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ABSTRACT
In this paper, we introduce multiple importance sampling
(MIS) approaches with overlapping (i.e., non-disjoint) sets
of proposals. We derive a novel weighting scheme, based on
the deterministic mixture methodology, that leads to unbi-
ased estimators. The proposed framework can be seen as a
generalization of other well-known MIS algorithms available
in the literature. Furthermore, it allows us to achieve any
desired trade-off between the variance of the estimators and
the computational complexity through the definition of the
sets of proposals. Simulations using a bimodal target density
show the good performance of the proposed approach.

Index Terms— Multiple importance sampling, variance
reduction, Monte Carlo methods, Bayesian inference

1. INTRODUCTION

Importance sampling (IS) methods are usually employed for
approximating moments of the distribution of a variable of in-
terest [1, 2]. In standard IS, several samples are drawn from
a single proposal distribution. The samples are then properly
weighted in order to account for the mismatch between the
proposal and the targeted distribution. Since the variance of
the estimator can be substantially increased by a large mis-
match, several proposal densities are often used to draw the
samples. This variant of the method, called multiple impor-
tance sampling (MIS), is implicitly used in many known se-
quential and static algorithms, such as particle filtering [3],
Population Monte Carlo (PMC) [4], adaptive MIS (AMIS)
[5] or adaptive population importance sampling (APIS) [6].

In a recent work [7], we have analyzed MIS methods in a
systematic way, defining a set of proper sampling and weight-
ing mechanisms that yield unbiased and consistent natural es-
timators (see [7, Section IV] for further details). The schemes
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described in [7] encompass all the MIS algorithms available
in the literature (as far as we know), as well as some novel
alternatives. Among all these weighting-sampling strategies,
the so-called deterministic mixture (DM) method is shown
to provide the best performance in terms of the estimator’s
variance. This approach evaluates the whole set (mixture) of
proposals at the denominator of each weight, thus potentially
leading to a remarkable increase in the computational cost.

In another recent work [8], we proposed to cluster the set
of proposals into disjoint sets, applying at each denominator
only the proposals that belong to each cluster. This procedure
can attain most of the variance reduction of the DM approach,
while keeping a limited computational cost. In this paper, we
propose a novel weighting scheme where the sets of proposals
can be non-disjoint (i.e., can overlap). This means that some
proposals (i.e., the good ones) may be used in more than one
mixture to reduce the variance of the weights and the resulting
estimators. This novel method can be seen as a generalization
of several methods, including the DM-MIS method, the stan-
dard MIS approach, and the partial DM-MIS scheme [8].

The rest of the paper is structured as follows. In Section 2,
we first state the problem and then review IS and MIS meth-
ods. Section 3 introduces the new weighting scheme, justifies
its validity and advantages, and illustrates it through an exam-
ple. Finally, a numerical simulation is presented in Section 4,
while Section 5 contains some concluding remarks.

2. PROBLEM STATEMENT AND BACKGROUND

The interest lies in computing a moment of a posterior proba-
bility density function (pdf), π̃(x). In many applications, the
pdf can be evaluated only up to a normalization factor, Z. In
this way,

π̃(x) =
π(x)

Z
, (1)

where π(x) is the unnormalized target, and Z =
∫
π(x)dx.

The computation of a particular moment of π̃(x) is given by

I =
1

Z

∫
f(x)π(x)dx, (2)



where f can be any square-integrable function w.r.t. π(x). In
practical scenarios, we cannot obtain an analytical solution of
(2) and/or Z is not known, and therefore, Monte Carlo meth-
ods are commonly used to approximate I .

2.1. Importance Sampling (IS)

Let us consider a set of N samples {x1, . . . ,xN} drawn from
a proposal pdf, q(x), with heavier tails than the target, π(x).
The samples have associated importance weights given by

wn =
π(xn)

q(xn)
, n = 1, . . . , N. (3)

Using the samples and weights, the moment of interest can be
approximated as

ĨIS =
1

NẐ

N∑
n=1

wnf(xn), (4)

where Ẑ = 1
N

∑N
j=1 wj is an unbiased estimator of Z [1].

Eq. (4) is a consistent estimator of I , and its variance is di-
rectly related to the discrepancy between π(x)|f(x)| and q(x)
(for a specific choice of f(x)) or to the mismatch between the
target π(x) and the proposal q(x) for a general f(x) [9].

2.2. Multiple Importance Sampling (MIS)

Since finding a unique good proposal pdf, q(x), is usually
unfeasible, a more robust strategy is using a population of
proposal pdfs. This scheme is often known in the literature as
multiple importance sampling (MIS) [10]. Let us consider a
set ofN proposal pdfs, {q1(x), . . . , qN (x)}, with exactly one
sample drawn from each of them, i.e.,

xn ∼ qn(x), n = 1, ..., N. (5)

Note that we use this sampling procedure in the whole paper.
Several valid importance weights can be associated to these
samples [7]. In particular, two usual approaches are:

1. Standard MIS (s-MIS) [2, Section 2.5]:

wn =
π(xn)

qn(xn)
, n = 1, . . . , N. (6)

2. Deterministic mixture MIS (DM-MIS) [10]:

wn =
π(xn)

ψ(xn)
=

π(xn)
1
N

∑N
j=1 qj(xn)

, n = 1, . . . , N,

(7)
where ψ(x) = 1

N

∑N
j=1 qj(x) is the mixture pdf, com-

posed of all the proposal pdfs. Several interpretations
of this strategy are discussed in [7].

The consistency of the estimators is ensured in both cases.
In [7] it is proved that the DM-MIS weights provide a supe-
rior performance than the s-MIS weights when Z is known
(i.e., the estimator of Eq. (4) always has a lower or equal vari-
ance with the DM-MIS weights than with the s-MIS weights).
However, the DM-MIS estimator is computationally more ex-
pensive, since it requires N evaluations of the proposal to ob-
tain each weight instead of just one, i.e., N2 in total instead
of just N . Note that the number of evaluations of the target
π(x) is the same regardless of whether the weights are cal-
culated according to (6) or (7), so this increase may be neg-
ligible in some situations. However, in some other scenarios,
where evaluating the target and the proposals has a similar
cost or the number of proposals grows (e.g., in AMIS), the
increase in computational load can be substantial. In these
cases, alternative efficient solutions, like the one described in
the following section, must be devised.

2.3. Partial DM-MIS

In [8], a partial DM-MIS (p-DM-MIS) scheme is proposed.
Since the excessive computational cost of the full DM-MIS
comes from evaluating each sample in the whole set of pro-
posals, in p-DM-MIS the set of proposal pdfs, {qn(x)}Nn=1,
are grouped into P mixtures composed of M mixands, with
PM = N .1 A partition of the set {1, . . . , N} is thus
formed, yielding P disjoint subsets of M indices, Sp with
p = 1, . . . , P , s.t.

S1 ∪ S2 ∪ . . . ∪ SP = {1, . . . , N}, (8)

with Sk ∩ S` = ∅ for all k, ` = 1, . . . , P and k 6= `. Each
subset, Sp = {jp,1, jp,2, . . . , jp,M}, contains M indices,
jp,m ∈ {1, . . . , N} for m = 1, . . . ,M and p = 1, . . . , P .
The weights of the p-th mixture are then computed as

wn =
π(xn)

ψp(xn)
=

π(xn)
1
M

∑
j∈Sp qj(xn)

, n ∈ Sp. (9)

