The ODESeW 2.0 Semantic Web application framework

Oscar Corcho
University of Manchester
School of Computer Science
Oxford Road, Manchester, United Kingdom
+44(0)1612756821

Oscar.Corcho@manchester.ac.uk

ABSTRACT

We describe the architecture of the ODESeW 2.0 Semantic Web
application development platform, which has been used to
generate the internal and external Web sites of several R&D
projects.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information Search and
Retrieval; D.2.12 [SOFTWARE ENGINEERINGT:
Interoperability - Data mapping

General Terms: Design

Keywords: Semantic Web, framework, web application.

1. INTRODUCTION

The term application framework is normally used to refer to a set
of libraries or classes that are used to implement the standard
structure of a type of applications. By bundling a large amount of
reusable code into a framework, much time is saved for the
developer. Application frameworks are also defined as software
components that model and solve a specific type of problem,
providing a set of extensible and configurable components and an
engine to coordinate and execute them. These components will be
extended in a specific problem by developers.

The first definition focuses on the reusability of libraries in groups
of similar applications. The second one focuses on the fact that an
application framework should provide an integrated support to a
set of functions that are common in a set of similar applications.
In any case, application frameworks allow reducing the amount of
effort needed to develop and maintain software, and are part of the
philosophy of rapid application development (RAD).

There are many frameworks available for the development of
standard Web applications. Among them we can cite: Turbine,
Struts, JSF, Millstone, Wicket, etc. They all provide reusable
configurable components commonly used in such applications.

In the context Semantic Web application engineering there are
fewer frameworks available, due to the fact that this area is less
mature than that of Web engineering. In many cases we cannot
talk about frameworks, but about specific applications developed
completely from scratch or by reusing some existing components,
but without the notion of comprehensive application development
frameworks. Some of these emergent frameworks are: the KAON
portal, OntoWebber, OntoWeaver, Rhizomik, Duontology, etc.

Copyright is held by IW3C2.
WWW 2006, May 22-26, 2006, Edinburgh, UK.

Angel Lopez-Cima(*), Asuncién Gémez-Pérez
Universidad Politécnica de Madrid
Facultad de Informatica. Campus de Montegancedo, s/n.
28660 Boadilla del Monte, Madrid, Spain
+34913367467

{alopez, asun}@fi.upm.es

Most of the applications developed in this area are knowledge
portals or semantic portals, defined as web applications that
“provide the means to select, classify and access, in a
semantically meaningful and ubiquitous way, various information
resources (e.g., sites, documents, data) for diverse target
audiences (corporate, inter-enterprise, e-marketplace, etc.).”

Though both Web and Semantic Web application development
frameworks provide interesting features for the rapid application
development, they also share the fact that they are not specialized
for the development of domain-specific applications. That is, they
only contain generic components that can be included in Web and
Semantic Web applications and these components have to be
extended by developers when they want to create a specific
application in a domain.

From this comment it seems interesting to have also reusable
extensions or configurations of such application development
frameworks for those types of applications that a set of developers
normally have to create. In this paper we are interested in showing
how we have configured and extended a Semantic Web
application development framework for the creation of the
Intranets and Extranets of several European R&D projects
(Esperonto [3], Knowledge Web [4] and OntoGrid [5]). The
application development framework that we have used is
ODESeW, whose earlier version was already described in [2].

2. ODESeW Architecture Outline

The architecture of ODESeW 2.0 is based on the design pattern
Model-View-Controller (MVC), which is currently widely used
for developing Web applications. This pattern divides
functionality among three types of objects (the view, the model
and the controller), which are involved in maintaining and
presenting data to minimize the degree of coupling between the
objects. This paradigm is very useful for developing applications
where the same information has several visualisations.

2.1 Data Model

The ODESeW Data Model contains the information that the
knowledge portals show and that they use for their management
functions. It is divided in two submodels, as shown in figure 1:
the Domain Model and the User Model. Both of them are based
on ontologies, which are accessed using the WebODE ontology
engineering workbench [1] as an ontology server.

The Domain Model is composed of a set of ontologies that
describe the application domain. In the case of R&D project
applications these ontologies are about projects, organisations,
documents, and meetings.

The User Model is an ontology used to specify groups and roles,
and to associate read and write permissions to different parts of
the Domain Model.

All these submodels are coordinated by the Data Model Manager,
which receives state change requests from the controller and is
used to feed the queries made by the views. All the state change
requests are filtered by the Permission Layer, which takes into
account the user permissions and profile.

Data Model
[Permission Layer J
[Data Model Manager J
[) [] [) [) [) [) [)
User .
Model Domain Model

Figure 1. The ODESeW Data Model and its components.
2.2 Views

Views are mainly used to render the content available in the data
model. ODESeW provides a set of reusable views and
mechanisms for Web developers to ease the communication with
the Data Model, so as to retrieve information from the ontologies
stored in it. Two groups of views are identified:

e Views for human agents. They are focused on the generation
of HTML documents. Some of the reusable views provided
are for rendering ontology concepts, instances and relations,
as well as their attributes. They use state-of-the-art Web
application design technology, such as JSPs, Tag Extension,
Expression Language and JavaBeans.

e Views for software agents. They are focused on the
generation of documents in Semantic Web languages like
RDF, RDF Schema and OWL.

2.3 Controller

The ODESeW Controller receives the user request, which
contains the actions to be performed, and completes or checks the
request with the information model in the Data Model (including
both the domain model and the user model). Then it reads and
executes the navigation and composition model, described below,
and returns the next view that should be rendered for the user.

The navigation model represents the navigation of a user through
the application. This model is explicitly separated from the design
of views so that changes in the navigation do not affect the
implementation of views. Besides, it allows representing
declaratively the navigation of a user, enabling in this way an easy
study of the behaviours of the user of an application.

The navigation model is a directed named graph in which nodes
represent views (with preconditions) and edges represent
navigation actions from one view to another. The model also
allows describing specialisation/generalisation relations between
two views. A view is a specialisation of another if it visualises the
same content as the parent view but providing more specific
visualisation items. For instance, a generic view may be used to
render any instance from the domain ontologies, while more
specialised views could be used to render specific instances, such
as instances of a person, organisation, project, etc.

The composition model is similar to the navigation model, and
allows including a set of views inside another one. It is normally

used when complex sets of information have to be presented to
the user at once. A common example of the use of the
composition model is the visualisation of an instance. Here the
developer specifies that he/she wants to render the value of a set
of attributes. The composition model specifies how to render any
type of attribute values using generic views and some specialised
views for values like e-mail addresses, URLs, image files, etc. All
these attribute value views are included in the view used to render
instances.

2.4 Extensions to the MVC pattern

ODESeW provides two extensions to the MVC design pattern,
both of which are included in the complete ODESeW 2.0
architecture that is depicted in figure 2.

The External Information Gateway, used to feed the data model
with information available in external information sources,
regardless of the communication protocols (HTTP, FTP, CORBA,
Web services, etc.) and formats (relational databases, texts in
natural language, XML documents, RDF files, etc.) needed to
access such information. It supports two information provision
models, cached and runtime, which are used depending on the
characteristics of the information sources (availability, cost model,
processability of information, dynamicity of information, etc.).

The Notification Service, used to send asynchronous messages
about changes in the data model, following the

subscription/notification pattern.
Notification
Service
Navigation
. and
View Controller Com position
Model

I P 11 I T 1
{ Data Model

Pt f
External

Information ¥ f 3

Figure 2. ODESeW extended-MVC design pattern.

3. ACKNOWLEDGMENTS

This work has been supported by the EU IST Network of
Excellence Knowledge Web and by the Spanish project TIN-
2004-02660. We also thank project partners from this and other
projects (Esperonto and OntoGrid) for their useful comments to
improve the usability of the sites generated.

4. REFERENCES
[1] Arpirez JC, Corcho O, Fernandez-Lopez M, Gémez-Pérez A.
WebODE in a nutshell. AI Magazine 24(3):37-48. Fall 2003

[2] Corcho O, Gémez-Pérez A, Lopez-Cima A, Lopez-Garcia V,
Suérez-Figueroa MC. ODESeW. Automatic Generation of
Knowledge Portals for Intranets and Extranets. LNCS 2870.
Springer-Verlag. pp: 802-817. October 2003.

[3] Esperonto. http://www.esperonto.net/
[4] Knowledge Web. http://knowledgeweb.semanticweb.org/
[5] OntoGrid. http://www.ontogrid.net

