Quasi-cylindrical approximation to the swirling flow in an atomizer chamber

Higuera Antón, Francisco ORCID: https://orcid.org/0000-0002-3669-0248 and Pereña, A. (2014). Quasi-cylindrical approximation to the swirling flow in an atomizer chamber. "Journal of Fluid Mechanics", v. 758 ; pp. 603-620. ISSN 0022-1120. https://doi.org/10.1017/jfm.2014.547.

Description

Title: Quasi-cylindrical approximation to the swirling flow in an atomizer chamber
Author/s:
Item Type: Article
Título de Revista/Publicación: Journal of Fluid Mechanics
Date: 2014
ISSN: 0022-1120
Volume: 758
Subjects:
Faculty: E.T.S.I. Aeronáuticos (UPM)
Department: Mecánica de Fluidos y Propulsión Aeroespacial
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[thumbnail of INVEMEM2014_189835.pdf]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview

Abstract

A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.

Funding Projects

Type
Code
Acronym
Leader
Title
Government of Spain
DPI2010-20450-C03-01
Unspecified
Unspecified
Unspecified
Government of Spain
DPI2013-47372-CO2-02
Unspecified
Unspecified
Unspecified
Government of Spain
CSD2010-00010
Unspecified
Unspecified
Unspecified

More information

Item ID: 35180
DC Identifier: https://oa.upm.es/35180/
OAI Identifier: oai:oa.upm.es:35180
DOI: 10.1017/jfm.2014.547
Official URL: http://journals.cambridge.org/action//displayAbstr...
Deposited by: Memoria Investigacion
Deposited on: 19 Oct 2015 09:43
Last Modified: 06 Feb 2023 12:21
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM