
Sensitivity analysis of Repast1

Computational Ecology models with2

R/Repast3

Antonio Prestes Garcı́a1 and Alfonso Rodrı́guez-Patón1
4

1Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de5

Montegancedo s/n, Boadilla del Monte, Madrid, Spain6

ABSTRACT7

Computational ecology is an emerging interdisciplinary discipline founded mainly on modeling and
simulation methods for studying ecological systems. Among the existing modeling formalisms, the
individual-based modeling is particularly well suited for capturing the complex temporal and spatial
dynamics as well as the nonlinearities arising in ecosystems, communities or populations due to individual
variability. In addition, being a bottom up approach, it is useful for providing new insights on the local
mechanisms which are generating some observed global dynamics. Of course no conclusions about
model results could be taken seriously if they are based on a single model execution and they are
not analyzed carefully. Therefore, a sound methodology should always be used for underpinning the
interpretation of model results. The sensitivity analysis is a methodology for quantitatively assessing
the effect of input uncertainty in the simulation output which should be incorporated compulsorily to
every work based on in silico experimental setup. In this paper we present R/Repast a GNU R package
for running and analyzing Repast Simphony models accompanied by two worked examples on how to
perform global sensitivity analysis and how to interpret the results.

8

9

10

11

12

13

14

15

16

17

18

19

20

Keywords: Individual-Based Modeling, Sensitivity analysis, Repast, Computational Ecology, Systems
Biology

21

22

INTRODUCTION23

The computational ecology is a relatively young field which relies extensively on mathematical com-24

putational methods and models for studying ecological and evolutionary processes. It is based on the25

construction of predictive and explanatory models as well as the quantitative description and analysis26

of ecological data Helly et al. (1995) Petrovskii et al. (2012). The continuous growth of computational27

power available for and end users, the existence of tools and the constant increment of empirical data28

available, makes viable for many scientists to develop and simulate tremendously complex models from29

their desktops. In addition, the intrinsic characteristics of ecological processes, maxim their temporal and30

spatial scale Dieckmann et al. (2000), converts the task of carrying out controlled experiments a physical31

impossibility. Hence, in most cases the only feasible alternative is to simulate the process in order to make32

experiments spanning the full length of ecological and evolutionary scales. The computational ecology33

has its roots from the successful results achieved from mathematical ecology which has proven to be an34

essential tool for understanding the complexities which arise from ecological interactions.35

It is a widely accepted that simple models with a small number of state variables and parameters36

provide best generalizations than the complex ones Smith (1974) Evans et al. (2013) with a clear distinction37

between simulation models and theories as separate entities handling different kind of problems. It has38

been recently questioned the correctness of the idea the simple models lead to generality in ecology Evans39

et al. (2013). We believe that the parsimony principle must always be taken into account when developing40

models, but this has a different meaning depending on the modeling formalism we are using. Simplicity41

does not have the same meaning when the referred modeling formalism is a deterministic ODE or when it42

is applied to Agent-based modeling, as long as every modeling techniques has its own idiosyncrasy and43

constraints. The Agent-based modeling is a flexible and versatile abstraction where the whole system44

under study is described or formalized by its component units, which facilitates a more natural description45

of a system and the comprehension of individual properties leading to the emergent phenomena Bonabeau46

(2002).47

The Agent-based models (AbM) are much more fine-grained than their whole-population aggregated48

counterpart and as consequence they tend to be more complex requiring more equations, parameters and49

processes in order to represent the same phenomenon. That is not intrinsically a problem or a quality but50

simply a constraint imposed by the modeling formalism in use and it is up to the modelers to find the51

correct tradeoff between the purpose of the model and the level of details which should be part of the52

model structure.53

The AbM is being established progressively as a main-stream and valuable tool for modeling complex54

adaptive systems in many distinct areas of knowledge, ranging from social science, economics to any55

flavor of computational and systems science such as biology, ecology and so on Grimm and Railsback56

(2005). The reason is, amongst other things, the relative ease with which detailed structural information57

can be incorporated into a model without the constraints of other methodologies Hellweger and Bucci58

(2009). Nonetheless, the possibility of incorporating many details comes with the cost of models with a59

high complexity level, containing many rules and parameters for which the exact values are, in many cases,60

hard or impossible to determine experimentally, that is what is known as parameter uncertainty. When61

used in the context of ecological systems the Agent-based modeling is also known as Individual-based62

modeling (IbM) Grimm and Railsback (2005).63

The distinctive aspect defining what is an IbM is that individuals are represented by discrete entities64

and they also have a property or state variable which are unique in the population being simulated Berec65

(2002). Hence IbM is a valuable abstraction for simulating populations, communities or ecosystems66

capturing the individual variability, randomness and their complex dynamics. It is a bottom-up approach67

where the system under study is modeled using mechanistic explanations on the interacting system parts68

Ferrer et al. (2008). Therefore, the global behavior shown by the system as a whole, is an emergent69

property derived from the local rules defining the individuals. That is particularly useful testing different70

hypothesis or phenomenological explanations for the individual processes in order to verify which of71

them are producing the global observed behavior Pascual (2005). Moreover, differently from aggregate72

models, it is customary that IBM have a large number of state variables and parameters which in most73

cases are hard or directly impossible to elucidate experimentally leading to many levels of uncertainty in74

this kind of models. In order to tackle with the uncertainty and for making robust predictions, we have75

to use a sound methodology for applying what-if analysis to check how stable are the model outputs76

when varying the input parameters Thiele et al. (2014). There exist a large set of mathematical tools for77

analyzing the model output which are known generically as sensitivity analysis. Normally applying these78

techniques are cumbersome, requiring a lot of effort from modelers, hindering the throughout analysis of79

computational models.80

According to Thiele et al. (2014) most of Individual-based models published tends to omit the81

systematic analysis of model output, mainly because modelers normally do not have the specific knowledge82

to implement the required methods. Therefore, it seems to be clear, that the availability of simple and83

user friendly tools for experiment design and analysis would greatly help modelers to improve the formal84

quality of their models.85

In other scientific fields, which are strongly rooted on an extensive experimentalism, is practically86

impossible to conduct any kind of research without a well-designed experimental setup and a further87

statistical analysis and hypothesis test. Perhaps the reasons are that these experimental fields already have88

a complete and mature toolbox for design and evaluation of experiments Little and Hills (1978) Myers89

and Well (1995) leaving no room for deviation from these standards. On the other hand, in silico based90

experiments are still on early stage and verification and validation procedures are not well established yet.91

In addition, the real value of a computational model depends much on the ability of other researchers92

to reproduce and enhance the results elsewhere; in other words, results must be reproducible. Hence, in93

order to achieve reproducibility, research methods should be stated clearly and should preferentially being94

backed by standard methods and software tools.95

Bearing this in mind we introduce R/Repast a GNU R package for running Repast North et al. (2013b)96

models from GNU R environment as well as for carrying out global sensitivity analysis on the model97

results. In the following sections we will contextualize the problem providing a basic background for98

understanding what is being addressed in this work and we will also provide a basic description about99

the package functionalities. Finally, we will show three worked examples on how the package can help100

2/28

modelers to make the conclusions drawn from model results much more robust. The first example explores101

the basic aspects of bacterial conjugation process. The second is an individual-based implementation of102

the classic predator-prey model enclosed as part of the standard Repast Simphony distribution. Finally,103

the last example was developed ex professo for this work and it is an instance of common pool problem in104

the context of two plasmids ”sharing” the genes required for the expression of conjugative system.105

BACKGROUND106

Model development107

Model development is an iterative and objective driven activity and the first step required to develop a108

model is having a clear and ideally unambiguous statement about the model purpose. Therefore, every109

experimental study carried out using modeling and simulation should follow the experimental life cycle110

based on the successive sequence of four cyclic steps, starting from (a) Conjecture, which defines the111

model purpose and why the model is being developed; (b) Design phase where the model is translated to112

some runnable implementation; (c) Experiment step which means the execution of model following a113

well-established plan oriented to confirm or reject the initial conjecture and finally the (d) Analysis step114

where the data generated in the previous step is analyzed with a sound methodology which, hopefully will115

generate new insights, uncover model flaws and iteratively improve the initial conjecture and design Box116

and Draper (1987). A simple graphical representation of these four iterative steps is shown in Figure 1.117

Model
Building

Mode
l Purpose

Hy
pothesis

R
u
le
s/

E
q
u
a
ti
o
ns

C
o
d
in
g

D
e
si
g
n

Experiment

A
n
a
ly
sis

S
en

sitivity
Analysis

Figure 1. The iterative model development life cycle. This figure shows the relationship between
the modeling phases and their associated tasks when applied to an individual-based model.

Part of design phase consist in convert the model equations and rules to a computer code implementa-118

tion. Currently there are several frameworks available for developing individual-based models. These119

frameworks are designed to address some specific requirement such as usability Tisue and Wilensky120

(2004), flexibility or scalability North et al. (2013b); Luke et al. (2005) or support to multiple paradigm,121

such as AnyLogic Emrich et al. (2007). Certainly, the most widespread framework in ecological modeling122

is NetLogo Tisue and Wilensky (2004) which is considered to provide an easier development environment123

based on extensions to Logo paradigm especially suited for those which are not much familiar with124

modern programming languages. One of the main drawbacks of NetLogo is the scalability. NetLogo tends125

to show some performance issues when simulating a large number of agents. On the other hand, Repast126

Symphony framework has a steep learning curve but provides a fast and flexible java-based environment127

with many interesting features for simulating large scale computational ecology models. These features128

include, amongst others things, the integration with Weka, exporting the model output to R environment,129

support for running distributed batch simulations and some built-in facilities for parameter sweeping130

North et al. (2013b). Finally, Mason is, in some extent, very similar to Repast but less mature than it131

3/28

is; It has been designed focusing on providing faster execution speeds Luke et al. (2005). The only of132

these frameworks providing integrated sensitivity analysis capabilities is AnyLogic, the other frameworks:133

NetLogo, Repast and Mason which are all free software do not have built in support to sensitivity analysis.134

The Repast framework is widely used in many different fields for building individual-based simulation135

models of dynamic processes Watkins et al. (2015) Gutfraind et al. (2015) Tack et al. (2015). In addition,136

Repast also has a framework for high performance computing using the C++ programing language with137

similar conceptual entities as those found in Repast-java. Repast also has support for running GNU R code138

R Core Team (2015) Crawley (2007) from inside the user interface but until now it has not been feasible139

to run Repast models from R environment for controlling model in order to implement experimental140

designs, calibration, parameter estimation and sensitivity analysis, therefore hindering a throughout and141

comprehensive validation of Individual-based models developed using Repast Simphony.142

Sensitivity analysis143

Because of sensitivity analysis is a broad and complex subject, a throughout discussion would be lengthy144

and out of the scope of this work. Instead we will try to provide a more amenable and practical approach145

keeping the discussion at a general level but rigorous enough to let the practitioners gain the knowledge146

required to understand, apply and interpret the results. For a more detailed review please refer to Saltelli147

et al. (2004) Pianosi et al. (2016). It is interesting to start the discussion providing the exact meaning148

of some the many expressions which are used commonly in the analysis of models. There are several149

terms used in the context of sensitivity analysis for which is important to provide the formal meaning. For150

instance, the jargon of sensitivity analysis includes model calibration and parameter estimation which151

many times are used as they were equivalent, even though they are different objectives. Other terms such152

as uncertainty analysis, omitted variable bias, objective function or cost function are also important part153

of SA lexicon.154

Generally speaking, the objective of SA is to understand the effect of varying input factors on the155

model output Saltelli et al. (2004). Under this very general statement we have a wide range of methods156

and techniques which are suitable for distinct kinds of models. In order to improve this definition, it is157

convenient to provide a more formal definition to the entity which is the target of SA: the model. Formally158

speaking, a model is a functional relation between a number k of input factor, also called independent159

or predictor variable and the output variable, sometimes referred as dependent or response variable Box160

and Draper (1987) as depicted by the expression η = f (x1,x2, . . . ,xk), being η is the average value of161

response variable considering any specific setting for the input factors xi. Therefore the value of a single162

model run is given by y = f (x1,x2, . . . ,xk)+ ε , where ε is difference between the value of y and the163

expected value E(y) = η . The error ε is consequence of stochasticity introduced by design in the structure164

of model to capture the population variability. Finally, recognizing that most real world models usually165

have more than one response variable, the structure of an individual-based model M can be generalized166

for n outputs as can be seen below167

M =

y1 = f1(x1,x2, . . . ,xk)+ ε

y2 = f2(x1,x2, . . . ,xk)+ ε

...
yn = fn(x1,x2, . . . ,xk)+ ε

Therefore, being yi some output of model M, the model calibration process consists in comparing168

these outputs to some reference values Zeigler et al. (2000) which are normally, in the case of ecological169

or biological studies, experimental or observed data. The target of calibration process is minimizing170

the discrepancies between simulated and reference values. The function used for computing how far yi171

output is from the reference values is known as objective function or cost function. There are many172

options for implementing the objective function and the only requirement is that the return of objective173

function should be inversely proportional to the quality of fit, being zero the return value for the perfect174

fit. Common implementations for objective function are based on the definition of acceptable ranges,175

least squares or even a combination of both. For instance, let yi be the output of some hypothetical model176

M, assuming this variable represents the net reproductive rate R0. The reference values Rv for the output177

variable must fall between 0.8 and 1.2, hence any yi value within this interval is considered to have a178

perfect fit, bearing this in mind the cost function could be given by the following expression179

4/28

C(yi) =

{
0, if 0.8≤ yi ≤ 1.2
1, otherwise

That is what is known as categorical calibration criteria Thiele et al. (2014). The main drawback of this180

approach is that it does not provide any information about how far is the response value from the reference181

value. A better alternative is to apply some distance function d(yi,Ry) to the output and the reference182

values, even standalone or in combination with categorical calibration. The most commonly used metric is183

some of the multiple forms of squared deviation but any distance function can be alternatively employed184

as long as two properties hold: d(yi,Ry) = 0 if xi and Ry are equal and d(yi,Ry)> 0 when xi and Ry are185

not equal.186

Whilst calibration is a general term, meaning fundamentally the comparison of some value to a
reference value, the term parameter estimation has a more subtle and specific goal. The parameter
estimation is normally considered an inverse problem because the objective is finding the values for the
model parameters providing the best adjustment to the reference values. In other words, knowing the
expected values for response variable the target is estimating the suitable values for the model parameters.
Usually the terminology parameter refers to the constants which are part of models with clear distinction
between parameters and independent variables, Beck and Arnold (1977), for instance in the growth
differential equation shown below

dN/dt = rN

the model parameter would be only the growth rate r and the independent variable the time, but for the187

purpose of this work we consider indistinctly the model constants and independent variables as being188

parameters.189

The two main objectives of sensitivity analysis are understanding how robust are the model results190

considering the existing uncertainties and quantifying the effect of input factors on the variance of output191

Saltelli et al. (2004) Pianosi et al. (2016) Law (2005). The intrinsic characteristics of individual-based192

models which relies on mechanistic descriptions favors the production of models with many sub-processes,193

state variable and parameters. The design is normally based on incomplete knowledge resulting in several194

levels of uncertainties in the model parameters, in the model response variables and in the model structure195

itself. The model structure is also related to the identifiability problem where not all model parameters can196

be uniquely estimated. The sensitivity analysis can be also used for assess the effect of model structure on197

the output considering the alternative model implementations as being another parameter. This can be198

useful for analyzing the omitted variable bias, which basically means that some parameter of model can199

be over or under-estimated because another important parameter was not included in the model structure.200

The sensitivity analysis can be carried out letting the parameters varying over the full range of parameter201

space or restricted to a small region close to the average value, respectively referred as global sensitivity202

analysis and local sensitivity analysis. Sensitivity analysis can also be performed varying one factor at203

time (OAT) leaving all others fixed or varying all factors at the same time (AAT). The application of204

second method is required in order to capture interaction between parameters and non-linear effects.205

The central point of SA methodology is the estimation of sensitivity indices or coefficients. The
sensitivity coefficients allow the quantitative comparison of the contributions from distinct parameters to
the model output. In its classical form Beck and Arnold (1977) the sensitivity indices are defined as the
first derivative with respect to some model parameter xi. Considering the general model y = f (X), being
X the parameter vector of size k, the sensitivity index Si is given by

Si =
∂Y
∂xi

It is also important to take into account that the partial derivatives can have different units, hence can be206

necessary to scale them in order to make them comparable. In this approach, input factors are perturbed207

one-at-time, being that measure of sensitivity suitable for local SA Pianosi et al. (2016).208

Several methods for estimate sensitivity indices which are adequate for global sensitivity analysis are209

available, such as meta-modeling approach Happe et al. (2006), correlation based methods, regression210

based methods, Fourier Amplitude Sensitivity Test (FAST) Xu and Gertner (2011), for a more in depth211

discussion please refer to Thiele et al. (2014) Saltelli et al. (2004) Saltelli (2008) Pianosi et al. (2016) Pujol212

et al. (2015). The Figure 2 show how are related the different methods for assessing the importance of input213

5/28

factors in simulation models, also including screening techniques Bettonvil and Kleijnen (1996) Andres214

and Hajas (1993). In this work we will focus on those methods based on the variance decomposition215

which are suitable for a wide range of situations, including those which are commonly found in individual-216

based models, such as non-linear mappings between input factors and outputs variables Zhang and217

Rundell (2006). In addition to first order effects, the variance decomposition methods, also allows the218

quantification of second order effects sometimes referred as total order effects. Total order effects indices219

are useful for the assessment of the interaction between factors which cannot be expressed by a simple220

lineal superposition.221

Sensitivity
Analysis

Local
Sensitivity
Analysis

Global
Sensitivity
Analysis Regression

based
methods

Partial Rank
Correlation
Coefficient

Standardized
Rank

Correlation
Coefficient

Variance
decomposition

Fourrier

FANOVA
Sobol

Screening

Morris
Elementary

Effects

Iterated
Fractional
Factorial
Designs

Sequantial
Bifurcation

Figure 2. The different types of sensitivity analysis and their associated methodologies and
techniques.

One of main drawbacks for applying variance decomposition methods on large spatially explicit222

individual-based models is the requirement of very high number of model evaluations in order to produce223

consistent results Herman et al. (2013). An alternative approach, in those cases where it is impractical224

6/28

or computationally unfeasible a fully quantitative analysis, is the application of the Morris screening225

method. The Morris method deliver qualitative information allowing to rank the importance of input226

factors requiring lees model evaluations, which in some case can one order of magnitude inferior to the227

Sobol method Saltelli (2008).228

The Sobol is a method for sensitivity analysis based on the decomposition of the variance of model229

output and is particularly suitable for discovering the effect of high order interactions between input230

factors. The interaction means non-linearity where the total effect of two input factors x1 and x2 on the231

model output Y are not equivalent to the sum of the individual effects. The general form of sensitivity232

indices for Sobol methods are shown in Equation (1) and Equation (2), respectively the first order and233

total order indices.234

Si =
Vi

V (Y)
(1)

STi = 1− V (Y)−Vi

V (Y)
, (2)

where the terms Vi and V (Y) are respectively the variance contribution attributed to the ith parameter and235

the total variance. The expression V (Y)−Vi represents the total variance with exception of the variance236

which is generated by the parameter i. The total order index STi is the contribution of all input parameters237

but one, the ith parameter, and hence estimating the effect of that parameter on the variance reduction238

Saltelli (2008).239

The total variance V (Y) for a model with n input parameters can be expressed as shown in Equation240

(3) as long as the orthogonality of input factors precondition holds.241

V (Y) = ∑
i

Vi +∑
i< j

Vi j + ∑
i< j<k

Vi jk + · · ·+V12...n, (3)

being V (Y) the total variance from model output and the components Vi, Vi j and Vi jk respectively the242

variance contribution from the parameter i, the variance contribution form input parameters i and j and243

the variance contribution form input parameters i, j and k. Finally, the component V12...n express the244

interactions from all parameters present in the model.245

The application of Sobol method, as have been mentioned, can be computationally expensive and246

sometimes could be useful to reduce the problem dimensionality filtering only the most significant247

parameters or even simplifying the model structure considering only the parameters accounting for the248

most of the variability in the model output. It can be accomplished using the Morris screening method to249

rank the importance of input parameters. The Morris method is an OAT method, meaning that it changes250

just one factor keeping all other input parameters fixed. The input factors are allowed to vary in discrete251

levels within the relevant parameter range Morris (1991). The method is considered to be more effective252

when the number of most significant input parameters are a small subset of model parameters Saltelli et al.253

(2004).254

The original work of Morris Morris (1991) define two metrics for ranking input factors which are255

depicted by µ and σ values1. Further, another metric termed µ∗ has been suggested by Campolongo et al.256

(2007) which use absolute values in order to handle effects of distinct signs canceling each other. These257

metrics for ranking input factors are calculated from what has been termed elementary effects. Therefore,258

considering a model with k input parameters and being X = (x1,x,2 , . . . ,xk any value from the region of259

experimentation Ω, the elementary effects are calculated according to the Equation (4).260

eei(X) =
y(x1, . . . ,xi−1,xi +∆,xi+1, . . . ,xk)− y(X)

∆
(4)

The region of experimentation Ω is a grid defined by the number of k input factors and by the p261

discrete levels for every parameter. The recommendations for the values of p and ∆ are respectively that262

the first should be an even number of levels and the second calculated by the expression ∆ = p/(2(p−1))263

1Not to be confused with population mean and standard deviation

7/28

Morris (1991) Saltelli et al. (2004). The value of ∆ has important implications in the model analysis. It264

has been shown that in some situations choosing an alternative value calculated as ∆ = 1/(p−1) can265

detect non-monotonic behaviors that the suggested standard calculation are not able to capture otherwise266

van Houwelingen et al. (2011).267

The metrics of Morris method are calculated over the Fi and Gi distributions for every input parameter.268

These distributions are generated taking random samples of X from Ω for calculating the elementary269

effects and the only difference between them is that Gi uses the absolute values of elementary effects270 ∣∣eei(X)
∣∣ as described in Campolongo et al. (2007) Saltelli (2008). The estimation of Morris metrics are271

carried out by taking r samples from Fi and Gi distributions according to the Equations (5), (6) and (7).272

µ =
r

∑
i=1

eei(X)

r
(5)

µ
∗ =

r

∑
i=1

∣∣eei(X)
∣∣

r
(6)

σ =

√
r

∑
i=1

(eei(X)−µ)2

r
(7)

These three metrics can be used to extract valuable information about the model behavior, in addition273

to ranking the input factors. For instance, a low value of µ and a high value of µ∗ is high, points that the274

input factor under scrutiny, possibly has a non-linear behavior having different signs in function of the275

system trajectory Saltelli et al. (2004). A high value of µ indicates that the input has a monotonic effect276

on the model output.277

The sensitivity analysis methods require significant samples from input space in order to provide278

reliable results. It is customary to choose between some experimental design Hicks (1993) for generating279

the collection of input parameters needed by evaluating the model and allocating the variance contribution280

of every model parameter. The most generally applied sampling schemas are based on random sampling,281

full factorial designs or Latin hypercube sampling.282

OVERVIEW OF R/REPAST PACKAGE283

In the previous sections we had seen some fundamental ideas on model building and the role occupied284

by sensitivity analysis methods in the iterative modeling life-cycle. We have also introduced the basic285

principles of sensitivity analysis focusing on two main techniques namely the Morris Elementary Ef-286

fects Screening Morris (1991) and the Sobol GSA method for variance decomposition Saltelli (2008).287

Both methods have a wide range of applicability, making them suitable for their use in the analysis of288

Individual-based models. These methods require the model be evaluated many times with a different set289

of input parameters, making completely impractical undertaking a manual analysis introducing individual290

parameters manually on a graphical user interface. The Repast is an extremely flexible framework for291

object-oriented development of Agent-based models using Java language but it lacks from model analysis292

tools. On the other hand, the GNU R is a superb open source tool for data analysis with a vast and293

active community developing and adding new methods to the core R system. Bearing this in mind, we294

introduce our package R/Repast which bring together the best of both worlds. Roughly speaking, the295

R/Repast package have two main objectives: (a) Provide an interface for running Repast models from R296

and gathering the simulation data generated and (b) Automating the application of sensitivity analysis and297

simple model calibration methods to the Repast models. The R/Repast is an open source project delivered298

under the MIT license system. The package provides a powerful and simple R API2 which reduces the299

code required for running the most commonly used experimental methods suitable for . The software300

and the user manual can be downloaded from CRAN website and the complete project source code from301

GitHub repository. Both are available respectively from the following URLs:302

• https://cran.r-project.org/web/packages/rrepast/303

• https://github.com/antonio-pgarcia/RRepast304

2Application Programming Interface

8/28

https://cran.r-project.org/web/packages/rrepast/
https://github.com/antonio-pgarcia/RRepast

Design305

The R/Repast was intended primarily for invoking Repast Simphony models from inside GNU R306

environment. Additionally, the package contains more high level and value added features for experimental307

design and experiment analysis to address the specific need of individual-based models. The underlying308

implementation idea is to provide a set of turnkey features for facilitating the task of applying the309

sensitivity analysis to models. Functionally, the package consists in four modules which interoperate310

together for instantiate and running the Repast code inside R. These four components are (a) the Repast311

Integration Broker, (b) the Repast Integration Engine, (c) The R Integration wrapper and finally, (c) the R312

API for Experiment design. An schematic view of package architecture is shown in Figure 3.313

R/Repast

Engine

R/Repast

Integration Broker

JVMR

R Integration

Wrapper

R/Repast

R API

Y = f(X)

User defined Repast
Model

User defined R code

running Y = f(X)

Figure 3. The R/Repast general architecture. The scheme shows in the left box the R
environment and the associated components of R/Repast. The right box represents the Repast
Simphony model running within a Java Virtual Machine as well as the R/Repast integration
broker component.

The R/Repast integration broker and the R/Repast engine are both written in java code and are required314

for instantiating and loading the Repast Simphony model in batch mode. The R/Repast engine contains315

also the required hooks for transferring the model output data from Java to R environment. The engine can316

transfer data from aggregated data set defined by the modeler on the Repast model. An aggregated data317

set is a Repast Simphony entity used for collect data about the simulation model agents which can be used318

for plotting or saving the model output data to a file using a file sink. A File Sink is Repast component for319

saving simulation data to a file. The aggregated datasets use some kind of aggregate operation, such as320

counting, averaging, summing or any other used defined aggregate operation North et al. (2013c), North321

et al. (2013a), North et al. (2013d). The R integration wrapper is the R code for linking together the R322

and Repast subsystems. This module consist in several wrapping functions for encapsulating the Java323

code calls implemented using the rJava package Urbanek (2016). These functions are prefixed with the324

[Engine] keyword and, although exported in the R/Repast package, they are not intended for general use.325

The R/Repast R API326

The module entitled R/Repast R API is the primary entry point for the user defined code and relies on327

the subsystems mentioned previously for providing three group of functionalities for facilitating modelers328

to analyze the simulation output. These group functionalities are the following:329

9/28

• Execution and control of Repast Simphony code.330

• Basic functions for experimental design.331

• High level functions for a complete experiment in one call.332

The functionalities on the first group are those required for the basic interface between Repast and333

R system, such as instantiating and running a Repast Simphony model, retrieving the declared model334

parameters, getting their default values, setting parameter values as well as running basic experimental335

designs and saving simulation data. The list of these functions are shown in Table 1.336

337

Table 1. The basic R/Repast API Functions. These functions are used for loading and
modifying the default parameters defined for model and also for running the simulation.

Function name Description

Model(d, t, o, l) This function creates an object instance for linking the Repast
model to an R object. The required parameters are the directory
where the model has been installed (d), the duration of simula-
tion in Repast ticks (t), the name of any aggregated dataset of
model for draining data generated by the model simulation (o)
and a Boolean flag (l) which tells the function to call the Load
method. The default value is FALSE.

Load(m) This function loads the Repast scenario from model’s directory.
The only required parameter (m) is an instance of Repast Model
created with previous function.

Run(m, r, s) The purpose of this function is to execute a single round of
simulation using just one parameter set. The parameters for this
function are a model instance (m), the number of repetitions (r)
and a collection of random seeds (s) to be used for each one
of the repetitions. The only required parameter is the model
instance, created with the Model() function. The default value
for r is one.

RunExperiment(m, r, d, F) Execute a complete experimental setup for different sets of pa-
rameters. The parameters required are a model instance (m),
the number of replications (r), the experimental design (d) and
finally a user provided calibration function (F). The experimen-
tal design parameter is an R data frame containing a complete
set of model’s parameter per row. The function returns a list
with three data frame elements: the paramset, the output and
dataset which holds respectively all simulated input parameters,
the result of user provide calibration function and the complete
dataset produced during the experiment execution.

GetSimulationParameters(m) Returns the complete list of parameters declared by the model.
The parameter (m) is an instance of Repast model generated
with Model() call described previously.

SetSimulationParameters(m, p) Modify several parameters at once.

SaveSimulationData(t, e) Exports the results of Run or RunExperiment to a csv or excel
files. The parameters t and e are respectively the format of
exported data (xls or csv) and the experiment results returned
by RunExperiment()

338

10/28

The second group of methods within R/Repast R API contains the functionalities required for setting339

up and applying a complete experimental design to a Repast simulation model. The group include340

functions for adding the input factors and the relevant input range which the modeler wants to evaluate.341

The group also have functions for generating the experiment inputs using different sampling approaches.342

It is not required to add as input factors all declared model parameters, the modeler can just evaluate a343

small subset keeping the other factors fixed. The functions of this group are presented in Table 2.344

345

Table 2. The Experimental Setup API functions. These functions are used for experimental
design, parameter calibration and sensitivity analysis.

Function name Description

AddFactor(f, l, k, b, u) Creates the parameter collection for the experimental setup.
The function requires the data frame (f) where parameter will be
added, if this parameter is not provided a new data frame will
be created. The second parameter (l) is the random function
used internally, the default value is runif which will be the valid
choice in many cases, the next parameter (k) is the name of
factor, the value provided must match some parameter defined
in the repast model. The following two parameters (b), (u) are
the lower and the upper range, respectively. The function returns
the updated (f) data frame with the new parameter.

AoE.RandomSampling(n, f) Also known as Monte Carlo sampling, generate an experimental
design based on making random samplings of parameter space.
The function takes two parameters, the sample size (n) and the
factor (f) data frame created using AddFactor(). The function
returns the design matrix for the provided parameters.

AoE.LatinHypercube(n, f) Generates an experimental design using the Latin Hypercube
stratified sampling technique which is a more efficient sampling
scheme, in terms of model evaluations, than the pure random
sampling. The parameters (n, f) and return values are the same
already described for the function AoE.RandomSampling().

AoE.FullFactorial(n, f) Creates a factorial design where the effects of all independent
variables of model are studied simultaneously, which implies
many more model evaluations. The parameters (n, f) and re-
turn values are the same already described for the function
AoE.RandomSampling().

BuildParameterSet(d, p) Constructs the data frame required for executing
RunExperiment(). The function takes two parameters:
the design matrix (d) created with one of previous functi-
ons and the declared parameters (p) defined in the Repast
Model with the default values retrieved using the function
GetSimulationParameters(). The functions returns a data
frame with varying and fixed parameters for the experimental
setup of choice.

346

Finally, the third group contains the ”Easy” API functions. These functions are intended to provide347

a complete method implementation which is accessible using just one R function call. The user has348

to provide the directory location where the Repast model is installed, the objective function and the349

parameters relevant to the specific method. The currently available Easy API methods are presented in350

Table 3. The objective function is a user defined R function over the model output for calculating and351

returning a cost metric for the simulation outputs of interest. The return of objective functions is the target352

for the application of the analysis method.353

11/28

354

Table 3. The easy API functions. These functions are the preferred entry point for the
eventual users. These ”Easy” functions lump together a complete experiment task in just one
call, reducing the number of lines of code required.

Function name Description

Easy.Stability(d,o,t,f,s,r,v,F) Evaluate the behavior of model output in order to determine the
minimum required number of replication of the chosen experi-
mental setup. The function accept the following parameters: the
model installation directory (d), the aggregated data source defi-
ned within the Repast model (o), the simulation time in Repast
ticks (t) which default value is 300 ticks, the input factors to
be sampled (f) created with the previously mentioned function
AddFactor(), the number of parameter samples (s), the desired
number of replications to be tried (r) being the default value
100, the output variables of interest which will be checked for
their stability and convergence of the coefficient of variation
(v); if this parameter is leaved empty all output variables are
checked and finally the user provided calibration function (F)
for determining the best input parameter combination.

Easy.Morris(d,o,t,f,p,s,r,F) This function performs all required tasks for carrying out the
method of Morris for screening. The parameters are practically
the same as described for the previous function with exception of
parameters (p) and (s) which are respectively the levels of input
factors and the number of sampling points of Morris method
Pujol et al. (2015).

Easy.Sobol(d,o,t,f,n,r,F) Encapsulate all required steps for performing sensitivity ana-
lysis using Sobol method. The method of Sobol is a global
sensitivity analysis technique based on the decomposition of
output variance (Saltelli et al. (2004); Pujol et al. (2015)). The
parameter semantics are the same already described: the model
installation directory (d), the aggregated data source defined
within the Repast model (o), the simulation time in Repast ticks
(t) , the input factors to be sampled (f), the sample size (n), the
desired number of replications (r) and calibration function (F).

Easy.Calibration(d,o,t,f,n,r,F) This function estimates the best set of input parameters or fac-
tors, performing a set of model executions in order to sample
the calibration function. The objective of this function is to
minimize the output of calibration function provided by the
user.

Easy.Setup(d,l) The parameters (d) and (l) are respectively the directory where
repast model is installed and the location of R/Repast deploy-
ment directory. If omitted, it assumes as the default value, the
directory where the Repast model is installed. The function
is required for automatically making the changes in the model
configuration for adding the integration code, for deploying the
Java jar files with the integration code and for preparing the
deployment directory. That directory will hold the JVM logs
and the saved model output data sets.

355

The objective function interface356

The last piece of R/Repast architecture is the definition of the objective function which actually allows the357

flexible definition of the model analysis target decoupling it from the Repast dataset output. As we have358

mentioned previously, any model is a functional relationship between a vector of input parameters X and359

12/28

a scalar dependent variable y and expressed as y = f (X). On the other hand, usually the dataset collected360

from Repast model execution will be a time series where the aggregated measure will be collected at fixed361

intervals. Therefore, some transformation must be applied in order to obtain a value consistent with the362

functional definition. In addition, even though the value returned from the Repast model were a scalar363

one, it would add much more maintainable and flexible a to act upon it directly from R without have364

to making changes in the Repast code. The objective function is also necessary for calibrating, where365

the output values are compared to some reference data or even for more complex tasks, such as tuning366

oscillations in the population output. It is also the place for normalizing he model outputs. The objective367

function is a required parameter for all methods presented here.368

The specification of R/Repast requires the objective function having two input parameters. The369

first input parameter for the objective function is the input parameter set used for executing the Repast370

model, the second parameter are the results generated by executing the model and corresponding to and371

aggregated data set in the Repast model. The objective function must return one or more scalar values372

grouped using the cbind() Crawley (2007) R function. The complete function signature is shown in373

Figure 4.374

1 o b j e c t i v e<− f u n c t i o n (params , r e s u l t s) {
2 c b i n d (. . .)
3 }

Figure 4. The skeleton of objective function. The function has two parameters and must return
a one or more scalar values.

EXAMPLES OVERVIEW375

In the next sections we will provide examples on how the R/Repast can help modelers on the analysis of376

their simulation models. Three examples will be used for illustrating the application of some package’s377

functionalities and what kind of information these functions can offer about the simulation outputs. For378

clarifying what every model does a summary version of ODD will be given for facilitating a general idea379

about these models. The Overview, Design concepts and Detail (ODD) is a protocol Grimm et al. (2006)380

Grimm et al. (2010) which has been proposed as a standard way to specify and describe Individual-based381

models. A brief description on the model structure and parameters will be given in order to allow the382

readers to understand the kind of questions the model is intended to answer and how R/Repast is can be383

used for analyzing the model outputs. The last section for each model under the title of Model analysis is384

not part of ODD protocol but it is included to show the results of running the R/Repast model analysis385

methods.386

The first model used as example here is a spatially explicit individual-based representation of bacterial387

conjugation using BactoSIM for simulating the plasmid spread on a surface attached bacterial colony388

Prestes Garcı́a and Rodrı́guez-Patón (2015). The example will be used for showing the application389

of Easy.Stability method for finding the number of replications of simulation experiments required for390

obtaining consistent outputs. The second example is a Repast implementation of the omnipresent predator-391

prey model describing the interaction between two species. This one is part of examples coming along the392

standard Repast distribution and will be used for showing the application of Easy.Morris function. Finally,393

the third example is an instance of the common pool problem in the context of bacterial conjugation.394

This model was developed exclusively for this work. This model will be used for exemplifying the use395

of Easy.Sobol method. The complete sources for all projects are available respectively in the following396

locations:397

• BactoSIM: https://github.com/antonio-pgarcia/haldane398

• Predator-Prey: The sources come with the Repast distribution.399

• T4SS Common Pool: https://github.com/antonio-pgarcia/PoolT4SS400

For convenience, in order to facilitate the experiments shown in this paper being reproduced elsewhere,401

we also provide the pre-built installers for the three projects mentioned previously. The installers can be402

download from URL shown below:403

13/28

https://github.com/antonio-pgarcia/haldane
https://github.com/antonio-pgarcia/PoolT4SS

• BactoSIM: http://goo.gl/YYIt1o404

• Predator-Prey: http://goo.gl/cJ5z2r405

• T4SS Common Pool: http://goo.gl/zq4LH0406

In order to reproduce the examples shown in the next sections, it is required a computer with a407

Java JVM and GNU R installed. The examples have been produced and tested on a windows box with408

java 1.8 and GNU R 3.3.1. If these preconditions are met, just proceed to download and install the409

examples and the R/Repast package. The installation of R/Repast is carried out using the install command410

install.packages(”rrepast”) on the R environment. Once the previous steps have been completed, just411

copy and paste the examples shown in this paper, taking care of changing the references to the model412

installation directory to the directories where the models have been installed locally.413

EXAMPLE 1: BACTOSIM414

Normally, one of the advantages of using individual-based models for biological or ecological processes415

is the possibility of incorporating variability at an individual level. Therefore, unlike deterministic model,416

in order to get trustworthy results, the simulation must be repeated a number N of times to achieve stable417

value on the output variance. The objective of the first example is to show the application of a simple418

method for finding the minimal number of replications of a simulation model which is required for the419

variance of response variables become stable, converging to a common value. A straightforward way420

to determine the output stability has been suggested in Thiele et al. (2014) Lorscheid et al. (2012) and421

consists in to compute the coefficient of variation 3 of the output of interest with and increasing number422

of repetitions while keeping the input parameters fixed. The number of replications for which the values423

of coefficient of variation stop to vary are the minimum number of repetitions necessary for getting robust424

results. In R/Repast we have implemented that method which is accessible through the Easy.Stability API425

call.426

For this example, the BactoSIM Prestes Garcı́a and Rodrı́guez-Patón (2015) model will be used. This427

is an individual-based model of bacterial conjugation process. The bacterial conjugation is a form of428

lateral genetic transfer which occur naturally in bacterial colonies Arutyunov and Frost (2013). The429

conjugation consists in the transference of a conjugative plasmid from a donor cell to a recipient cell. The430

plasmids are small circular DNA sequences which replicates independently from the main chromosome431

of their hosts Bergstrom et al. (2000). The conjugation is considered one the causes of the rapid evolution432

and adaptation of bacterial colonies and the spread of antibiotic resistance Chen et al. (2005) Slater et al.433

(2008). The BactoSIM model is currently being used for an evaluation of the main factors governing434

the plasmid dispersion. A preliminary evaluation has shown that the point in the cell cycle are the435

principal factor responsible for the global dynamics of plasmid infective dispersion Prestes Garcı́a and436

Rodrı́guez-Patón (2015) which is consistent with some observations Seoane et al. (2011) taken from437

individual bacterial cells.438

Model description439

The model description follows the ODD (Overview, Design concepts and Detail) protocol for describing440

individual-based models Grimm et al. (2006) Grimm et al. (2010). The model is implemented in java441

language using Repast Simphony agent-based simulation framework North et al. (2013b).442

Purpose443

The objective of this model is the assessment of the best strategy for modeling and implementing the444

conjugation rule which provides the best fit to experimental data and better captures the most plausible445

process structure.446

Entities, State variables and scales447

The model comprises two entity types, namely the bacterial individuals or agents and environment. The448

environment contains the rate limiting number of nutrient particles required for the cell metabolism449

and growth. All agents evolve in a computational domain defined by a 1000×1000µm squared lattice450

3Also known as relative standard deviation given by CV = σ/µ which provides a normalized version of the standard deviation
expressed relatively to the output mean

14/28

http://goo.gl/YYIt1o
http://goo.gl/cJ5z2r
http://goo.gl/zq4LH0

divided in 106 cells of 1×1µm representing a real surface of 1mm2. In this model the agents representing451

bacterial cells are defined individually by two main state variables, namely the plasmid infection state452

and the t0. The plasmid infection states are Q = R,D,T and the respective transition function for453

conjugative plasmids, δ is shown in (8). For the oriT construction only the first transition rule applies454

since transconjugant cells are sterile. The t0 is the time of cell birth or the time of the last cellular division,455

it is employed in the estimation of agent doubling time used in the division decision rule. The T4SS pili456

is also taken into account and the agents have a state variable representing the number of pilus already457

expressed and available in cell surface.458

δ =

{
(D,R)→ (D,T)
(T,R)→ (T,T) (8)

Finally, the environment will hold the initial nutrient concentration for every lattice cell. In the model459

initialization, a fixed amount of substrate particles will be distributed evenly over all lattice sites.460

Process overview and scheduling461

The dynamics of bacterial conjugation is modeled as the execution of following set of cellular processes:462

the cellular division, the T4SS pili expression, the shoving relaxing which avoid bacterial cells to overlap463

and allow a more realistic colony growth and the conjugation process. The state variable update is464

asynchronous. The order of execution of this process is shuffled to avoid any bias due to a purely465

sequential execution of model rule base, see 5. The conjugation process is modeled in three different466

ways with respect to the time when conjugation event is most prone to happen and the results are467

compared. Thus the conjugation is defined by to variables: the value of intrinsic conjugation rate (γ0)468

which determines how many transfers should be performed by a single bacterial cell and the cell cycle469

point which defines the time when the conjugative events are likely to occur.470

The model input and initialization requires the parameters shown in Table 4. The costT 4SS is the471

total cost of pili expression. The cost applied for a single pilus expression is costT 4SS/param(maxpili).472

The param(maxpili) is actually a constant having the value of 5 for E. coli. The cellCycle parameter473

indicating two things: the type of modeling rule and its parameter. A value of −1 set the model to474

conjugate as soon an infected cell finds a susceptible one. Setting the parameter to 0 will randomize475

de conjugation time between t0 and G. Finally using a value greater than zero indicates the specific476

point in the cell cycle for conjugation. A polynomial equation fitted to the experimental data where the477

dependent variable represents the conjugation rate T/(T +R). Setting isCon jugative flag to false creates478

a simulation where the transconjugant cells are sterile, in other words they are unable to conjugate. The479

equation is used only for comparing the quality of simulation output.480

481

Table 4. The complete list of model initialization parameters.

Parameter Unit Description

G minutes Average doubling time for plasmid free cells
cellCycle % of G The percentage of cellular cycle for conjugation
costConjugation % of G The penalization due to a conjugative event
costT4SS % of G The Pilus expression cost
γ0 conjugations/cell Upper limit for conjugations performed by an agent
isConjugative true—false Defines a conjugative or a mobilizable plasmid
isRepressed true—false The T4SS expression state for the plasmid
N0 cells/ml Initial population expressed in cells/ml
donorRatio % of N0 The initial density of donor cells (D)
Equation N/A An equation for experimental data

482

Design concepts483

Basic Principles — Three models differing in the way the conjugation rule is implemented and their484

results compared to the available experimental data. The best strategy can be used to build models which485

15/28

Figure 5. The flow diagram showing the overview on how bacterial process are scheduled in the
BactoSIM simulation model. 16/28

could serve as a predictive tool for synthetic biology and to explore some aspects which are hard to486

observe directly in experimental studies of plasmid spread. The key points of this model lies on the idea487

of the existence of a local or intrinsic conjugation rate, which has been termed γ0. This intrinsic rate488

stands for the number of plasmid transfer events, or conjugations on a cell life-cycle basis. In addition,489

the global infective wave speed depends directly from the specific point in the bacterial cell cycle when490

conjugative event is triggered.491

Emergence — The model intends to find out what will be the global outcome arising as function of local492

rules defining the evolution of the bacterial cells and their interaction with adjacent neighbors. With this493

objective, the model incorporates the most significant aspects of the spatial structure and the behavior494

of the cellular processes that are related to the conjugation. Specifically, the values of the generation495

time of donor and transconjugant cells are one of the emergent properties depending from the metabolic496

penalizations applied both for conjugation event and for the expression of T4SS genes.497

Adaptation — All agents adapt their growth according to the local availability of nutrient and space.498

Fitness — It is considered implicitly to the extent that plasmid free individuals will present a better499

adaptation in terms of growth rate than plasmid bearing cells.500

Prediction — The model is intended to provide prediction regarding the range of possible values for the501

number of plasmid transfer events per cell cycle and the cell cycle point when conjugative transfer is most502

likely to happen.503

Sensing — All process defined over the agents implicitly sense the local environment and the close504

neighborhood for their decisions.505

Interaction — Bacterial cells interact with their nearby individuals for nutrient access, cellular division,506

mate pair formation and plasmid transfer.507

Stochasticity — Stochasticity is introduced at individual level for all cellular process sampling a normal508

deviate and fitting the value to corresponding process.509

Collectives — No collectives are taken into account in this model.510

Observation — The output target variables will be saved at intervals of one minute of simulated time.511

512

Initialization513

The simulation model is initialized with a population of plasmid free (R) and plasmid bearing (D) cells514

according to input parameters. The agents are placed randomly within a circular surface centered over the515

lattice central position. The radius of circle where agents are placed is calculated as function of N0 in516

order to be consistent to the desired initial cell density Zhong et al. (2012). The simulation environment is517

also initialized with a number of nutrient particles in order to support the half of the estimated number of518

cellular divisions and the rationale behind it is to capture the intercellular competition for nutrient access.519

Model analysis520

The objective of stability analysis is to find the minimum number of experimental setup replications521

required for achieving reliable results. Thereby, the model output response is evaluated for an increasing522

number of repetitions allowing the evaluation of the convergence for output variance of simulation outputs.523

The complete listing for carrying out the stability check for the BactoSIM model is shown in Figure 6. As524

can be observed, the complete implementation of model analysis encompasses five steps. These steps525

are conserved for all high level functions available in R/Repast package. The step 0 clean all existing R526

objects, loads the R/repast package and set the random seed for the analysis. The step 1 is the definition of527

the objective function which can be any user provided function following the R/Repast API specification.528

It is not strictly necessary for the Easy.Stability as the coefficient of variation is calculated for the model529

output variables. In this example the objective function is basically the comparison of simulated data530

and experimental data using the normalized root mean square error API call AoE.NRMSD. The step 2531

is adds the model input factors for which the importance on the model output will be assessed and their532

biologically relevant range of variation. It is necessary to add at least one parameter which will be varied,533

while all other model parameters are keep fixed using the default value or with a value previously set using534

the R/Repast API SetSimulationParameter. The purpose of step 3 is to configure automatically the Repast535

model with the integration broker and for initializing the integration directory. Finally, the step 4 is where536

the analysis method is invoked, all analysis methods will return a list holding three objects, namely the537

experiment, the object and the charts. The experiment contains simulation parameters and results, the538

17/28

object is method specific and finally the charts are pre-generated graphs for the method results4
539

1 # S tep 0
2 rm (l i s t = l s ())
3 l i b r a r y (r r e p a s t)
4 s e t . s eed (161803398)
5

6 # S tep 1
7 o b j e c t i v e<− f u n c t i o n (params , r e s u l t s) {
8 Rate<− AoE .NRMSD(r e s u l t s $X. S imula t ed , r e s u l t s $X. E x p e r i m e n t a l)
9 c b i n d (Rate)

10 }
11

12 # S tep 2
13 f<− AddFactor (name=” c y c l e P o i n t ” , min =40 ,max=90)
14 f<− AddFactor (f a c t o r s =f , name=” c o n j u g a t i o n C o s t ” , min =0 ,max=30)
15 f<− AddFactor (f a c t o r s =f , name=” p i l u s E x p r e s s i o n C o s t ” , min =0 ,max=30)
16 f<− AddFactor (f a c t o r s =f , name=”gamma0” , min =1 ,max=4)
17

18 # S tep 3
19 Easy . Se tup (” / models / BactoSim (HaldaneEngine −1.0) ”)
20

21 # S tep 4
22 r<− Easy . S t a b i l i t y (” / models / BactoSim (HaldaneEngine −1.0) ” , ” ds : : Outpu t ” , 300 , f , 1 , 1 0 0 , c () , o b j e c t i v e)

Figure 6. The listing for stability of model output method using the Easy.Stability function from
R/Repast.

The method will generate automatically one chart for each model output5. One of the output chart540

of model is shown in Figure 7 for the variable named X.Simulated. As can be observed, the coefficient541

of variation of these variable decreases as the sample size increases. The variation starts to become542

acceptable with a sample size of 25 and approximately with sample size of 50 we can see that coefficient543

of variation become stable. Therefore, we can feel relatively confident with or model results with a544

number of replications greater than 25. Of course it is important to take into account the computation cost545

of our model in order to select a value for the number of repetitions.546

EXAMPLE 2: PREDATOR-PREY547

Model description548

Purpose549

The purpose of Predator-Prey model presented here is to provide and alternative individual based-model550

implementation for the classic ODE model describing the association between two species. The model551

will be used to show the application of Morris method for ranking the most important parameters.552

Entities, State variables and scales553

The model comprises three entities or agent types, the wolves, the sheep individuals and the grass. These554

agents evolve in a computational domain of a 50×50 units with periodic boundaries, representing a large555

portion of space. The agents are positioned in a continuous bi-dimensional space and are free to move.556

On the other hand, the grass agent is placed in a discrete grid.557

Process overview and scheduling558

The agents are defined by the execution of a set of processes depicting the agent movement and search559

of food source, the consumption of food, the process incrementing the agent reserves, the reproduction560

and finally the death process driven by predation or starvation. The fundamental idea behind the model561

formulation is that both predator and prey individuals incrementing their ”energy” levels by predation or562

by consuming the available grass respectively. Both agent types search for their food in the current patch563

where they are placed. The agents move a unit of space at time selecting randomly the heading.564

The individual-based version of this model is a spatially explicit representation and have a few565

parameters more but is still very succinct. The list of model parameters are shown in Table 5.566

4In the currently API version there is a function for accessing the charts for the Easy.Stability method, named Easy.getChart(),
please refer to the user manual for the complete syntax.

5It is possible to limit it passing to the method a subset of model outputs

18/28

92.5

95.0

97.5

100.0

102.5

0 25 50 75 100
sample size

R
S

D group

X.Simulated.

Simulation output stability

Figure 7. The stability of model output. It is possible to observe how, insofar that the number of
replications of the experimental setup increases, the value of the coefficient of variation converges
to a common value.

567

Table 5. The input parameter collection for the Repast implementation of Predator-Prey
model.

Input parameter Description

initialnumberofwolves The initial population of predators.
initialnumberofsheep The initial population of preys.
wolfgainfromfood The rate of predator energy is incremented every time a prey is consumed.
wolfreproduce The reproduction rate of predator individual.
sheepgainfromfood The prey rate energy increment for grazing grass.
sheepreproduce The reproduction rate of prey individual.
grassregrowthtime The amount of time required for grass be available again once consumed by

a prey.

568

The original formulation of Lotka-Volterra consists in a system of two differential equations with four569

parameters, namely the predator and the prey growth rate, the effect of predator on the prey growth and570

19/28

finally the effect of prey on the predator growth as can be seen in Equation (9).571

dx
dt

= c1x− c3xy (9)

dy
dt

=−c2y+ c4xy.

There is a conceptual correspondence between the predator c2 and prey c1 growth rates with the model572

parameters wolfreproduce and sheepreproduce as well as with between the parameter wolfgainfromfood573

and the constant c4.574

Model analysis575

The implementation code for the Morris screening exercise is shown in Figure 8 and, as has been576

mentioned in the previous example, we have the same sequence of steps, starting with the library loading577

and the selection of the random seed. Subsequently we define the objective function, which in this case is578

a very simple one consisting in the arithmetic average of the population sizes of sheep individuals and579

wolves. The next step is the selection of model input factors for the screening method and providing580

the range of variation for each them. Then, the step 3 shows the call to the Easy.Setup function which581

initializes the Repast Model with the R/Repast integration code. Finally, the function Easy.Morris is582

called and the results stored in the variable r. The example uses five levels with ten sampling points for583

Morris method. The results consist in a R list holding the experiment carried out, the Morris object and a584

list with charts generated by the experiment6.585

1 # S tep 0
2 rm (l i s t = l s ())
3 l i b r a r y (r r e p a s t)
4 s e t . s eed (161803398)
5

6 # S tep 1
7 o b j e c t i v e<− f u n c t i o n (params , r e s u l t s) {
8 P r e d a t o r<− mean (r e s u l t s $Wolf . Count)
9 Prey<− mean (r e s u l t s $ Sheep . Count)

10 c b i n d (P r e d a t o r , Prey)
11 }
12

13 # S tep 2
14 f<− AddFactor (name=” w o l f r e p r o d u c e ” , min =2 ,max=8)
15 f<− AddFactor (f a c t o r s =f , name=” w o l f g a i n f r o m f o o d ” , min =15 ,max=25)
16 f<− AddFactor (f a c t o r s =f , name=” s h e e p r e p r o d u c e ” , min =2 ,max=6)
17 f<− AddFactor (f a c t o r s =f , name=” s h e e p g a i n f r o m f o o d ” , min =2 ,max=6)
18 f<− AddFactor (f a c t o r s =f , name=” g r a s s r e g r o w t h t i m e ” , min =20 ,max=40)
19

20 # S tep 3
21 Easy . Se tup (” / u s r / models / P r e d a t o r P r e y ”)
22

23 # S tep 4
24 r<− Easy . M or r i s (” / u s r / models / P r e d a t o r P r e y ” , ” Agent Counts ” ,300 , f , 5 , 1 0 , 1 , o b j e c t i v e)

Figure 8. The listing for Morris screening method using the Easy.Morris function from
R/Repast.

The Figure 9 presents the µ∗ vs σ chart for both predator and prey average population sizes. At a first586

glance, the most important input factor for both Predator and Prey populations is the sheepgainfromfood.587

The second most significant for the Predator output is grassregrowthtime. The other parameters are not588

very significant for the average of Predator individuals. It is also interesting to note that wolfgainfromfood589

has very high value of σ which could indicate that the parameter significance strongly depends on590

the values of other parameters. On the other hand, it could mean that the number of sampling points591

or replications should be increased. The Prey output presents three important parameters, which in592

order of importance are the sheepgainfromfood, the sheepreproduce and grassregrowthtime. These input593

parameters also have a high σ values which possibly indicate some non-linear effects or that the values594

6In order to plot the charts the user should use a R code for accessing the chat list members. There are three members, namely
mustar, musigma and mumu. In order to get the mumu chart for the second objective function output we must use the R call:
r$charts[2,]$mumu.

20/28

of these input factors are influencing each other. These results can be explained by the dependence of595

wolf population on the availability of prey. The common observed pattern in that kind of model is the596

population of predators lagging in phase behind the prey population.597

●●

20

25

30

35

30 60 90
µ*

σ

group

●● grassregrowthtime

sheepgainfromfood

sheepreproduce

wolfgainfromfood

wolfreproduce

criteria Predator

●●

10

20

30

40

0 20 40 60 80
µ*

σ

group

●● grassregrowthtime

sheepgainfromfood

sheepreproduce

wolfgainfromfood

wolfreproduce

criteria Prey

Figure 9. Results of Morris screening method for Predator-Prey model. The graph shows the µ∗

and σ sensitivity measures for Predator and Prey outputs.

The chart of µ vs σ for model output is shown in Figure 10. It seems to provide very similar results598

and the only significant difference is the contribution of grassregrowthtime. That input parameter was599

considered important by µ vs σ but here it has a negative value. In order to interpret this sensitivity600

measure, we must recall that µ∗ takes the absolute values of elementary effects. Therefore, the elementary601

effects of grassregrowthtime possibly has effect of opposite sings depending on the values of that input602

parameter.603

●●

20

25

30

35

−50 0 50 100
µ

σ

group

●● grassregrowthtime

sheepgainfromfood

sheepreproduce

wolfgainfromfood

wolfreproduce

criteria Predator

●●

10

20

30

40

0 25 50 75
µ

σ

group

●● grassregrowthtime

sheepgainfromfood

sheepreproduce

wolfgainfromfood

wolfreproduce

criteria Prey

Figure 10. Results of Morris screening method for Predator-Prey model. The graph shows the µ

and σ sensitivity measures for Predator and Prey outputs.

Finally, we have the 11 showing the chart of µ∗ vs µ where the value of both measures can be604

observed together allowing the appreciation of the differences of both, which possibly indicates that the605

input factors present effects with different signs which, in other words, means non-linearity in the model606

behavior.607

21/28

●●

−50

0

50

100

30 60 90
µ*

µ

group

●● grassregrowthtime

sheepgainfromfood

sheepreproduce

wolfgainfromfood

wolfreproduce

criteria Predator

●●

0

25

50

75

0 20 40 60 80
µ*

µ

group

●● grassregrowthtime

sheepgainfromfood

sheepreproduce

wolfgainfromfood

wolfreproduce

criteria Prey

Figure 11. Results of Morris screening method for Predator-Prey model. The graph shows the
µ∗ and µ sensitivity measures for Predator and Prey outputs.

EXAMPLE 3: T4SS COMMON POOL608

Model description609

Purpose610

The objective of this model is to explore the conditions where two plasmids can coexist in a population611

competing for a common resource required for their horizontal transfer. The common resource is the set612

of genes required for conjugation because one of the two plasmids have lost these genes.613

Entities, State variables and scales614

The model uses two entities types, namely the agents representing the bacterial cells and a ValueLayer,615

which is a Repast specific structure, for holding the nutrient available for the bacterial growth. The agents616

interact and grow in a computational domain of 100×100 µm squared lattice with periodic boundaries617

representing a total real surface of 0.01mm2. Despite of being a lattice the bacterial cells are positioned618

and allowed to move in a continuous space system. The agents are also allowed to overlap to each other.619

Explicitly, the agents are defined by the five state variables: (a) heading, (b) mass, (c) division mass, (d)620

plasmid P1 infection state and (f) plasmid P1 infection state. The current position of every bacterial cell621

in the coordinate system is available implicitly through a Repast API call.622

Process overview and scheduling623

Every bacterial cell in this model is abstracted as the execution of a series of successive processes capturing624

the basic tenets of bacterial life-cycle. These processes are the nutrient uptake, the bacterial cell growth,625

the division and the conjugation. The input parameters required for initializing the model are shown in626

Table 6.627

628

Table 6. The input parameter collection for the conjugative plasmid common pool model.

