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ABSTRACT 

Markov Chain Monte Carlo methods are widely used in sig­
nal processing and communications for statistical inference 
and stochastic optimization. In this work, we introduce an ef­
ficient adaptive Metropolis-Hastings algorithm to draw sam­
ples from generic multimodal and multidimensional target 
distributions. The proposal density is a mixture of Gaussian 
densities with all parameters (weights, mean vectors and co-
variance matrices) updated using all the previously generated 
samples applying simple recursive rules. Numerical results 
for the one and two-dimensional cases are provided. 

Index Terms— Markov Chain Monte Carlo (MCMC), 
Gaussian mixtures, adaptive Metropolis-Hastings 

1. INTRODUCTION 

Markov Chain Monte Carlo (MCMC) methods [1, 2] are 
ubiquitously used for performing inference and solving opti­
mization problems in many scientific fields: statistics, digital 
communications, machine learning, signal processing, etc. 
[3, 4, 5, 6]. MCMC approaches are able to generate samples 
virtually from any target distribution (known up to a nor­
malizing constant) by using a simpler proposal distribution. 
The basic underlying idea of standard MCMC techniques is 
producing a Markov chain that converges to the target. 

The most famous MCMC technique is the Metropolis-
Hastings (MH) algorithm [7, 8, 3]. However, the main draw­
back of the MH method (and in general of all MCMC meth­
ods) is that the correlation among the samples in the Markov 
chain can be very high when the acceptance rate is low [1, 
2, 9]. Correlated samples provide less statistical information 
and the resulting chain can remain trapped almost indefinitely 
in a local mode, meaning that convergence can be extremely 
slow. Therefore, since the correlation depends on the discrep­
ancy between the target and proposal distributions, we would 
like the proposal to be as close to the target as possible. 

Several extensions have been proposed in the literature to 
speed up the convergence and reduce the so called "burn-in" 
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period. Among them, adaptive MH methods (i.e., MH algo­
rithms with adaptive proposal distributions) are particularly 
interesting [2, 10]. Indeed, MCMC techniques usually need 
the selection of several parameters by the user before they can 
be applied to any particular problem. The use of adaptive pro­
posals overcomes this issue, providing black-box algorithms 
with self-tuning capabilities. An adaptive MH technique im­
proves the proposal distribution by learning at least some of 
its parameters from all the previously generated samples. Un­
fortunately, an important problem with the adaptation of the 
proposal is that the Markov property is lost and the invariant 
distribution of the chain could be disturbed. Hence, adaptive 
MH algorithms must be carefully designed to avoid this issue. 

The adaptive Metropolis (AM), a random walk MH algo­
rithm using an adaptive Gaussian proposal, was introduced 
in [11]. The covariance matrix of the proposal is updated 
using recursive empirical estimators applied to the samples 
generated by the chain. The AM algorithm is an example of 
a partially adaptive MH approach, since it only updates the 
covariance of the proposal, whereas the mean of the Gaussian 
jumps to the current state of the chain at each iteration. An 
attempt of extending the AM algorithm by using a mixture 
of Gaussians as a proposal and updating all of its parameters 
(thus obtaining a fully adaptive MH algorithm) can be found 
in [12]. However, the resulting algorithm is quite compli­
cated, and the proposal is only updated at some iterations. 

In this work, we introduce an independent MH technique 
where the proposal PDF is an adaptive mixture of Gaussians. 
All the parameters (weights, means and covariance matrices) 
of the Gaussians in the mixture are updated using empirical 
estimators with simple recursive formulas (i.e., our method 
is fully adaptive). After a training period, the proposal is 
adapted at every iteration. The resulting AGM-MH algorithm 
can be used to draw samples from arbitrary multimodal and 
multidimensional targets, always improving the performance 
w.r.t. a non-adaptive MH scheme using the initial proposal. 

The rest of the paper is organized as follows. Section 2 
shows the problem formulation. Section 3 presents the pro­
posed AGM-MH algorithm. Sections 4 and 5 describe effi­
cient parameter update rules and black-box usage. Finally, 
Sections 6 and 7 show the results and conclude the paper. 



