Full text
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview |
Galárraga Cañizares, José Luis (2017). Clasificador de hojas mediante Deep Learning. Thesis (Master thesis), E.T.S. de Ingenieros Informáticos (UPM).
Title: | Clasificador de hojas mediante Deep Learning |
---|---|
Author/s: |
|
Contributor/s: |
|
Item Type: | Thesis (Master thesis) |
Masters title: | Software y Sistemas |
Date: | July 2017 |
Subjects: | |
Freetext Keywords: | Enfermedad en los cultivos; seguridad alimentaria; aprendizaje profundo |
Faculty: | E.T.S. de Ingenieros Informáticos (UPM) |
Department: | Lenguajes y Sistemas Informáticos e Ingeniería del Software |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview |
Las plagas causan la destrucción de grandes superficies de cultivos, causando en muchos casos enfermedades en las plantas para las que se hace imprescindible el desarrollo de herramientas que ayuden en el diagnóstico preciso del problema.
Así la identificación precisa y oportuna de las enfermedades puede ayudar al incremento y la mejora en la calidad de la producción agrícola y garantizar la seguridad alimentaria.
En este trabajo se describe la generación de un clasificador de enfermedades en las plantas basado en imágenes, que utiliza un método basado en aprendizaje profundo como algoritmo de clasificación.
Este estudio contiene 3 fases elementales. La primera fase es la segmentación de las imágenes cuyo objetivo es aislar las regiones de interés en la imagen. La segunda fase es la búsqueda de los mejores ajustes de los parámetros de configuración del algoritmo de aprendizaje profundo para el entrenamiento de una red neuronal convolucional con 2 especies de cultivos y 13 enfermedades, obteniendo un modelo entrenado con una exactitud del 98,37% para el diagnóstico de las plantas enfermas y sanas.
Y finalmente la distribución del modelo en una herramienta de simulación elaborada en Matlab con interfaz gráfica.
Item ID: | 47784 |
---|---|
DC Identifier: | https://oa.upm.es/47784/ |
OAI Identifier: | oai:oa.upm.es:47784 |
Deposited by: | Biblioteca Facultad de Informatica |
Deposited on: | 15 Sep 2017 11:05 |
Last Modified: | 08 Jun 2022 12:45 |