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Abstract 

Neural bruise prediction models based, on the degree of fruit damage of the most traded 
fruit species and varieties were developed for prediction of the fruits to be accepted or 
rejected. The prediction relied on European Community standards. Different models for 
both quasi-static (compression) and dynamic (impact) loads covering the full commercial 
ripening period of fruits were developed. A simulation process was developed for gathering 
the information on laboratory bruise models and load sensor calibrations for different 
electronic devices (IS-100 and DEA-1, for impact and compression loads, respectively). An 
evaluation method was also designed for acquiring and gathering the information on the 
mechanical properties of fruits and the loading records of the electronic devices. The 
evaluation system allowed for determination of the current stage of fruit handling processes 
and machinery. 
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1. Introduction 

The current state of the fresh fruit retail market in Europe is declining. Fresh 
fruit consumption may decrease due to the lack of quality in the markets. Recent 
research results (Kampp and Pedersen, 1990) have shown that less than 10% of the 



fruits titled class I followed the European Community (EC) standards mainly due 
to the presence of mechanical damage. Fruit handling processes and mechanical 
equipment get more and more complex as new sensors and actuators are included 
for quality assessment. Therefore there is a need to evaluate standardization 
methods for fruits in order to objectively compare differences between the ma
chineries that handle fruits. In this respect, electronic devices (equipment) have been 
developed (Halderson and Skrobacki, 1986; Brown et al., 1990; Baganz, 1992). 
However, mechanical properties of fruits have a great effect on the susceptibility of 
fruits to mechanical damage (Chen and Zongnan, 1981; Chen et al., 1987; Garcia 
and Ruiz-Altisent, 1988; Rodriguez et al., 1990; Ruiz-Altisent, 1990). Hence, 
gathering the information on the mechanical properties of fruits is necessary for the 
evaluation of machinery for handling and processing. 

Until now some comparisons between electronic device measurement and me
chanical properties of fruits have been made (Brown et al., 1989; Schulte et al., 
1992, 1993; Sober et al., 1990). Every day a wider range of fruit varieties and 
storage treatments are used through the same machinery. Therefore, a wider link 
between the electronic devices and the mechanical properties of fruit is required. 

Barreiro and Ruiz-Altisent (1993) studied mechanical properties of fruits and 
used a statistical approach to develop bruise prediction models and evaluation 
methods. Neural networks (Robert et al., 1989; Ros et al., 1993; Steinmetz and 
Delwiche, 1993) were used to evaluate the adaptability of the developed bruise 
models. 

Within this context, the objectives for the current study were: 
1. To search for the optimal bruise prediction models, 
2. to gather information on the mechanical properties of fruits and the electronic 

devices to simulate bruise appearance and 
3. to design an evaluation method for determining the current state of the fruit 

handling process and machinery with respect to EC standards. 

2. Material and methods 

The most exported pome and stone species: Apple, pear and peach were used to 
develop bruise modelization. A trading study was conducted to select the most 
important fruit varieties: apple (Golden Delicious), pear (Conference and Doyenne 
du Cornice) and peach (Maycrest and Springtime). Data recorded by Barreiro and 
Ruiz-Altisent (1993) where exhaustive research on fruit mechanical properties and 
bruise susceptibility was carried out, were employed in this study. The most 
common cold storage treatments and load types (compression and impact) v/ere 
studied. Firmness as well as bruise susceptibility were mainly used. 

Firmness was measured through non-destructive impacts using an instrument 
developed by Chen et al. (1985). Bruise susceptibility was measured based on 
compression using an INSTRON machine model 1122 where the maximum force 
was used as the loading level index. For impact bruise susceptibility assessment the 
impact firmness tester was also used. The loading level index was varied by 



changing the impact height. Finally a calibration test (Barreiro, 1994) was carried 
out in order to relate the loading level indices with maximum acceleration and 
electric resistance due to impact and compression of electronic devices. The 
electronic devices used were IS-100 and DEA-1 developed by Halderson and 
Skrobacki (1986) and Baganz (1992), respectively. 

2.1. Selection of variables for bruise modeling 

The first step for developing the bruise prediction models was to select the 
variable which would best represent bruise damage. The EC standards give the 
maximum surface damage allowable for each quality class, 1 cm2 and 0.5 cm2 for 
pome and stone fruits, respectively. However, the external surface damage depends 
on the size of surface contact between two bodies during loading and also on the 
radius of curvature of the bodies in contact (Horsfield et al., 1972). On the other 
hand, the smaller the radius of curvature, the deeper the bruise is. As a result it was 
possible to find bruises having equivalent bruise volume but different bruised 
external surfaces leading to differences in quality evaluation. Therefore, a new 
parameter (bruise section), was created to include these effects representing twice 
the internal bruised section area. Thus the units for the bruised section are the same 
as for the bruised external surface (mm). 

As for the selection of the explicative variables for bruise modelization, it was 
decided to apply the parsimony principle on the machinery to be employed. Only 
a firmness sensor and an electronic device were used so that the process and 
machinery evaluation could easily be carried out. Based on studies by Chen et al. 
(1987), Chen and Ruiz-Altisent (1994), Correa et al. (1992), Jaren et al. (1992), 
Rodriguez et al., 1990; Ruiz-Altisent (1990), Barreiro and Ruiz-Altisent (1993) it 
was decided that a different bruise model be used for each variety and loading type. 
Each bruise model would include as explicative variables the following magnitudes: 
Fruit firmness (measured by non-destructive impacts), loading level and storage 
treatment and/or any combinations of them; explicative variables are all correla-
tively numbered (Table 1). 

2.2. Model evaluation 

As a first step, a stepwise linear regression analysis was carried out to check 
whether the selected variables were significant for bruise prediction. Afterwards, 
different neural approaches for bruise prediction were carried out. The bruise 
prediction models were compared using the correlation coefficient between bruise 
prediction and observation. Bruise prediction models were also evaluated based on 
the EC standards. An error below the EC tolerance (10% for class I) was used also 
as a criterion for model acceptation. 

Comparison between fruit classification under the EC standards for predicted 
and observed damage resulted in the categories shown in Fig. 1. In Fig. 1 A, B, C 
and D are percentages of unclassified, well classified, non detected damages and 
overdetected damages, respectively. Both C and D should be below 10% for the 



Table 1 
Variables employed for the neural approaches 

Non-destructive impact for firmness assessment 

Loading level 

Combination of impact firmness and loading level 
variables 

Storage treatment type 

Variable 

FZI, Maximum impact 
force (N) 
DFI, Maximum impact 
deformation (m) 
TPI, Impact duration (s) 
FZVDFI (N/m) 
FZVTPI (N/s) 
DFI/TPI (m/s) 
FZPDFI (Nm) 
FZI2/TPI (N2/s) 
FZI/DFI2 (N/m2) 
FZI*TPI2(Ns2) 
HI, Impact height (m) 
FZC, Maximum 
compression force (N) 
FZCDFVFZI (m) 

HIDFVFZI (ms) 
FZIDFVFZC (m) 
Dimensionless 

Numerical 
identification 

1 

2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 

14 
15 
16 

model to be acceptable. The pertenance of a predicted damage to a group was 
defined using the whole confidence interval at a 5% level of significance. A 
prediction had to show the same classification as the observed damage for the 
whole confidence interval to be considered well classified. The percentage of well 

OBSERVED DAMAGES (mm2) 

20 40 60 80 100 120 140 160 180 
PREDICTED DAMAGES (mm2) 

Fig. 1. Comparison between fruit classification for predicted and observed damages for the impact bruise 
modeling in Conference pears (r — 0.78, n = 480). 



classified predictions increased with decreasing confidence interval (that is increas
ing model adjustment). Whenever the confidence interval was between acceptable or 
rejectable (below and above the EC limit) the fruit was considered unclassified. 

2.3. Neural network approach 

A sigmoid function was used for bruise prediction. The function was obtained 
from a biological model and it can be used in case of non linear relationships. The 
number of iterations required for training the neural network until convergency 
were fixed empirically at 40 000 for pome fruits and at 20 000 for stone fruits. There 
were about 30% more individuals for the pome than for the stone fruit varieties. 
The test set data for the neural network contained about half the number of 
samples of the training data set. The test data were obtained from the second 
repetition of the 1993 season's tests. The test data was not used during training. 
This way, it was possible to determine the models robustness by comparing the 
coefficient of determination for the training and the testing data. The evaluation of 
the samples classification under the EC standards was used only for the training set 
as few samples may lead to biased results. 

Whenever it was not possible to generalize the results when all data for each 
model were used for neural network approaches, training data samples were 
specially selected. Then the neural network was tested to check if it could yield 
better results or not. In the second method, it was necessary to find out the sections 
where learning was low and to build a network covering that range of data. Once 
the low learning sections had been noted a 'minimal distance classifier' was used to 
determine the network under which unknown individuals should be tested. 

The 'minimal distance classifier' compares each observation of a training set with 
an unknown damage to be predicted in terms of an euclidean distance. The 
euclidean distance is calculated considering as many spatial dimensions as explica
tive variables are used for bruise modelization. The minimal euclidean distance 
between a known and an unknown damage allows to decide which type of neural 
network solution should be used for damage prediction. 

3. Results for bruise prediction models 

Neural approaches were carried out using the Neuralworks Professional II plus 
software. 

The main description of the explicative variables that where tested for bruise 
modeling is presented in Table 1. A stepwise linear regression analysis was 
performed on the variables 1-16 in order to find out the significance level for bruise 
prediction. The variables selected (Table 2) showed a significance level below 5%. 

With the variables shown in Table 2, new general and special networks were built 
(Table 3) searching for non-linear optimization. The general networks covered the 
full commercial maturity stage of fruits. As for the special networks, in most cases 
bad learning was obtained for observed damage above twice the EC limit. As this 



Table 2 
Variables selected through stepwise linear regression analysis 

Model 

Variety Compression Impact 

Conference 
Doyenne du Cornice 
Golden Delicious 
Maycrest 
Springtime 

4, 5, 8, 9, 12, 13, 16 
2, 4, 12, 13, 15, 16 
4, 12, 16 
4, 10, 12, 13, 16 
2, 4, 6, 9, 12, 13, 16 

4, 7, 8, 11, 14, 16 
11, 16 
4, 11, 16 
3, 4, 11, 14, 16 
2, 3, 4, 8, 11, 14, 16 

Numbers refer to the variables defined in Table 1. 

value is quite high, the special net was trained only for an observed damage size 
twice below the EC limit. Any unknown damage to be classified would be 
submitted to a 'minimum distance classifier'. The decision would be based on the 
observed damage of the nearest neighbour. 

Table 3 
Final results for the neural approaches 

Model 

Variety 

Conference 

Doyenne du Cornice 

Golden Delicious 

Maycrest 

Springtime 

Compression 

Special 
r = 0.78; 
C = 5.4 
D = 6.9 

Special 
r = 0.72; 
C = 8.5 
D = 4.8 

General 
r = 0.82; 
C = 7.5 
D = 4.8 

Special 
J-= 0.79; 
C = 3.9 
D = 2.7 

Special 
r = 0.81; 
C = 1 . 7 
D = 9.2 

« = 480 

« = 400 

n = 456 

n = 228 

« = 238 

Impact 

General 
r = 0.82; n = 480 
C = 7.5 
D = 2.3 

General 
j-= 0.79; « = 400 
C = 6.8 
D = 5.2 

General 
r = 0.88; « = 456 
C = 0.7 
D = 7.7 

Special 
r = 0.71; « = 228 
C = 7.9 
D = 3.5 

Special 
r = 0.80; n = 238 
C = 3.4 
D = 9.7 

r is the correlation coefficient between predicted amd observed damages, n is the number of samples, C 
and D are the classification errors expressed as percentages; C and D should be below 10% to accept the 
model; the conditions modelled cover the full commercial ripening period of fruits. 



Table 4 
Final architecture for the neural approaches 

Variety Compression Impact 

Conference 7-1-1 6-0-1 
Doyenne du Cornice 6-0-1 2-0-1 
Golden Delicious 3-0-1 3-0-1 
Maycrest 5-1-1 5-0-1 
Springtime 7-0-1 7-0-1 

The digits refer to the number of neurons belonging to the input, the hidden and the output layers, 
respectively. 

The bad learning area was around the EC acceptation threshold for only the 
compression and impact models of Maycrest. This case was difficult as the 
threshold area was the most important one for final machinery evaluation. There
fore, it was decided to train the general network. Afterwards, a minimal distance 
evaluation would be made in order to know whether the damages to be predicted 
belonged to the EC acception threshold area or not. In the case of belonging to this 
area, a special network would be made to arrive at a final response. The final results 
for the neural approaches are shown in Table 3. The neural network architecture is 
described in Table 4. 

4. Results for the bruise simulation process 

It was necessary to relate the laboratory loading levels with levels commonly 
applied to fruits during handling processes and machinery grading. Lately, simu
lated electronic products (SEP) have been developed in order to perform the above 
task (Halderson and Skrobacki, 1986; Brown et al., 1990). Therefore, a calibration 
test was carried out for an IS-100 impact sensing device as well as for a DEA-1 
compression sensing device (Barreiro, 1994). In both cases a calibration equation 
relating the laboratory loads and the electronic devices parameters was developed. 

A calibration equation for predicting the impact drop height as the maximum 
acceleration registered by the electronic device was developed, the results showed a 
correlation coefficient of 0.98 for 127 samples (calibration limits 30-160 g m/s2; g 
refers to gravity acceleration 9.8 m/s2). 

A calibration equation was also determined for predicting the maximum force 
during compression based on the electrical resistance registered by the electronic 
device. The results showed a correlation coefficient of 0.94 for 252 samples 
(calibration limits 20-0.4 KD). 

Finally, a simulation was carried out (Figs. 2 and 3), where the load threshold 
necessary to cause damage above the class I EC limit is 100 and 50 mm2 for pome 
and stone fruits, respectively, was calculated. The load limit was measured as the 
maximum acceleration during impact simulation and as the electrical resistance 
during compression simulation. 



The main results obtained for the bruise simulation process can be summarized 
as follows: 
• There is a great effect of fruit firmness evolution during storage on bruise 

susceptibility for Conference pears (Fig. 2) as well as for peaches and apricots. 
Firmness evolution did not show this effect for Golden apples (Fig. 3) or Decana 
pears. 

• The effect of fruit firmness evolution on bruise susceptibility is always higher for 
compression than for impact loads. 

• The reference impact loading threshold (damage above the EC limit) for pome 
fruits reaches 70 g while it decreases to 50 g when working with stone fruits. 
These reference values change along the commercial ripening period depending 
on variety. 

• The reference compression loading threshold (damage above the EC limit) for 
pome fruits reaches 5 Kfi. Stone fruits show higher compression susceptibility 
being their loading threshold 20 KQ (note that the electrical resistance decreases 
with increasing loading level). 
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Fig. 2. Impact bruise simulation for Conference pears. A great effect of firmness evolution on bruise 
susceptibility is shown. 



BRUISE SECTION (mm2) 

350 

300 

250 

200 

150 

100 

50 

0 

o 

g » 
s:i 

O 

S 

5 10 15 20 25 30 35 40 

100/RESPONSE Kohmii 

^ AT HARVEST < ) 1 MONTH STORAGE O 3 MONTHS STORAGE 

Fig. 3. Compression bruise simulation for Golden apples. 

5. Results for handling process and machinery evaluation 

Once an acceptable solution (classification error below the EC tolerance level) 
had been found for each bruise prediction model, an evaluation methodology for 
handling equipment was designed. This evaluation system consisted of a decision 
system to aid growers on the knowledge of their procedures and machinery qualities 
by gathering the information on fruit firmness and storage treatments and relating 
it with the records obtained with the electronic devices (IS-100 and DEA-1) for 
bruise prediction. 

Four classes of load levels were created for evaluation: Acceptable loads (AC) 
whenever predicted damage is between 0-80% of the EC limit, low risk loads (LR) 
for predicted damages between 81-90% of the EC limit, high risk loads (HR) for 
predicted damages between 91-99% of the EC limit and rejectable loads (RJ) for 
predicted damages equal or higher than the EC limit. 

After defining the above classes, it was necessary to design the evaluation 
method. As it has already been mentioned, both devices (impact tester and 
electronic sensors) are used for the evaluation. The electronic devices record the 
information on the loading levels. However, the number of loading levels registered 
can be very high, as well as the time needed to process this information. Using the 



maximum loading level, the process gets faster but the amount of information is 
reduced. Therefore, it was decided to employ the four maximum loads (L;) 
corresponding to each quartile (qi) of the whole load histogram as a loading 
selection criteria. The number of processed samples is four times the number of 
fruits (four loads per fruit). Bruise prediction is based on these data obtaining as 
many damage predictions as processed samples (the full procedure is shown in Fig. 
4). Using these results two different evaluations were designed: General evaluation 
and deficient process or machinery elements assessment. 

5.1. General evaluation 

A single fruit needs only a single damage above the limit to be rejected. For this 
reason the worst damage prediction per fruit was used to find the potential 
rejectability of fruits. As there are four different classes of loads defined, the results 
will also be divided in four categories: AC as the percentage of acceptable fruits, 
LR as the percentage of fruits under low rejectability risk, HR as the percentage of 
fruits under high rejectability risk and RJ as the percentage of rejectable fruits. 

The evaluation criteria were defined according to the EC tolerance (10% in 
number or weight of fruits for class I). Whenever the percentage of fruits classified 
as rejectable or under high rejectability risk is above 10%, a revision or replacement 
of the concerned process or machinery element is necessary. Also, if the percentage 
of fruits under any rejectability risk is above 20% a revision is required. 

5.2. Deficient process or machinery element assessment 

Each of the four selected loadings were studied using the different percentages of 
AC, LR, HR and RJ fruits obtained. 

A decision system for deficient process or machinery element assessment was 
created as follows: 
1. If the four L; lead to a further revision, all the records of the electronic devices 

above the minimum L; are identified as critical points requiring improvement. 
Once the element improvement is made, the evaluation procedure is repeated. 

2. If any of the four L; is within the tolerance criteria, an interpolation for the 
threshold loading level determination is made. As before, all the records of the 
electronic devices above the threshold are identified. After improving the 
elements, the evaluation procedure is repeated, 

3. If all the four L; are within the tolerance level the final evaluation is positive. 
Therefore, the handling process or mechanical equipment is acceptable with 
respect to the EC standards. 

6. Conclusions 

Using linear and non-linear regressions as well as feed forward neural networks 
bruise prediction models have been built, for the main traded species and varieties 
of fruits: Apple, pear and peach. 
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Fig. 4. Evaluation algorithm for fruit handling processes and mechanical equipments. The information 
on fruit firmness, storage treatment and electronic devices accumulated. 

The bruise prediction models enable one to classify mechanical damages (as 
acceptable or rejectable) based on the EC standards with errors (undetected or 
overdetected damages) within the EC tolerance threshold of 10%. The prediction 



models gather the information about bruise susceptibility evolution of fruits at 
harvest, cold storage and subsequent ripening at room temperature; the full 
commercial ripeness range is covered within the models. 

The prediction models integrate also information about different loading types 
(compression or impact) allowing simulation of the effect of loading under different 
fruit bruise susceptibility conditions. 

A calibration testing was performed to introduce electronic products information 
(IS-100, DEA-1) within the bruise prediction models. A simulation process was 
carried out for gathering the information on bruise models and impact and 
compression sensing devices (IS-100, DEA-I). 

An evaluation of handling processes and machinery equipment as well as a 
decision system was developed to determine current stage of fruit handling pro
cesses in relation to fruit physical quality. 
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