Full text
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (312kB) | Preview |
Mesonero Pérez, Javier and Bielza Lozoya, María Concepción and Larrañaga Múgica, Pedro María (2017). Architecture for anomaly detection in a laser heating surface process. In: "22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2017)", 12-15 Sep 2017, Limassol, Chipre. ISBN 978-1-5090-6505-9. pp. 38-41. https://doi.org/10.1109/ETFA.2017.8247777.
Title: | Architecture for anomaly detection in a laser heating surface process |
---|---|
Author/s: |
|
Item Type: | Presentation at Congress or Conference (Article) |
Event Title: | 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2017) |
Event Dates: | 12-15 Sep 2017 |
Event Location: | Limassol, Chipre |
Title of Book: | 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) |
Date: | 2017 |
ISBN: | 978-1-5090-6505-9 |
Subjects: | |
Faculty: | E.T.S. de Ingenieros Informáticos (UPM) |
Department: | Inteligencia Artificial |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (312kB) | Preview |
Anomaly detection is an increasingly common task in many industrial environments. Cyber-physical systems stand out in this field due to their unique position in industrial areas. This paper introduces a new architecture aimed to detect anomalies in a real laser heating surface process, which is designed for field-programmable gate arrays (FPGAs). The FPGA design offers advantages of highly parallelized and pipelined architectures. The system will classify one process into normal or abnormal taking into account spatial information about where the laser spot is. The proposed design estimates a probability density function from data; then it performs an image convolution transforming the probability density function into a kernel density estimation function. This estimated function should be able to classify in real time.
Type | Code | Acronym | Leader | Title |
---|---|---|---|---|
Government of Spain | TIC-20150093 | Unspecified | Unspecified | Unspecified |
Government of Spain | TIN2016-79684-P | Unspecified | Universidad Politécnica de Madrid | Avances en clasificación multidimensional y detección de anomalías con redes bayesianas |
Madrid Regional Government | S2013/ICE-2845 | CASI - CAM | Unspecified | Conceptos y aplicaciones de los sistemas inteligentes |
Item ID: | 51050 |
---|---|
DC Identifier: | https://oa.upm.es/51050/ |
OAI Identifier: | oai:oa.upm.es:51050 |
DOI: | 10.1109/ETFA.2017.8247777 |
Official URL: | https://ieeexplore.ieee.org/document/8247777 |
Deposited by: | Memoria Investigacion |
Deposited on: | 27 May 2019 11:51 |
Last Modified: | 30 Nov 2022 09:00 |