The partial DM-MIS approach can be see as a generaliza-
tion of the two alternatives of Section 2.2. Indeed, the partic-
ular cases P = 1 and P = N correspond to the full DM-MIS
(f-DM-MIS) and the standard MIS (s-MIS) approaches, re-
spectively.2 In p-DM-MIS the number of evaluations of the
proposal pdfs is PM2. Since N ≤ PM2 = NM ≤ N2, the
computational cost is larger than that of s-MIS approach (M
times larger), but lower than that of the f-DM-MIS approach
(since M ≤ N ). When Z is known, it can be proved that

Var(Îf-DM-MIS) ≤ Var(Îp-DM-MIS) ≤ Var(Îs-MIS), (10)

1For the sake of simplicity, we assume that all the mixtures contain the
same number of proposal pdfs. However, any strategy that clusters the N
proposals into P disjoint mixtures (regardless of their size) is valid.

2From now on, we denote the deterministic mixture approach with the
weights of Eq. (7) as f-DM-MIS.



for any choice of P and any strategy to group the original
proposals {qn(x)}Nn=1 into mixtures (see [8, Appendix B]).
There is then a clear tradeoff between performance and com-
putational cost: a smaller number of mixtures (P ) reduces the
variance, but at the expense of an increase in the number of
evaluations of the proposal densities.

3. BEYOND DISJOINT SETS

3.1. The intuition for the variance reduction in DM-MIS

Let us consider a multi-modal target π(x), and let us assume
that we want to estimate the normalizing constant (Z = 1), by
sampling from N proposals. Some of the proposals (“good”
proposals) are covering at least one of the modes, whereas
others (“bad” proposals) are placed in areas without relevant
probability mass of the target. Let us consider the s-MIS ap-
proach with the weights of Eq. (6). Since the estimator Ẑ is
unbiased (i.e., E[Ẑ] = 1), the increase in the variance comes
from uncommon realizations where some weights take a high
value. This typically happens when a sample is drawn from
a “bad” proposal, this sample falls in the tail of the proposal
(i.e., we have small value at the weight’s denominator), and
the target has a relevant mass in that location (i.e., we have a
large value at the weight’s numerator). This situation can be
easily avoided if there are other proposals covering that mode:
if we use the DM-MIS weights of Eq. (7), the denominator
will increase substantially when there is at least one “good”
proposal placed close to the sample (since the evaluation of
that “good” proposal will dominate). Note that the numerator
of the weight is the same in both s-MIS and DM-MIS.

The p-DM-MIS with random allocation increases the
chance w.r.t. the s-MIS weights of having at least one pro-
posal within the mixture covering each mode. However, the
p-DM-MIS setup can be generalized by allowing intersection
among the subsets (mixtures) of proposals. The theoretical
justification is the following: the “good” proposals might be
exploited in more than one mixture in order to reduce the
variance of the weights of the samples generated from the
“bad” proposals in those mixtures. In order to successfully
implement this novel overlapping partial DM-MIS scheme,
there are two major challenges: “good” proposals must be
identified, and the weights of the samples must be modified
so that the resulting estimators are still consistent. Finding a
good set of clusters is a delicate task that we plan to address
in the future. In the rest of the paper, we assume that the
clustering is given and focus on the second issue: finding a
valid set of weights that yields consistent estimators.

3.2. Novel weighting procedure

Let us consider the overlapping sets S1,S2, . . . ,SP , s.t. Sj ∪
Sk 6= ∅ for some j, k ∈ 1, ..., P and j 6= k. Since the n-th
proposal now belongs to more than one mixture, the weight
wn of xn must be computed as the average of the sub-weights

S1 S2 S3 S4 S5

q1(x) q2(x) q3(x) q4(x) q5(x)

(a) Standard-MIS (see for instance [4])

S1

q1(x) q2(x) q3(x) q4(x) q5(x)

(b) DM-MIS (see for instance [10])

S1 S2

q1(x) q2(x) q3(x) q4(x) q5(x)

(c) Partial-disjoint mixtures proposed in [8]

S1 S2

q1(x) q2(x) q3(x) q4(x) q5(x)

