Fusión de redes Bayesianas Gaussianas

Córdoba Sánchez, Irene (2015). Fusión de redes Bayesianas Gaussianas. Thesis (Master thesis), E.T.S. de Ingenieros Informáticos (UPM).

Description

Title: Fusión de redes Bayesianas Gaussianas
Author/s:
  • Córdoba Sánchez, Irene
Contributor/s:
Item Type: Thesis (Master thesis)
Masters title: Inteligencia Artificial
Date: December 2015
Subjects:
Faculty: E.T.S. de Ingenieros Informáticos (UPM)
Department: Inteligencia Artificial
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[thumbnail of TFM_CORDOBA_SANCHEZ_IRENE.pdf]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (969kB) | Preview

Abstract

Las redes Bayesianas constituyen un modelo ampliamente utilizado para la representación
de relaciones de dependencia condicional en datos multivariantes. Su aprendizaje a partir de
un conjunto de datos o expertos ha sido estudiado profundamente desde su concepción. Sin
embargo, en determinados escenarios se demanda la obtención de un modelo común asociado
a particiones de datos o conjuntos de expertos. En este caso, se trata el problema de fusión
o agregación de modelos. Los trabajos y resultados en agregación de redes Bayesianas son
de naturaleza variada, aunque escasos en comparación con aquellos de aprendizaje. En este
documento, se proponen dos métodos para la agregación de redes Gaussianas, definidas como
aquellas redes Bayesianas que modelan una distribución Gaussiana multivariante. Los métodos
presentados son efectivos, precisos y producen redes con menor cantidad de parámetros en
comparación con los modelos obtenidos individualmente. Además, constituyen un enfoque
novedoso al incorporar nociones exploradas tradicionalmente por separado en el estado del arte.
Futuras aplicaciones en entornos escalables hacen dichos métodos especialmente atractivos,
dada su simplicidad y la ganancia en compacidad de la representación obtenida.---ABSTRACT---Bayesian networks are a widely used model for the representation of conditional dependence
relationships among variables in multivariate data. The task of learning them from a data set
or experts has been deeply studied since their conception. However, situations emerge where
there is a need of obtaining a consensuated model from several data partitions or a set of
experts. This situation is referred to as model fusion or aggregation. Results about Bayesian
network aggregation, although rich in variety, have been scarce when compared to the learning
task. In this context, two methods are proposed for the aggregation of Gaussian Bayesian
networks, that is, Bayesian networks whose underlying modelled distribution is a multivariate
Gaussian. Both methods are effective, precise and produce networks with fewer parameters in
comparison with the models obtained by individual learning. They constitute a novel approach
given that they incorporate notions traditionally explored separately in the state of the art.
Future applications in scalable computer environments make such models specially attractive,
given their simplicity and the gaining in sparsity of the produced model.

Funding Projects

Type
Code
Acronym
Leader
Title
Madrid Regional Government
S2013/ICE- 2845-CASI-CAM-CM
Unspecified
Unspecified
Unspecified

More information

Item ID: 39091
DC Identifier: https://oa.upm.es/39091/
OAI Identifier: oai:oa.upm.es:39091
Deposited by: Biblioteca Facultad de Informatica
Deposited on: 21 Jan 2016 11:18
Last Modified: 30 Nov 2022 09:00
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM