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ABSTRACT 
Classical parameterization techniques for Speaker Identifi-
cation use the codification of the power spectral density of 
raw speech, not discriminating between articulatory features 
produced by vocal tract dynamics (acoustic-phonetics) from 
glottal source biometry. Through the present paper a study is 
conducted to separate voicing fragments of speech into vo-
cal and glottal components, dominated respectively by the 
vocal tract transfer function estimated adaptively to track 
the acoustic-phonetic sequence of the message, and by the 
glottal characteristics of the speaker and the phonation ges-
ture. The separation methodology is based in Joint Process 
Estimation under the uncorrelation hypothesis between vo-
cal and glottal spectral distributions. Its application on 
voiced speech is presented in the time and frequency do-
mains. The parameterization methodology is also described. 
Speaker Identification experiments conducted on 245 speak-
ers are shown comparing different parameterization strate-
gies. The results confirm the better performance of de-
coupled parameterization compared against approaches 
based on plain speech parameterization. 

1. INTRODUCTION 

Traditionally the idea that the glottal source does not con-
tribute to the characterization of voice, as it is described by a 
transfer function of 1/f has been taken as granted. Neverthe-
less recent works have shown that the glottal signals convey 
interesting features both in time and frequency which may 
be used for the speaker’s characterization, speaker identifi-
cation and pathology detection, among others [1]-[5]. The 
work of Plumpe et al. [6] is especially relevant, suggesting 
the use of parameters obtained from the time-domain glottal 
source description in speaker identification experiments. In 
preliminary work [7] it has been shown that the glottal 
source conveys important biometric information [8], which 
may be used in speaker’s identification and verification 
tasks. The aim of the present work is to determine a parame-
terization technique taking into account the spectral charac-
teristics of voicing speech to be decomposed into vocal tract 
and glottal source parameter templates to be used in speaker 
identification for security and forensic applications. Section 
2 will explain the parameterization principles, section 3 will 
describe the experimentation framework, and the results will 
be presented and discussed in section 4, conclusions being 
exposed in section 5. 

2. ESTIMATING THE GLOTTAL SOURCE 

The speech source-filter model shown in Figure 1 assumes 
that voiced speech is generated by a glottal excitation ug(n)  
spectrally transformed by the vocal tract with transfer func-
tion Fv(z) to produce the speech signal before radiation sl(n). 

 
Figure 1. Generation model for voiced speech. 

Many methods are available to cancel the influence of the 
vocal tract to estimate the glottal source [9][10], although not 
granting the statistical separation between the vocal tract 
impulse response and glottal excitation. The method pro-
posed in the present approach grants that the estimates are 
orthogonal in terms of correlation, as described in Figure 2. 

 
Figure 2. a) General framework to separate vocal from glottal 
characteristics by adaptive joint estimation. b) Parameterization 
scheme used in the experiments. 

The separation technique is based on the inverse filtering of 
the voiced signal sl(n) to produce a residual eg(n) where the 
vocal tract has been removed by an order-k filtering process. 
The residual is used as the reference signal in an Adaptive 
Lattice-Ladder filter for Joint-Process Estimation [11] on the 
radiation-compensated speech sl(n). The main hypothesis 



used in this approach is that sl(n) is produced by a glottal 
excitation ug(n) which may be seen as composed by a train of 
delta pulses δg(n) plus a glottal residual ur(n) . The impulse 
response from the glottal closure produces the vocal compo-
nent sv(n) (the impulse response of the vocal tract during the 
closed phase). The glottal component sg(n) results from the 
injection of flow ur(n) during the new open phase. Therefore 
the glottal excitation could be described as 

(n)(n)u(n)u grg δ+=  (1) 
This signal when propagated through the vocal tract would 
result in a speech trace before radiation given by 

(n)s(n)s(n)s vgl +=  (2) 
sg(n) and sv(n) being the contributions of the glottal residual 
ur(n) and the vocal tract impulse response fv(n) 

(n)f(n)s(n)f(n)(n)f(n)u(n)s vgvgvrl +=+= ** δ  (3) 
therefore sl(n) will contain a component sg(n) contributed by 
the glottal residual ur(n) plus the vocal tract response to a 
train of delta functions fv(n). Assuming that the vocal tract 
response and the delayed versions of the glottal residual ur(n) 
are fully uncorrelated (second-order decoupling) 

{ } k(n)k)f(nuE vr ∀=+ ;0  (4) 
it could be expected that the glottal component sg(n) and the 
vocal component fv(n) would be equally uncorrelated 

{ } k0(n)k)s(nsE vg ∀=+ ;  (5) 
This property between the vocal and glottal components of 
radiation-compensated speech would permit the use of Joint-
Process Estimation (JPE) to separate one from the other as 
described in Figure 2.a and Figure 3. 

 
Figure 3. Geometrical interpretation of the separation of the glot-
tal and vocal components. The voiced signal sl(n) and the devocal-
ized residual error eg(n) from the vocal tract inversion (see Figure 
2.a) are separated under second order statistics by a lattice-ladder 
filter into the vocal sv(n) and glottal sg(n) orthogonal estimates. 

In this last figure the results of JPE are interpreted in geomet-
rical terms for a second order process. The delayed versions 
of the reference signal eg(n) are used to define an order-P 
manifold MP where an estimate of the glottal component sg is 
produced by weighting the delayed reference 
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which produces an estimation error 
(n)s(n)s(n) gl ˆ−=ε  (7) 

By adaptively adjusting the weights wi an optimal estimate of 
the vocal component will be obtained by rendering the 
square absolute value of ε(n) to a minimum 

})(min{arg}{ 2nwi ε=  (8) 
therefore obtaining the optimum estimates for the vocal sv(n) 
and glottal sg(n) components at the same time, which could 
be identified with the orthogonal outputs from the JPE, spe-
cifically the results given by (6) and (7) after fulfilling (8). 

3. MATERIALS AND METHODS 

The separation method described has been checked out us-
ing a recording of vowel /a/ by a typical male speaker from a 
database of 100 normal speakers equally distributed by gen-
der. Subject ages ranged from 19 to 39, with an average of 
26.77 years and a standard deviation of 5.75 years. The re-
sults shown in Figure 4 correspond to a typical male speaker 
(label #17F) determined following [7]. 

 

 
Figure 4. Time domain traces. From top to bottom: input speech 
sl(n), inverse filtering error eg(n), pulse-train response of the 
vocal tract sv(n) and glottal estimate sg(n) 

The vocal and glottal estimates for the speech trace may be 
seen in the last two templates, the glottal estimate presenting 
the expected behaviour as described in the last section. The 
power spectral densities of each trace are given in Figure 5. 

 
Figure 5. Spectral densities. From top to bottom: input speech 
Sl(ω), inverse filtering error Ek(ω), response of the vocal tract 
Sv(ω) and glottal estimate Sg(ω) 



In the third template from top it may be appreciated that the 
formant structure of the vocal tract is equalized with respect 
to the first template (plain voice), and that the glottal formant 
has been removed (the glottal formant is the contribution of 
the glottal source to the power spectral density of voice, 
which when properly estimated by long-term FFT appears as 
a hunch-back well below the first vocal tract formant). The 
harmonic structure and profile of the glottal component is 
seen in the last template, where the glottal formant can be 
clearly appreciated around 200 Hz. This characteristic to-
gether with some troughs and valleys clearly observable 
make it differ from the symplistically assumed 1/f behaviour. 
The use of the vocal and glottal characteristics in speaker 
recognition tasks has been established by means of a larger 
database including a wide representation of the phonetic ar-
ticulation and the glottal characteristics for 240 speakers 
taken from [12] which give a good description of intra- and 
inter-speaker variability. The data set was divided into 176 
speakers used for modelling during the training phase, and 64 
speakers serving as impostors during the test phase. The 
training dataset is composed by 10 sentences per each of the 
modelled speakers comprising approximately 30 sec. of 
speech. The testing set consisted in 10 sentences per known 
speaker as well as 10 sentences from each impostor speaker, 
each sentence lasting 4 sec for both groups. Training and 
testing sets for each speaker are based on different sentences. 
The database is phonetically balanced for the Spanish lan-
guage and although not specifically designed for speaker 
characterization it has a very rich and complete representa-
tion of the acoustic-phonetic variability of each speaker con-
cerning the closed-set speaker identification experiments 
programmed. 

4. RESULTS AND DISCUSSION 

The purpose of the present work is two-fold, on one hand to 
check the proposed methodology to estimate the vocal and 
glottal components of voiced speech, on the other hand to 
determine the best parameter templates to improve speaker 
identification scores. For such purpose eight different pa-
rameter templates have been used from the description of 
the parameterization scheme shown in Figure 2.b. Each 
speech trace is sampled at 16,000 Hz and subsequently 
processed to detect the segments showing speech activity, 
and these are further processed for voicing-unvoicing detec-
tion. For voicing fragments the vocal and glottal compo-
nents sv(n) and sg(n) are estimated and integrated. The power 
spectral density of each trace is estimated by FFT in 512-
sample sliding windows. 14 Mel-Frequency Cepstral Coef-
ficients (MFCC) are estimated for the vocal component and 
8 MFCC for the glottal component as well. For unvoicing 
fragments 14 MFCC templates are produced following the 
same methodology. Pitch and the logarithm of the energy are 
also computed. Using the available information the follow-
ing templates were produced for the experiments described: 

1. MFCC&P&E: 14 MFCC from raw speech + an es-
timate of pitch + the logarithm of energy 

2. MFCC PG: 8 MFCC from the power spectral den-
sity of the glottal source + an estimate of pitch + the 
logarithm of energy  

3. MFCC VT: 14 MFCC from the vocal tract impulse 
response+ an estimate of pitch + the logarithm of 
energy 

4. MFCC VO: 14 MFCC from the voiced segments + 
an estimate of pitch + the logarithm of energy 

5. MFCC FUSION C: 14 MFCC from raw speech + 
14 MFCC from the vocal tract impulse response + 8 
MFCC from the glottal source power spectral den-
sity + an estimate of pitch + the logarithm of energy 

The training session produced Gaussian Mixture Models for 
each modelled speaker of order k={16, 32, 64, 128, 256, 
512} the testing set was processed in a closed-set setup and 
the scores recorded in relation to the log-likelihood thresh-
old ϑ  used for each experiment. The results of the different 
experiments conducted are given in Figure 6-Figure 10 and 
in Table 1. The first template (in Figure 6) shows the selec-
tion of the baseline DET trace among the results of process-
ing the database parameterized as MFCC&P&E for the 
GMM orders of k={16, 32, 64, 128, 256, 512}. The best 
choice is determined by minimizing the following functional 
with respect to k 

ϑϑϑϑ
ϑ dffF kRRkARk ∫ ΓΓ= 2

1
),(),(  (9) 

where ϑ  is the moving threshold to establish the detection 
condition, and fAR and fRR are respectively the False Accep-
tance and False Rejection Rates in terms of the threshold ϑ  
and the Gaussian Model used Гk.  

 
Figure 6. Selection of the best GMM order on comparing the 
results from parameterization MFCC&P&E. 

It may be seen that the selected classifier is the one corre-
sponding to order k=64, which will be used as baseline in 
further comparisons against other parameter settings. In 
Figure 7, the results of comparing the results from the 
parameterization of the glottal source against the baseline are 
presented. 



 
Figure 7. Comparison of the identification results from the 
Glottal Source parameterization against the baseline.  

 It may be seen that the glottal parameterization performs 
rather poorly compared to plain speech, although it shows a 
certain identification capability. In the next template (Figure 
8) the performance of 14 MFCC Vocal Tract + pitch + logE 
parameters is compared against the Baseline.  

 
Figure 8. Comparison of the identification results from the 
parameterization of the vocal tract transfer function against 
the baseline. 

It may be seen that the DET curves from the Vocal Tract 
Transfer Function show an identification capability per se, 
although their performance is also sensibly worse than that of 
the Baseline. In the next template (Figure 9) the performance 
of 14 MFCC for voicing speech (Voicing Only) + pitch + 
logE is compared against the Baseline. 

 
Figure 9. Comparison of the identification results from the 
parameterization of the voiced segments of speech against 
the baseline.  

In this case it may be seen that some of the detector configu-
rations (k=64 and k=128) may outperform the baseline for 
certain threshold values, especially those reducing fAR. The 
last template (Figure 10) shows the combined use of the vo-
cal and glottal estimates mixed with full speech against the 
Baseline. 

 
Figure 10. Comparison of the identification results from the 
combined parameterization of raw speech, vocal tract and 
glottal source against the baseline. 

In this last case a substantial improvement may be observed 
compared to the Baseline. These same data are summarized 
in Table 1 which gives the harmonic mean of the point clos-
est to Equal Error Rate conditions for each parameterization 
template used in the study. 
 

Table 1. Optimal Equal Error Rate (%) conditions for the 
different parameterization schemes used. 

EER/GMM 16 32 64 128 256 512 
Baseline 2.20 0.60 0.54 0.55 0.60 0.78 

MFCC_VO 0.68 0.68 0.48 0.50 0.59 0.84 
MFCC_VT 2.13 1.13 0.81 0.97 1.49 3.20 
MFCC_GS 15.94 8.82 4.05 3.41 3.35 3.90 
MFCC_FS 0.62 0.36 0.35 0.42 0.57 1.40 
 



It may be seen that the best baseline scores are 0.54%, the 
glottal estimate alone behaving far worse (3.41%). The vocal 
estimate alone renders better results than the glottal estimate 
(0.81%) possibly due to the elimination of the glottal features 
from acoustic-phonetic information (showing large intra-
speaker variability), which allows a better estimation of mes-
sage-dependent features from spectral characteristics. Never-
theless if glottal and vocal characteristics are estimated inde-
pendently and added as an extension to raw speech estimates 
(MFCC FUSION C), the overall scores are substantially bet-
ter, reducing the optimum EER to 65% the corresponding 
baseline result. It is especially interesting to observe the 
rather low False Rejection rate produced under 1% False 
Acceptance (of around 0.125% for GMM orders 32 and 64 
accordingly to Figure 10), which would make this technique 
especially suitable for secure access applications. 

5. CONCLUSIONS 

At this point it should be worth to comment the use of 
MFCC’s both for the characterization of the vocal tract and 
glottal source spectral profiles. Cepstral parameterization 
has been justified by its separation capability of the source 
and filter parts of voice. This being true, there is another 
reason to justify the use of this parameterization, which is its 
implicit robustness and its successful use in voice charac-
terization for pathology studies [13]. Its use in the present 
case is supported by these considerations as well as by the 
accuracy of the results obtained.  Accordingly with what has 
been exposed, using the speech generation model to derive 
differentiate speech features apparently seems to work well 
under the limitations of the experiments and the database 
used. The decomposition of voiced speech into vocal and 
glottal source estimates seems to produce more accurate and 
independent templates helping to improve the False Rejec-
tion rates substantially. Although the reconstructed glottal 
estimate is not optimum under the Liljencrants-Fant (LF) 
[14] model and should not be used in glottal studies, it 
seems that the biometric information extracted from the 
glottal estimate can help substantially in improving the be-
haviour of speaker identification systems confirming the 
conclusions in the work of Plumpe et al [6]. The main dif-
ference of the present approach to Plumpe’s resides in the 
decomposition methodology used granting the orthogonality 
of the templates combined, and in basing the parameteriza-
tion in the frequency domain rather than in the time domain. 
The decomposition methodology based on Joint-Process 
Estimation seems to work well using a criterion derived 
from second-order statistics, although the estimation of the 
reference signal may be quite important for the application 
of this method and some more strategies should be further 
investigated. Other possible approaches based on higher-
order statistics as Independent Component Analysis [15] 
could also be used, this matter pending of further research. 
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