(d) Novel Partial-non-disjoint mixtures

Fig. 1. (Example of Section 3.3) Proposal allocation to the
subsets in different weighting schemes.

w
(j)
n corresponding to each of those mixtures, i.e.,

wn =
1

mn

∑
j∈Mn

w(j)
n , n = 1, ..., N, (11)

whereMn = {j : n ∈ Sj} andmn is the number of mixtures
where qn appears, i.e., mn = |Mn|. The sub-weights of the
n-th sample in the p-th mixture are computed as

w(p)
n =

π(xn)

φp(xn)
=

π(xn)
1∑

k∈Sp λk

∑
i∈Sp λiqi(xn)

, n ∈ Sp,

(12)
where λj = 1

mj
. Note that, if the subsets are disjoint, then

mj = 1 ∀j = 1, ..., N , which yields the weights of Eq. (9)
[8]. Therefore, this weighting scheme can be seen as a gener-
alization of the p-DM-MIS method. Note also that the factors
λj imply that the proposals that are present in more mixtures
have less impact on each one. In this way, the estimator Î
with the weights of (11) is consistent (Ẑ is also unbiased).

3.3. Example with N = 5 proposals

Let us illustrate the novel approach through a unidimensional
example with N = 5 Gaussian proposals with equal variance
σ2, i.e., qn(x) = N (x;µn, σ

2) for n = 1, ..., 5. For the sake
of clarity in the explanation, let us assume (without loss of
generality) that µ1 ≤ µ2 ≤ µ3 ≤ µ4 ≤ µ5. Fig. 1 shows
a graphical representation of different clusterings of the pro-
posals for both the disjoint and the non-disjoint approaches.



Partial-disjoint mixtures [8] Partial-non-disjoint mixtures
wn Mn wn Mn

x1 ∼ q1 π(x1)
1
3
(q1(x1)+q2(x1)+q3(x1))

{1} π(x1)

1
2.5

(
q1(x1)+q2(x1)+ 1

2
q3(x1)

) {1}

x2 ∼ q2 π(x2)
1
3
(q1(x2)+q2(x2)+q3(x2))

{1} π(x2)

1
2.5

(
q1(x2)+q2(x2)+ 1

2
q3(x2)

) {1}

x3 ∼ q3 π(x3)
1
3
(q1(x3)+q2(x3)+q3(x3))

{1} 1
2

π(x3)

1
2.5

(
q1(x3)+q2(x3)+ 1

2
q3(x3)

) + 1
2

π(x3)

1
2.5

(
1
2
q3(x3)+q4(x3)+q5(x3)

) {1, 2}
x4 ∼ q4 π(x4)

1
2
(q4(x4)+q5(x4))

{2} π(x4)

1
2.5

(
1
2
q3(x4)+q4(x4)+q5(x4)

) {2}

x5 ∼ q5 π(x5)
1
2
(q4(x5)+q5(x5))

{2} π(x5)

1
2.5

(
1
2
q3(x5)+q4(x5)+q5(x5)

) {2}

Table 1. (Example of Section 3.3) Weights applied to each sample in different weighting schemes.

On the one hand, Figs. 1(a) and 1(b) show respectively the s-
MIS (i.e., as many clusters as proposals) and f-DM-MIS (i.e.,
a single cluster) approaches. On the other hand, Fig. 1(c)
shows an example of a p-DM-MIS clustering: if we want to
form two disjoint subsets, then a reasonable choice could be
S1 = {1, 2, 3} and S2 = {4, 5}. Finally, in a non-disjoint
approach, like that shown in Fig. 1(d), the proposal q3 can
belong to both subsets, S1 = {1, 2, 3} and S2 = {3, 4, 5}.
Table 1 shows the weights of each sample with p-DM-MIS
and with the novel approach.

4. NUMERICAL RESULTS

In order to illustrate the performance of the novel approach,
let us consider a unidimensional bimodal target which is a
mixture of two Gaussian pdfs:

π(x) =
1

2
N (x; ν1, c

2) +
1

2
N (x; ν2, c

2), (13)

with ν1 = −1, ν2 = 1 and c2 = 1.
The goal is to approximate, via Monte Carlo, the expected

value of x ∼ π(x), i.e., E[x] =
∫
R xπ(x)dx, and also the

normalizing constant, Z =
∫
R π(x)dx. We apply the MIS

algorithm in a setup with N = 5 Gaussian proposal pdfs,
{qn(x) = N (x;µn, σ

2)}Nn=1, where the means are µ1 = −3,
µ2 = −2, µ3 = 0, µ4 = 2, and µ5 = 3, testing two different
values of the variance of the proposals, σ2 ∈ {1, 2}. We draw
M = 50 samples, i.e., exactly 10 samples per proposal. We
compare the following weighting schemes:

• standard-MIS [4]: The standard MIS approach, where
each sample takes into account only the proposal from
which it was drawn. This setup corresponds to S1 =
{1}, S2 = {2}, S3 = {3}, S4 = {4}, and S5 = {5}.

• full-DM [10]: The full-DM algorithm, which corre-
sponds to a unique set S1 = {1, 2, 3, 4, 5}.

• partial-DM-1 [8]: The partial-DM algorithm with dis-
joint clusters, S1 = {1, 2}, S2 = {3} and S3 = {4, 5}.

• partial-DM-2 [8]: The partial-DM algorithm with dis-
joint clusters, S1 = {1, 2, 3} and S2 = {4, 5}.

Method standard-MIS full-DM partial-DM-1 partial-DM-2 ND-partial-DM

MSE(Ẑ) 16.773 0.0078 15.653 4.2529 0.0161
MSE(Î) 55.22 0.0181 113.15 22.637 0.1928
MSE(Ĩ) 0.1163 0.0185 0.1099 0.1651 0.1374

Table 2. Bimodal target π(x) with ν1 = −2, ν2 = 1, and
c2 = 1. Variance of the proposals σ2 = 1. M = 50 samples.

Method standard-MIS full-DM partial-DM-1 partial-DM-2 ND-partial-DM

MSE(Ẑ) 0.6265 0.0103 0.1800 0.0966 0.0100
MSE(Î) 4.2392 0.0239 0.8701 0.4734 0.0683
MSE(Ĩ) 0.1944 0.0245 0.2313 0.1630 0.0681

Table 3. Bimodal target π(x) with ν1 = −2, ν2 = 1, and
c2 = 1. Variance of the proposals σ2 = 2. M = 50 samples.

• ND-partial-DM: The novel non-disjoint approach,
with S1 = {1, 2, 3} and S2 = {3, 4, 5}.

Table 2 shows the results of the mean squared error (MSE)
of Ẑ, the natural estimator of the normalizing constant; Î ,
the natural estimator of the target mean (i.e., f(x) = x and
assuming Z is known); and Ĩ , the self-normalized estimator
of the target mean. The variance of all the proposal pdfs is
σ2 = 1, and the results are averaged over 5 · 104 runs. Note
that the novel approach provides a lower MSE than the two
p-DM-MIS schemes for all the estimators. Table 3 shows the
same results for σ2 = 2, leading to similar conclusions.

5. CONCLUSIONS

In this work, we have introduced a novel weighting scheme
for multiple importance sampling (MIS). Based on the deter-
ministic mixture weighting approach, the method forms sub-
sets of proposals, allowing some of them to belong to more
than one subset. The weight function for the samples drawn
from each proposal is calculated in order to ensure that the re-
sulting estimators are consistent. The novel approach is able
to reduce the variance of these estimators while keeping a low
computational cost, as shown in a numerical simulation exam-
ple with a bimodal target and five proposals. In the future, we
plan to address the creation of the clusters.
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