Detección de grietas en placas con técnicas multifrecuencia

Serrano Sáez, Raúl (2014). Detección de grietas en placas con técnicas multifrecuencia. Proyecto Fin de Carrera / Trabajo Fin de Grado, E.T.S.I. Aeronáuticos (UPM).


Title: Detección de grietas en placas con técnicas multifrecuencia
  • Serrano Sáez, Raúl
  • Rapún Banzo, María Luisa
Item Type: Final Project
Date: 27 October 2014
Freetext Keywords: Detección, grietas, defectos, software de código abierto Detection, cracks, defects, open source software
Faculty: E.T.S.I. Aeronáuticos (UPM)
Department: Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014]
UPM's Research Group: Dinámica y Estabilidad no Lineal
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (5MB) | Preview


Safety is one of the most important feature in the aviation industry, and this involves too many factors. One of these is the aircraft maintenance. Over time, the procedures have been changing, and improving themselves. Non Destructive Testing (NDT) appeared in the late 19th century as a great option, because it enabled to inspect any structure without damaging it. Nowadays, there are several kinds of NDT, but ultrasound is one of the most widely used. This Master Thesis is devoted to an innovative ultrasound technique for crack detection. A technique, whose main aim lies in getting a good location of defects from a few measures, breaking with the currently widespread methods, as phased array. It is not necessary to use trains of waves, only discrete excitations, which means a great saving of time and energy. This work is divided into two steps: the first is to develop a multiphysics simulator, which is able to solve linear elasticity 3D problems (via Finite Element Method, FEM). This simulator allows to obtain in a computationally efficient way the displacement field for different frequencies and excitations. The solution of this elastic problem is needed to be used in the second step, which consists of generating a code that implements a mathematical tool named topological derivative, allowing to locate defects in the studied domain. In this work, the domain is a plate, and the defect is a hidden spherical void. The simulator has been developed using open source software (Elmer, Gmsh, ...), achieving a highly versatile simulator, which allows to change the configuration easily: domain size and shape, number and position of transducers, etc. Just one comercial software is used, Matlab. It is used to implement the topological derivative. In this work, the performance of the method is tested in several examples comparing the results when one or more frequencies are considered for different configurations of emisors/receptors.

More information

Item ID: 33133
DC Identifier:
OAI Identifier:
Deposited by: Raúl Serrano Sáez
Deposited on: 12 Jan 2015 09:57
Last Modified: 12 Jan 2015 09:57
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM