supporting mechanisms, which drive agile architecting 
in the Scrum process. Section 5 describes the case 
study. Finally, conclusions and further work are 
presented in Section 6. 

2. Background 

2.1 Agile Architecting 

The role of software architecture in ASD has been a 
highly controversial issue in the last few years. There 
are many advocates for and opponents against giving 
to architectures the importance in ASD that it has in 
other development approaches. Advocates of the 
architecture's key role in the software process have 
their doubts about the scalability of any development 
approach that does not pay sufficient attention to 

It is available on https://syst.eui.upm.es/FPLA/home 

architecture [1], specially for achieving quality goals 
when developing large-scale software-intensive 
systems. In fact, Cockburn [10] showed some data 
about the unfeasibility of using agile methods in large 
size projects and life-critical systems. The reason is 
that the benefits of software architecture are missing 
and agile teams completely depend on tacit knowledge. 
The work of Falessi et al. [14] found that agile 
practitioners perceive software architecture as relevant 
on the basis of aspects such as communication and 
understanding of software systems, rationalization of 
previous design decisions, documentation of rationale 
necessary to evaluate design alternatives, scaling of 
agile practices to large projects, documentation of 
points of flexibility within the system to support future 
requirements, and system planning and budgeting. 

On the contrary, hard opponents perceive the effort 
in architecture as wasted effort, equating it with big 
upfront (BDUF) —a bad thing-leading to massive 
documentation and implementation of you ain 't gonna 
need it features [1]. A common belief within the agile 
community is that "If you are sufficiently agile, you 
don't need an architecture — you can always refactor 
it on the fly" [10]. However, Kruchten states that 
architectural refactoring often becomes prohibitively 
costly very quickly if certain considerations have been 
neglected early in the process (excerpted from [13]). 
Kruchten [19] and Booch [5], among others, propose 
the iterative and incremental evolution of the 
architecture to reduce the big upfront design and keep 
the system in sync with changing conditions. 

2.2 Change Impact Analysis 

Change impact analysis (CIA) determines the 
potential effects upon a system resulting from a 
proposed change [2]. CIA can be used to predict the 
effects of a change before it is implemented, possibly 
giving an estimate of the effort/cost to implement the 
change [27], as well as the potential risk involved in 
making the change [21]. This analysis can be then used 
to make better evolution decisions such as whether or 
not the change should be carried out based on 
economic viability of software evolution or other risks 
such as degradation of software systems. In fact, there 
is an extensive work in CIA to support software 
evolution [7][9], although Mens at al. [21] identified 
change impact as one of the future challenges 
(timeframe of 2015 and beyond). 

3. Related Work 

Advocates of a balance between architecture and 
agility propose that the architecture emerges gradually 
iteration after iteration, as a result of successive small 

https://syst.eui.upm.es/FPLA/home


refactoring [1][5][19][22]. Most of these approaches 
invest in a first architecture —zero-feature release [4]; 
i.e. "getting an architecture sufficiently right early 
without necessarily resorting to big upfront 
design"[19]. This means that it will take longer to get 
to code, i.e. in a zero-feature release the architecture is 
in place but no user-visible features are delivered to the 
customer [22]. Conversely, other authors believe in 
continuous architectural refactoring starting on 
simplicity and flexibility [5]. 

This paper does not focus on identifying whether it 
is better to invest in a first architecture or to rely on 
continuous architectural refactoring. This paper 
presents the mechanisms to have flexibility at the time 
of defining software architectures and change-impact 
knowledge in order to support the change decision
making process and preserve architecture integrity. 

Change impact analysis has not been previously 
applied to agile architecting as we propose in this 
paper. Moreover, it is not only novel the fact of 
applying change-impact knowledge to drive agile 
architecting. The CIA technique that we use in this 
paper covers several of the lacks of current CIA 
approaches. Most CIA approaches analyze the source 
code and few approaches do the architecture [30][16]. 
Even fewer approaches consider architectural 
knowledge, that is design decisions and rationale 
driving the architecture solution, to aid change impact 
analysis [31]. To cope with these lacks, a previous 
work [11] defined a CIA technique in the domain of 
Software Product Lines (SPL [26]). As discussed in 
Section 4, agile architects can take advantage of this 
technique to support the change decision-making 
process and try to preserve the architecture integrity. 

4. Agile architecting guided by change 
impact 

This paper presents CIA as the main driver for agile 
architecting. To that end, we have defined a CIA 
technique, supported by architectural models, that 
assists architects during the agile architecting process. 
These models promote communication between 
individuals and agile teams working on the system, and 
support (semi-)automatically reasoning over the space 
of architectural knowledge. They are described below. 

4.1 Flexible-PLA Metamodel 

Our solution is supported by the definition of 
software architectures conforms to the Flexible-PLA 
Metamodel [24]. It was defined in a previous work to 
explicitly specify the architectures that realize SPL. 
This metamodel and their underlying concepts allow 
one to iteratively and incrementally construct and 

evolve software architectures based on two properties 
that they provide: flexibility and adaptability [23][12]. 

The main concept underlying Flexible-PLA 
Metamodel is the concept of Plastic Partial Component 
(PPC [24]). The PPC concept was originally defined 
for specifying variability inside components. The 
variability of a PPC is specified using variability 
points, which hook fragments of code to the PPC 
known as variants, and weavings which specify where 
and when extending the PPCs using the variants (see 
Figure l.a). As variability facilitates the planned 
evolutionary software development [15], agile 
architects can take advantage of the PPC primitives for 
incrementally and iteratively refine the architectural 
components that compose a working architecture3 

[23]. The PPC variability mechanism is the backbone 
to support incremental development of architectural 
components through the incomplete specification of 
components, and their extension by hooking new 
variants. As a result, working architectures can be 
incrementally and iteratively designed and evolved in 
each iteration by weaving/unweaving extensions, 
and/or by modifying the architecture configuration 
through optional components and connectors. 

b) pjf OpenDesignDecision 

A I 

b) 
Why: 

Cost: 

Risk: 

Trade Off: Trade Off: 
0 Assumptions 

ing 

^£L Constraints 

1 : 

^ OptiondlDesignDecision 

1 : 

Risk; 

Trade Off: 

: III £ Assumptions 
i ; 

£ Assumptions 

^ j i Constraints 

Figure 1. a) Flexible-PLA model & bj PLAK model 

4.2 PLAK Metamodel 

The documentation of architectural knowledge 
(AK) supports the rationalization of architectural 
decisions taken during the solution design. The 
rationalization of early design decision may help to 
evolve the architecture while preserving its integrity. 

The one that is delivered after each iteration, together the 
working product, as a result of the agile architecting process. 