Input parameter Description

doublingTime The doubling time of plasmid free cells
p1P (P(γ0)) The probability of cell conjugate at least one time.
p1Cost The cost imposed by the plasmid P1 including the metabolic burden required

to express the conjugative apparatus.
p2Cost The metabolic cost of plasmid P2

629

22/28

Design concepts630

631

Basic Principles — The plasmid dispersion depends on an intricate balance between metabolic costs632

associated to horizontal and vertical dispersion strategies. The conjugative proficiency requires the633

expression of set of transmembrane proteins which are known collectively as Type IV Secretion Systems634

(T4SS) Lawley et al. (2003). The presence of conjugative plasmids and the expression of conjugative635

machinery is detrimental for the host cell fitness Rozkov et al. (2004) but there is no consensus on the636

valid ranges of metabolic costs imposed by the conjugative process. Therefore, in this model the short637

term dynamics of two plasmid system P1 and P2 is simulated. The plasmid P1 is a complete conjugative638

plasmid containing all genes required for horizontal transfer and the plasmid P2 is a cheater, which having639

lost its conjugative genes, depends on the T4SS system from the plasmid P1. In other words, the model640

is used to assess how large should be the cost difference required for the lack of conjugative apparatus641

become a true competitive advantage making P2 dominate over P1.642

Emergence — The colony growth pattern, the population distribution and the dominance of a plasmid643

over another on the bacterial population are global properties arising from local properties defining the644

agent behavior and the interaction constraints.645

Adaptation — All agents adapt their growth rate, as well as the conjugation rates, according to the local646

availability of nutrient.647

Fitness — The bacterial cells infected by any plasmid are considered to behave less efficiently than648

the plasmid free cells. The fitness of plasmid bearing cells are explicitly specified by the cost input649

parameters.650

Objectives — No objectives are taken into account in this model.651

Prediction — The model will provide predictions on the possible ranges of plasmid metabolic cost which652

can favorable to the cheaters plasmid strategy.653

Sensing — The agents representing the virtual bacterial cells sense the environment to the extent that the654

nutrient availability controls the growth and the conjugation rates.655

Interaction — Bacterial cells interact with their nearby individuals for nutrient access, cellular division,656

mate pair formation and plasmid transfer.657

Stochasticity — Stochasticity is introduced at individual level for all cellular process sampling a normal658

deviate and fitting the value to corresponding process.659

Collectives — No collectives are taken into account in this model.660

Observation — The model provides two kind of outputs, one is numeric and contains the total number661

of bacterial cells which are plasmid free or are infected by the plasmids P1, P2 or both. These outputs662

are generated for every time step. The model also has an 2D view of colony growth updated every time tick.663

664

Model analysis665

The global sensitivity analysis using the Sobol variance decomposition method for the T4SS Common666

Pool model is shown in Figure 12. We can observe the same sequence of steps which has been previously667

mentioned. The objective function is defined for the average values of the model outputs named P1,668

P2 and Both. These variable are respectively the bacterial population size infected by the P1 plasmid,669

infected by the cheater plasmid P2 and finally the number of individuals infected by both plasmids. The670

Sobol sensitivity indices will provide the measures of the importance of every input parameter shown in671

step 2 of Figure 12 with respect to the results returned by the objective function, that is to say, the average672

population sizes.673

The Figure 13 shows the first and total order indices for the model output P1. That output is the674

average number of bacterial cells infected just by the plasmid P1. As can be observed the most important675

input parameter is the bacterial cell doubling time followed by the probability P(γ0). This is an expected676

result as the rule for the conjugative transfer requires the bacterial cells have achieved a value rounding677

the 70% of cell mass at division. Other interesting aspect to note is the negative values of first order678

indices. Obviously the sensitivity indices should not be negative. This is consequence of a small sample679

size and to correct the problem we must increase it. The other important input factors for the plasmid P1680

output are, in order of importance, the probability P(γ0), the cost of plasmid P2 and the cost of plasmid681

P1, both with similar sensitivity indices.682

The first and total order indices for the model output showing average population size of plasmid P2683

23/28

1 # S tep 0
2 rm (l i s t = l s ())
3 l i b r a r y (r r e p a s t)
4 s e t . s eed (161803398)
5

6 # S tep 1
7 o b j e c t i v e<− f u n c t i o n (params , r e s u l t s) {
8 Both<− mean (r e s u l t s $ Both)
9 P1<− mean (r e s u l t s $P1)

10 P2<− mean (r e s u l t s $P2)
11 c b i n d (P1 , P2 , Both)
12 }
13

14 # S tep 2
15 f<− AddFactor (name=” doub l ingTime ” , min =20 ,max=240)
16 f<− AddFactor (f a c t o r s =f , name=” p1P ” , min = 0 . 1 , max = 0 . 8)
17 f<− AddFactor (f a c t o r s =f , name=” p1Cost ” , min =1 ,max=100)
18 f<− AddFactor (f a c t o r s =f , name=” p2Cost ” , min =1 ,max=100)
19

20 # S tep 3
21 Easy . Se tup (” / u s r / models / PoolT4SS ”)
22

23 # S tep 4
24 r<− Easy . Sobol (” / u s r / models / PoolT4SS ” , ” o u t p u t ” , 720 , f , 1 0 0 , 2 0 , 1 , o b j e c t i v e)

Figure 12. The listing for Sobol GSA variance decomposition method using the Easy.Sobol
function from R/Repast.

can be seen in Figure 14. It is possible to appreciate again, that the sensitivity indices show that the most684

important factor is the length of cellular cycle. The reason is simple, and can be attributed to the fact that685

plasmid P2 alone is only transferred vertically and depends on the plasmid P1 for horizontal transmission,686

being both aspects related to the cell cycle. Following in importance the doubling time we have the cost687

of plasmid P1, the cost of plasmid P2 and the probability P(γ0), being the sensitivity index of P1 cost,688

noticeably higher than the other two indices. This could be attributed probably because the plasmid P2689

require a significant cost difference in order to outcompete the plasmid P1 which vertical transfer.690

Finally, in the Figure 15 we have the sensitivity indices for the output of model accounting for the691

average population size of bacterial cells infected by both plasmids. The importance of factors is consistent692

with the explanations for the previous sensitivity indices. Again, the most important model parameter is693

the doubling time of bacterial cell followed by the P1 and P2 cost parameters and by the probability P(γ0).694

CONCLUSIONS695

The ecological modeling is a complex subject which can be normally perceived as being simpler than it696

actually is. Specifically, the Individual-based models are subject to many levels of uncertainty, which697

means that it is hard to get completely fixed the values of model inputs, the model structure and the698

outputs. Normally there is no complete experimental or observational data to construct mechanistic699

descriptions of individual and therefore many assumptions and simplifications must be made in order to700

implement a model. The same is true regarding the input values, which are particularly critical in the case701

of the ecology of microorganism, as normally just very few input parameters are directly observed and702

the most of them are estimated from whole population experiments. Therefore, it is always important703

to bearing mind that modeling is an iterative task which must incorporate compulsorily some what-if704

analysis of model outputs.705

Several methods exist for assessing the uncertainty and for estimating the relative importance of input706

parameters in the model output. We have provided here and overview on those methods which are based707

on the variance decomposition because they have a wider application scope and are specifically suitable for708

their use on individual-based models. These methods, although conceptually simple, are computationally709

intensive and can be somewhat hard to apply because the required tools are either unavailable or they do710

not provide an easy integration pattern. Roughly speaking, the sensitivity analysis methods require the711

generation of large sample of the parameter space and the model evaluation for each of them which, of712

course, makes the manual execution an infeasible option.713

The in silico experimentation is becoming a vital tool for understanding complex phenomena in714

a way that cannot be done without modeling. The effective application of computational ecology715

24/28

0.00

0.25

0.50

0.75

1.00

doublingTime p1Cost p1P p2Cost
parameter

S
i

Sobol indexes for P1

0.0

0.3

0.6

0.9

doublingTime p1Cost p1P p2Cost
parameter

S
T

i

Sobol indexes for P1

Figure 13. Results of Sobol variance decomposition method for T4SS Common Pool model. The
graph shows the first and total order indices sensitivity measures for bacterial population infected
by plasmid P1.

methods requires a high level of proficiency in many diverse domains of knowledge which sometimes716

are neither feasible nor practical. Therefore, it is indispensable to have a ready to use arsenal of reusable717

computational tools for modeling and analysis. In this work we have introduced the R/Repast package718

and shown how it can help modelers to improve the robustness and quality of individual-based models719

results by using the functionalities inside the package for analyzing systematically the model outputs. The720

package can save a lot of effort for modelers by providing simple wrappers for complex methods within721

a simple and consistent API. We hope that these R/Repast functionalities can facilitate enormously the722

systematic analysis of Individual-based models implemented in Repast.723

ACKNOWLEDGMENTS724

This work was supported by the European FP7 - ICT - FET EU research project: 612146 (PLASWIRES725

”Plasmids as Wires” project) www.plaswires.eu and by Spanish Government (MINECO) research726

grant TIN2012-36992.727

REFERENCES728

Andres, T. and Hajas, W. (1993). Using iterated fractional factorial design to screen parameters in729

sensitivity analysis of a probabilistic risk assessment model.730

Arutyunov, D. and Frost, L. S. (2013). F conjugation: Back to the beginning. Plasmid, 70(1):18–32.731

Beck, J. V. and Arnold, K. J. (1977). Parameter estimation in engineering and science. Wiley series in732

probability and mathematical statistics. Wiley, New York.733

Berec, L. (2002). Techniques of spatially explicit individual-based models: construction, simulation, and734

mean-field analysis. Ecological Modelling, 150(1-2):55–81.735

Bergstrom, C. T., Lipsitch, M., and Levin, B. R. (2000). Natural Selection, Infectious Transfer and the736

Existence Conditions for Bacterial Plasmids. Genetics, 155(4):1505–1519.737

Bettonvil, B. and Kleijnen, J. P. C. (1996). Searching for important factors in simulation models with many738

factors: Sequential bifurcation. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH ELSEVIER739

European Journal of Operational Research, 96:180–194.740

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems.741

Proceedings of the National Academy of Sciences, 99(Supplement 3):7280–7287.742

Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces (Wiley Series743

in Probability and Statistics). Wiley, 1 edition.744

25/28

www.plaswires.eu

0.0

0.4

0.8

doublingTime p1Cost p1P p2Cost
parameter

S
i

Sobol indexes for P2

0.0

0.3

0.6

0.9

doublingTime p1Cost p1P p2Cost
parameter

S
T

i

Sobol indexes for P2

Figure 14. Results of Sobol variance decomposition method for T4SS Common Pool model. The
graph shows the first and total order indices sensitivity measures for bacterial population infected
by plasmid P2.

Campolongo, F., Cariboni, J., and Saltelli, A. (2007). An effective screening design for sensitivity analysis745

of large models.746

Chen, I., Christie, P. J., and Dubnau, D. (2005). The ins and outs of DNA transfer in bacteria. Science747

(New York, N.Y.), 310(5753):1456–1460.748

Crawley, M. J. (2007). The R Book. Wiley, 1 edition.749

Dieckmann, U., Law, R., and Metz, J. A. J. (2000). The Geometry of Ecological Interactions, volume 1.750

Emrich, Š., Suslov, S., and Judex, F. (2007). Fully agent based modellings of epidemic spread using751

Anylogic. Proceeding EUROSIM 2007, Ljubljana, Slovenia, 2007:1–7.752

Evans, M. R., Grimm, V., Johst, K., Knuuttila, T., et al. (2013). Do simple models lead to generality in753

ecology? Trends in ecology & evolution, 28(10):578–83.754

Ferrer, J., Prats, C., and López, D. (2008). Individual-based modelling: an essential tool for microbiology.755

Journal of biological physics, 34(1-2):19–37.756

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz,757

S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C.,758

Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S.,759

Stillman, R. A., Vabø, R., Visser, U., and DeAngelis, D. L. (2006). A standard protocol for describing760

individual-based and agent-based models. Ecological Modelling, 198(1-2):115–126.761

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., and Railsback, S. F. (2010). The ODD762

protocol: A review and first update. Ecological Modelling, 221(23):2760–2768.763

Grimm, V. and Railsback, S. F. (2005). Individual-based Modeling and Ecology: (Princeton Series in764

Theoretical and Computational Biology). Princeton University Press, Princeton.765

Gutfraind, A., Boodram, B., Prachand, N., Hailegiorgis, A., Dahari, H., and Major, M. E. (2015). Agent-766

Based Model Forecasts Aging of the Population of People Who Inject Drugs in Metropolitan Chicago767

and Changing Prevalence of Hepatitis C Infections. PLOS ONE, 10(9):e0137993.768

Happe, K., Kellermann, K., and Balmann, A. (2006). Agent-based analysis of agricultural policies: An769

illustration of the agriculutural policy simulator AgriPolis, its adaptation and behavior. Ecology and770

Society, 11(1).771

Hellweger, F. L. and Bucci, V. (2009). A bunch of tiny individuals — Individual-based modeling for772

microbes. Ecological Modelling, 220(1):8–22.773

Helly, J., Case, T., Davis, F., Levin, S., and Michener, W. (1995). The State of Computational Ecology.774

San Diego, CA: San Diego Super Computer Center.775

Herman, J. D., Kollat, J. B., Reed, P. M., and Wagener, T. (2013). Technical Note: Method of Morris776

effectively reduces the computational demands of global sensitivity analysis for distributed watershed777

26/28

0.00

0.25

0.50

0.75

1.00

doublingTime p1Cost p1P p2Cost
parameter

S
i

Sobol indexes for Both

0.0

0.3

0.6

0.9

doublingTime p1Cost p1P p2Cost
parameter

S
T

i

Sobol indexes for Both

Figure 15. Results of Sobol variance decomposition method for T4SS Common Pool model. The
graph shows the first and total order indices sensitivity measures for bacterial population infected
by both plasmids P1 and P2.

models. Hydrology and Earth System Sciences, 17(7):2893–2903.778

Hicks, C. R. (1993). Fundamental Concepts in the Design of Experiments. Oxford University Press, USA,779

4 edition.780

Law, A. M. (2005). How to build valid and credible simulation models. In Kuhl, M. E., Steiger, N. M.,781

Armstrong, F. B., and Joines, J. A., editors, Proceedings of the 2005 Winter Simulation Conference,782

pages 24–32.783

Lawley, T. D., Klimke, W. A., Gubbins, M. J., and Frost, L. S. (2003). F factor conjugation is a true type784

IV secretion system. FEMS microbiology letters, 224(1):1–15.785

Little, T. M. T. M. and Hills, F. J. (1978). Agricultural experimentation : design and analysis. Wiley.786

Lorscheid, I., Heine, B.-O., and Meyer, M. (2012). Opening the ’black box’ of simulations: increased787

transparency and effective communication through the systematic design of experiments. Computational788

and Mathematical Organization Theory, 18(1):22–62.789

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. C. (2005). MASON: A Multiagent790

Simulation Environment. Simulation, 81(7):517–527.791

Morris, M. D. (1991). Factorial Sampling Plans for Preliminary Computational Experiments. Technome-792

trics, 33(2):161–174.793

Myers, J. L. and Well, A. D. (1995). Research Design & Statistical Analysis. Routledge, 1 edition.794

North, M., Collier, N., and Ozik, J. (2013a). Complex adaptive systems modeling with repast simphony.795

Complex adaptive . . . , pages 1–26.796

North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M., and Sydelko, P. (2013b). Complex797

adaptive systems modeling with Repast Simphony. Complex Adaptive Systems Modeling, 1(1):1–26.798

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., and Sydelko, P. (2013c).799

Complex adaptive systems modeling with Repast Simphony. Complex Adaptive Systems Modeling,800

1(1):3.801

North, M. M. J., Collier, N. T. N., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., and Sydelko, P.802

(2013d). Complex adaptive systems modeling with Repast Simphony. Complex Adaptive Systems803

Modeling, 1(1):1–26.804

Pascual, M. (2005). Computational Ecology: From the Complex to the Simple and Back. PLoS805

Computational Biology, 1(2):e18.806

Petrovskii, S., Petrovskaya, N., Hughes, J. D., et al. (2012). Computational ecology as an emerging807

science. Interface focus, 2(2):241–54.808

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T. (2016). Sen-809

sitivity analysis of environmental models: A systematic review with practical workflow. Environmental810

27/28

Modelling & Software, 79:214–232.811

Prestes Garcı́a, A. and Rodrı́guez-Patón, A. (2015). A Preliminary Assessment of Three Strategies for the812

Agent-Based Modeling of Bacterial Conjugation. In Overbeek, R., Rocha, M. P., Fdez-Riverola, F.,813

and De Paz, J. F., editors, 9th International Conference on Practical Applications of Computational814

Biology and Bioinformatics, volume 375 of Advances in Intelligent Systems and Computing, pages 1–9.815

Springer International Publishing.816

Prestes Garcı́a, A. and Rodrı́guez-Patón, A. (2015). BactoSim — An Individual-Based Simulation817

Environment for Bacterial Conjugation. pages 275–279. Springer International Publishing.818

Pujol, G., Iooss, B., with contributions from Sebastien Da Veiga, A. J., Fruth, J., Gilquin, L., Guillaume,819

J., Gratiet, L. L., Lemaitre, P., Ramos, B., and Touati, T. (2015). sensitivity: Sensitivity Analysis. R820

package version 1.11.1.821

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for822

Statistical Computing, Vienna, Austria.823

Rozkov, A., Avignone-Rossa, C. A., Ertl, P. F., Jones, P., O’Kennedy, R. D., Smith, J. J., Dale, J. W., and824

Bushell, M. E. (2004). Characterization of the metabolic burden on Escherichia coli DH1 cells imposed825

by the presence of a plasmid containing a gene therapy sequence. Biotechnology and bioengineering,826

88(7):909–915.827

Saltelli, A. (2008). Global Sensitivity Analysis: The Primer. International Statistical Review, page 452.828

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity Analysis in Practice: A829

Guide to Assessing Scientific Models. Wiley, 1 edition.830

Seoane, J., Yankelevich, T., Dechesne, A., Merkey, B., Sternberg, C., and Smets, B. F. (2011). An831

individual-based approach to explain plasmid invasion in bacterial populations. FEMS microbiology832

ecology, 75(1):17–27.833

Slater, F. R., Bailey, M. J., Tett, A. J., and Turner, S. L. (2008). Progress towards understanding the fate of834

plasmids in bacterial communities. FEMS Microbiology Ecology, 66(1):3–13.835

Smith, J. M. (1974). Models in ecology. Cambridge University Press, revised ed edition.836

Tack, I. L., Logist, F., Noriega Fernández, E., and Van Impe, J. F. (2015). An individual-based modeling837

approach to simulate the effects of cellular nutrient competition on Escherichia coli K-12 MG1655838

colony behavior and interactions in aerobic structured food systems. Food Microbiology, 45:179–188.839

Thiele, J. C., Kurth, W., and Grimm, V. (2014). Facilitating Parameter Estimation and Sensitivity Analysis840

of Agent-Based Models: A Cookbook Using NetLogo and ’R’. Journal of Artificial Societies and841

Social Simulation, 17(3).842

Tisue, S. and Wilensky, U. (2004). Netlogo: A simple environment for modeling complexity. . . .843

Conference on Complex Systems, pages 1–10.844

Urbanek, S. (2016). rJava: Low-Level R to Java Interface. R package version 0.9-8.845

van Houwelingen, H. C., Boshuizen, H. C., and Capannesi, M. (2011). Sensitivity analysis of state-846

transition models: How to deal with a large number of inputs. Computers in Biology and Medicine,847

41(9):838–842.848

Watkins, A., Noble, J., Foster, R., Harmsen, B., and Doncaster, C. (2015). A spatially explicit agent-849

based model of the interactions between jaguar populations and their habitats. Ecological Modelling,850

306:268–277.851

Xu, C. and Gertner, G. (2011). Understanding and comparisons of different sampling approaches for the852

Fourier Amplitudes Sensitivity Test (FAST). Computational statistics & data analysis, 55(1):184–198.853

Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory of Modeling and Simulation, Second Edition.854

Academic Press, 2 edition.855

Zhang, Y. and Rundell, A. (2006). Comparative study of parameter sensitivity analyses of the TCR-856

activated Erk-MAPK signalling pathway. Systems biology, 153(4):201–11.857

Zhong, X., Droesch, J., Fox, R., Top, E. M., and Krone, S. M. (2012). On the meaning and estimation858

of plasmid transfer rates for surface-associated and well-mixed bacterial populations. Journal of859

Theoretical Biology, 294:144–152.860

28/28

	References

