Full text
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (879kB) | Preview |
Delgado Sanz, Maria Soledad ORCID: https://orcid.org/0000-0003-4868-3712, Gonzalo Martín, Consuelo
ORCID: https://orcid.org/0000-0002-0804-9293, Martínez Izquierdo, María Estíbaliz
ORCID: https://orcid.org/0000-0003-0296-6151 and Arquero Hidalgo, Águeda
ORCID: https://orcid.org/0000-0002-3590-1162
(2009).
Growing Self-Organizing Maps for Data Analysis.
In:
"Encyclopedia of Artificial Intelligence".
IGI Publications, EEUU, pp. 781-787.
ISBN 978-1-59904-849-9.
https://doi.org/10.4018/978-1-59904-849-9.
Title: | Growing Self-Organizing Maps for Data Analysis |
---|---|
Author/s: |
|
Item Type: | Book Section |
Title of Book: | Encyclopedia of Artificial Intelligence |
Date: | 2009 |
ISBN: | 978-1-59904-849-9 |
Volume: | 3 |
Subjects: | |
Freetext Keywords: | Artificial Neural Networks, Data Mining,Exploratory Data Analysis, Growing Cell Structures, Knowledge Visualization, Self-Organizing Map, Unsupervised Learning. |
Faculty: | Facultad de Informática (UPM) |
Department: | Arquitectura y Tecnología de Sistemas Informáticos |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (879kB) | Preview |
Currently, there exist many research areas that produce large multivariable datasets that are difficult to visualize in order to extract useful information. Kohonen self organizing maps have been used successfully in the visualization and analysis of multidimensional data. In this work, a projection technique that compresses multidimensional datasets into two dimensional space using growing self-organizing maps is described. With this embedding scheme, traditional Kohonen visualization methods have been implemented using growing cell structures networks. New graphical map display have been compared with Kohonen graphs using two groups of simulated data and one group of real multidimensional data selected from a satellite scene.
Item ID: | 4951 |
---|---|
DC Identifier: | https://oa.upm.es/4951/ |
OAI Identifier: | oai:oa.upm.es:4951 |
DOI: | 10.4018/978-1-59904-849-9 |
Official URL: | http://www.igi-global.com/Bookstore/TitleDetails.a... |
Deposited by: | Memoria Investigacion |
Deposited on: | 18 Nov 2010 11:25 |
Last Modified: | 20 Apr 2016 13:57 |