A novel multi-dimensional regression model based on Gaussian Networks

Llera Montero, Milton (2017). A novel multi-dimensional regression model based on Gaussian Networks. Thesis (Master thesis), E.T.S. de Ingenieros Informáticos (UPM).

Description

Title: A novel multi-dimensional regression model based on Gaussian Networks
Author/s:
  • Llera Montero, Milton
Contributor/s:
Item Type: Thesis (Master thesis)
Masters title: Inteligencia Artificial
Date: June 2017
Subjects:
Faculty: E.T.S. de Ingenieros Informáticos (UPM)
Department: Inteligencia Artificial
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[thumbnail of TFM_MILTON_LLERA_MONTERO.pdf]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (751kB) | Preview

Abstract

Modeling and prediction in continuous domains are one of the most
important and studied problems in Mathematics and Computer Science.
Models that can not only solve regression tasks, but also expose the
interdependencies inside the domain are of high value for researchers in
many fields. One of the most popular methods for learning the relations
between variables in a continuous domain are Gaussian Networks. In
this thesis we present a new model that can learn a Gaussian Network.
This model can later be used for regression or analysis of the relations
in the domain, with a particular interest in its application in the field of
Neuroscience.---RESUMEN---Modelar y predecir en dominios continuos es uno de los problemas más estudiados
en el campo de las Matemáticas y la Ciencia de la Computación.
Modelos que no solamente puedan resolver problemas de regresión, si no
también exponer las relaciones entre las variables de un dominio son de
gran valor para los investigadores de muchos campos científicos. Uno de
los modelos más populares usados para resolver estos problemas son las
Redes Gaussianas. En esta tesis se presenta un nuevo modelo basado en
Redes Gaussianas que puede ser ajustado a partir de datos para luego
ser utilizado en tareas de regresión y análisis, con un especial interés en
su aplicación al campo de la Neurociencia.

More information

Item ID: 48269
DC Identifier: https://oa.upm.es/48269/
OAI Identifier: oai:oa.upm.es:48269
Deposited by: Biblioteca Facultad de Informatica
Deposited on: 26 Oct 2017 10:19
Last Modified: 20 May 2022 16:55
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM