[1] Duran A, Saenz S, Torrejon MJ, et al. Introduction of IADPSG Criteria for the Screening and Diagnosis of Gestational Diabetes Mellitus Results in Improved Pregnancy Outcomes at a Lower Cost in a Large Cohort of Pregnant Women: The St. Carlos Gestational Diabetes Study. Diabetes Care, vol. 37, no. 9, 2014, pp. 2442-2450 (ISSN: 0149-5992). [2] Carral F, Ayala MC, Fernández JJ, et al. Web-Based Telemedicine System Is Useful for Monitoring Glucose Control in Pregnant Women with Diabetes. Diabetes Technology & Therapeutics, vol. 17, no. 5, 2015, pp. 349-354 (ISSN: 1520-9156). [3] Dalfra MG, Nicolucci A, Lapolla A on behalf of the TISG. The effect of telemedicine on outcome and quality of life in pregnant women with diabetes. Journal of Telemedicine and Telecare, vol. 15, no. 5, 2009, pp. 238-242 (ISSN: 1357-633X). [4] Pérez-Ferre N, Galindo M, Fernández MD, et al. The Outcomes of Gestational Diabetes Mellitus after a Telecare Approach Are Not Inferior to Traditional Outpatient Clinic Visits. International Journal of Endocrinololy., vol. 15, no. 8, 2010, pp. 1-6 (ISSN: 1687-8337). [5] Picón-César MJ and Grupo de Nuevas Tecnologías de la Sociedad Española de Diabetes (SED). Documento de posicionamiento sobre el uso de la telemedicina aplicada a la atención diabetológica. Avances en Diabetología, vol. 26, no. 03, 2010, pp. 414-418 (ISSN: 1134-3230). [6] Kruger DF, White K, Galpern A et al. Effect of Modem Transmission of Blood Glucose Data on telephone Consultation Time, Clinic Work Flow, and Patient Satisfaction for patients With Gestational Diabetes Mellitus. Journal of the American Academy of Nurse Practitioners, vol. 15, 2003, pp. 371-375 (ISSN: 1041-2972). [7] Given JE, O'Kane M, Bunting BP et al. Tele-Mum: a feasibility study for a randomized controlled trial to explore the potential of using telemedicine for the diabetes care of those with gestational diabetes. Diabetic Medicine, vol. 31, 2014, pp. 146-147 (ISSN: 0742-3071). [8] Klonoff DC and True MW. The missing element of telemedicine for diabetes: decision support software. Journal of Diabetes Science and Technology, vol. 3, no. 5, 2009, p. 996-1001 (ISSN: 1932-2968). [9] Hernando ME, Gómez EJ, Corcoy R and Pozo F. Evaluation of DIABNET, a decision support system for therapy planning in gestational diabetes. Computers Methods and Programs in Biomedicine, vol. 62, no. 3, 2000, pp. 235-248 (ISSN: 0169-2607). [10] Bellazzi R, Arcelloni M, Bensa G et al. Design, methods, and evaluation directions of a multi-access service for the management of diabetes mellitus patients. Diabetes Technology & Therapeutics, vol. 5, no. 4, 2003, pp. 621-629 (ISSN: 1520-9156). [11] Hidalgo JI, Maqueda E, Risco-Martín JL, et al. glUCModel: A monitoring and modeling system for chronic diseases applied to diabetes. Journal of Biomedical Informatics, vol. 48, 2014, pp. 183-192 (ISSN: 1532-0464). [12] Torkestani JA and Pisheh EG. A learning automatabased blood glucose regulation mechanism in type 2 diabetes. Control Engineering Practice, vol. 26, 20014, pp. 151-159 (ISSN: 0967-0661). [13] Selvakumar RR. An embedded automaton to monitor the glycolysis process in pancreatic β-cells. Acta Biotheoretica, vol. 63, no. 1, 2015, pp. 23-31 (ISSN: 0001-5342). [14] Grupo Español de Diabetes y Embarazo. Diabetes and pregnancy. Clinical guidelines 2006. Avances en Diabetología vol. 2, 2006, pp. 73-87 (ISSN: 11343230). [15] Hopcroft JE, Motwani R, and Ullman JD. Chapter 2Finite Automata in Introduction to Automata Theory, Languages, and Computation. 2nd ed. AddisonWesley, 2000, pp. 37-81 (ISBN: 0-201-44124-1). [16] Caballero-Ruiz E, García-Sáez G, Rigla M et al. Automatic blood glucose classification for gestational diabetes with feature selection Decision trees vs Neural networks. Actas del XIII Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON'13), Sevilla, 2013, pp. 1370-1373. (ISBN: 978-3-319-00845-5). ISBN: 978-84-608-3354-3 83