2. PROBLEM FORMULATION 

Let us assume that we need to draw samples from a (possibly 
multimodal) generic d-dimensional target probability density 
function (PDF), p0(x), with support V C Rd. The AM al­
gorithm [11] uses an adaptive random walk MH with a Gaus­
sian proposal, mean equal to the previous state of the chain 
(JJ, = x t_i), and covariance matrix, C, estimated from all 
previous states, i.e., q(x |x t- i , C) oc A/"(x|xt_i, C), where 

A/"(X|/LX, C) oc exp ( - l ( x - /LX) T C- 1 (X V, (1) 

denotes a standard multivariate Gaussian PDF. In order to im­
prove the performance of the AM algorithm, here we consider 
a mixture of N Gaussians as the proposal PDF, i.e., 

N 

<jr(x|w,/LX1:Ar,C1:Ar) = ^ Wj7V(x| / i j , C ; ) , (2) 
i = l 

where A/"(X|/LXJ, Q ) is given by (1), /LXJ = [/x^i, ...,Mi,d]T 

is the d x 1 mean vector, Q is the d x d positive definite 
covariance matrix, and w = [wi, ...,WAT]T are the normal­
ized weights (i.e., wi + ... + ww = 1). Moreover, we define 
fJ-i-.N = [fJ-i, •••, MAT] andC1:Ar = [C1?..., C w ] , We note that 
our approach is a fully adaptive MH algorithm, since (unlike 
the AM algorithm, which only updates the covariance) all the 
parameters in the mixture are learnt from all the previously 
generated samples. The resulting algorithm is very simple, 
since the adaptation is based on empirical estimators that can 
be implemented efficiently using recursive formulas. 

Since the adaptation could disturb the convergence of the 
generated chain to the target PDF, we consider the possibility 
of stopping it at an iteration Tstop. Hence, for t > Tstop our 
algorithm is a standard MH with an improved proposal PDF 
w.r.t. the initial choice, thus providing a better performance 
and guaranteeing convergence. However, the numerical re­
sults described in Section 6 show that the algorithm seems to 
maintain the correct ergodicity properties, so we always use 
Tstop = Ttot. A theoretical convergence proof is under de­
velopment and will be included in future works. Finally, we 
note that degeneracy problems can appear during the first it­
erations in the update of the covariance matrices if we have a 
poor initialization. In order to avoid this issue, we allow the 
method to use a few iterations (t = 1 , . . . , Ttrain) to collect 
information about the target, assigning the produced state of 
the chain to the closest Gaussian in the mixture, as in [11]. 

3. AGM-MH ALGORITHM 

The proposed AGM-MH algorithm is described below. First 
of all, notice that, during the first Ttrain time steps the algo­
rithm simply assigns the current state of the chain, x t , to a 
Gaussian among the N in the mixture, according to the min­

imum Euclidean distance between x t and the means /LX ( t - i ) 

i = 1,...,N. Afterwards, the algorithm updates all the pa­
rameters in the mixture until t = Tstop, when adaptation is 
stopped. In the description of the algorithm, the parameters 
are updated using a block procedure, but efficient recursive 
update formulas can be obtained, as shown in Section 4. 

1. Initialization: 

(a) Time instants: Set t = 0. Choose an initial state, 
x0 G V, and positive integers, Ttrain, Tstop and 
T-tott such that Ttrain < Tstop < Ttot. 

(b) Proposal: Choose the number of Gaussians N, as 
well the initial settings for n\)N = [/J,[ \ ...,^N'] 
a n d C ^ = [C<f\...,cf]. SetwW = £ l „ , 
where IN is an N x 1 vector of ones. 

(c) Auxiliary parameters: For i = 1,...,N, define 
S> ' = [s> ' = fi\ '], with rrii = 1 denoting the 
number of columns of S> '. Let e be a small con­
stant value and ld an identity matrix. 

2. MH steps: 

(a) Sample x ' from a mixture of Gaussian PDFs, 

x ' - ^ C x I w W . / x ^ C ^ ) . 

(b) Accept x t+i = x' with probability 

a = mm 
x P(xQg(x t |wW,M^,C^) 

'p(xt)9(x'|w<0,M(0v,C$v) 
(3) 

Otherwise, setx t+i = xt. 

3. Update the parameters of the proposal (t < Tstop): 

(a) Find the closest Gaussian to x t+i (w.r.t. the Eu­
clidean distance), i.e., find the index 

j = argminJ/4^ - x t + i (4) 

(b) Set rrij = nij + 1 and update (adding a new col­
umn) the j-th auxiliary matrix 

j ( t+ i ) rgW (m,-) xmJ, (5) 

whereas sf+ 1 ) = sf\ for all i + j . 

(c) If t > Ttrain'- update the parameters of the j-th 
Gaussian, 

V ( t+i) _ 

and 

-.(*+!) 
s(m) [§( t+i) ]T + K _ 1 ) e I d 

(6) 

(7) 



(*+l) _ o(«+l) ,,(*+!) <> I T where S . + 1 ; = SV Pi <g> 1' ., with 
(g) denoting the Kronecker product [13]. Set 
Axf+1) = Axf} and cf+1) = c f , V* ^ j . Since 
mj has been incremented, we also need to update 
the weights, 

.,(«+!) i = l,...,N, (8) 

v<?+1),..,w%+1)]T. sothatw(*+1) 

4. If t < T tot, return to step 2 with t = t + l. 

Observe that the proposal PDF is only updated for t > Ttrain. 
Moreover, note that the matrices sf' and sf' have dimension 
dxrrii for any i e {1,..., N}, so that cf' always has dimen­
sion d x d. The term eld is used to avoid numerical problems 
(the matrix C ^ must be positive definite), as in [11]. 

4. EFFICIENT RECURSIVE UPDATE OF THE 
PARAMETERS 

To update the parameters of the selected 0-th) Gaussian PDF 
in the mixture, we can use recursive expressions. Indeed, re­
calling that, in step 3b of the algorithm, rrij = m3• + 1 has 

already been updated and s"h 

3 m3 

and (7) can be rewritten as 

x t+i, Eq. (6) becomes 

nij - 1 (t) 
(9) 

c ( t + i ) = m. •3 - 2
r W (10) 

(*+l)\T 

+ eld 

Finally, note that 

N 

Y^ mk = t + 1 + N, 
fc=i 

so that 
.,(«+!) 1, ,N. (11) 

t + AT + r 
for t > Ttrain. In this way, the novel technique becomes com­
putationally efficient even for high dimensional problems. 

5. AGM-MH AS BLACK-BOX METHOD 

The AGM-MH method shows sensitive dependence on the 
initial conditions. If some prior information about the target is 
available, it can be used to choose the initial parameters. If no 
prior informations is available, the AGM-MH can be applied 
as black-box algorithm in the following way: 

• Use a large number of Gaussians, N (typically N must 
increase as the dimension, d, increases). 

• Select randomly the means fx[.'N in order to cover as 
much as possible of the the target's domain, V C Rd. 

• Choose diagonal covariance matrices, C^ = of Id 

(i = 1 , . . . , N), with a large value of of in order to be 
able to explore the domain of interest, V C Rd, during 
the training period, t < Ttrain. 

• The parameter Ttrain should increase as the problem's 
dimensions, d, increases. Numerical results suggest 
that Ttrain = lOOd can be a suitable choice, although 
for very complicated target distributions a higher value 
of Ttrain may be needed. 

Finally, we remark that the use of a huge number of Gaussians 
does not involve computational problems, since the weights 
of the irrelevant Gaussians quickly tend to zero. Hence, the 
computational cost is controlled by the adaptation, so that 
only the Gaussians located close to high probability regions 
survive. The useless Gaussian PDFs, located far away from 
the modes of the target, are virtually discarded. 

6. SIMULATIONS 

6.1. Example 1 

In this toy example, we apply the AGM-MH method to draw 
samples from a univariate bimodal target PDF defined as 

p0(x) oc p(x) = exp 

= exp 

(x2 - 4)s 

4 

x4 - 4x2 + 16 
(12) 

which has two modes at x = ±2. We set the number of 
Gaussians in the proposal PDF to N = 2, with w\ ' = 0.5 
and of = 10 for i = 1,2. The two initial means are chosen 
randomly with uniform distributions in [-4,0] and [0,4] re­
spectively, i.e., M(I0) ~ W([-4,0]) and /40 ) ~ W([0,4]). We 
perform Ttot = 5000 iterations of the chain, setting Ttrain = 
200 and Tstop = Ttot (i.e., the adaptation is never stopped). 
The initial state is randomly chosen as x0 ~ JV(x\0,1). We 
use all the generated samples to estimate the mean of the tar­
get (which is equal to zero, since p(x) is symmetric). The 
mean square error (MSE) of the estimation (averaged over 
2000 runs) is 15 • 10~4, whereas the estimated linear cor­
relation between contiguous samples is 0.18. Without us­
ing any adaptation (i.e., using a standard MH) the correlation 
is « 0.78. Hence, we can observe that the correlation de­
creases using the AGM-MH algorithm. The final averaged lo­
cations of the means of the two Gaussians in the proposal are 
fj,^tot) « -1.88 and $tot) « 1.88, with weights wftot) « 
0.5 and variances of « 0.16 for i = 1,2. 
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Fig. 1. (a) Averaged values of a as a function of the iteration index, t, for M = 2,3,6 in Example 2. For t > Ttrain, 
a increases as the proposal becomes closer to the target, (b) Initial configuration of the means (squares) and the covariance 
matrices (ellipses) in Example 3. (c) Final configuration (red) and drawn samples (blue), at t = Ttot = 7000, for Example 3. 

6.2. Example 2 

For the sake of simplicity, we consider again a univariate tar­
get density. However, now we consider that the target distri­
bution is itself a mixture of Gaussian PDFs. Specifically, the 
target PDF is formed by M Gaussians, i.e., 

Po(x) OCp(x) 
M 

E aiM{x\r\U(?i\ (13) 

where the weights are CM = l/M and the variances pf = 4 
for i = 1,..., M. We consider three different cases with M e 
{2, 3, 6}. The means are, for each case: 

• M = 2:77! = -10 and T?2 = 10. 

• M = 3:77! = -10, r?2 = 0 and 773 = 10. 

M = 6: 771 = —15, 772 
775 = 10 and 7/6 = 15. 

-10, 773 - 5 , 774 

In the proposal we also use N = M Gaussians, with the 
initial means chosen uniformly in [—20, 20], the initial vari­
ances set to of = 10 and the weights to w\ = l/N for all 
i = 1,..., N. As in the first example, we perform Ttot = 5000 
iterations of the chain, setting Tt train = 200 and Tstop = Tt 

(i.e., the adaptation is never stopped), and the initial state of 
the chain is randomly chosen as x0 ~ 7V(x|0,1). We use all 
the generated samples to estimate the normalizing constant of 
the target. The mean square errors (MSE) of the estimations 
(averagedover 1000 runs) are 1.6-10"4,1.1-10"4 and 2-10~5 

for M = 2,3,6 respectively. The resulting correlations are 
0.13, 0.14 and 0.16 for M = 2,3,6. In comparison, with 
a standard MH (i.e., without adaptation) the correlations are 
0.81, 0.72 and 0.46 for M = 2,3, 6. Thus, we remark again 
that the adaptation provided by the AGM-MH algorithm re­
duces considerably the correlation among the generated sam­
ples. Finally, Figure 1(a) depicts the averaged value of the 
acceptance function, a in (3), as a function of t for different 

values of M. Note that, for t > Ttrain, the averaged values 
of a increase as the proposal becomes closer to the target. 

6.3. Example 3 

In this example, our goal is drawing samples from a bivari-
ate target PDF using the AGM-MH algorithm as a black-
box technique. Just for simplicity, we also consider a bivari-
ate mixture of M = 2 Gaussians as target distribution, with 
weights a\ = a2 = 0.5, means T71 = [-2, - 2 ] T and TJ2 = 
[0,4]T, and covariance matrices S i = [0.3, 0.1; 0.1, 0.3] and 
£ 2 = [0.8, -0 .3 ; -0 .3 , 0.8]. We set Ttot = 7000, Ttrain = 
200 and Tstop = Ttot (i.e., the adaptation is never stopped). 
On the one hand, we use for the proposal N = 2 Gaussian 
PDFs with wf) = 0.5 and CC T = 10Id for i = 1,2. The 
means are selected uniformly, 7x1 ~ U([—5, 5] x [0,5]) and 
7x2 ~ W([—5, 5] x [-5,0]). In this case, all the parameters 
of the mixture in the proposal always converge to the cor­
responding values of the mixture in the target PDF. On the 
other hand, we also consider the case with N = 10. We set 
wf] = 0.1, Cf] = lOId and m ~ W([-5,5] x [-5,5]) 
for i = 1 , . . . , 10. In this situation, the AGM-MH algorithm 
improves the initial proposal PDF, updating the parameters of 
the Gaussians placed in good locations, whereas the weights 
of the unhelpful Gaussians decrease quickly to zero and their 
parameters remain invariant, as shown in Fig. 1. 

7. DISCUSSION 

We have proposed a novel adaptive independent MH algo­
rithm (AGM-MH) to draw samples from arbitrary multimodal 
and multidimensional targets. AGM-MH builds on the work 
of [11], extending it by using a Gaussian mixture proposal 
and updating also the means and the weights of the Gaus­
sians. Compared to a previous extension provided by [12], 
our approach is more efficient, updating the proposal at every 
iteration instead of only at a fixed number of iterations. 


