bnclassify: Learning Bayesian Network Classifiers

Mihaljevic, Bojan, Bielza Lozoya, María Concepción and Larrañaga Múgica, Pedro María (2018). bnclassify: Learning Bayesian Network Classifiers. "R JOURNAL", v. 10 (n. 2); pp. 455-468. ISSN 2073-4859. https://doi.org/10.32614/rj-2018-073.

Description

Title: bnclassify: Learning Bayesian Network Classifiers
Author/s:
  • Mihaljevic, Bojan
  • Bielza Lozoya, María Concepción
  • Larrañaga Múgica, Pedro María
Item Type: Article
Título de Revista/Publicación: R JOURNAL
Date: 2018
ISSN: 2073-4859
Volume: 10
Subjects:
Freetext Keywords: bnclassify package
Faculty: E.T.S.I. de Sistemas Informáticos (UPM)
Department: Inteligencia Artificial
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[thumbnail of INVE_MEM_2018_293566.pdf]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (366kB) | Preview

Abstract

The bnclassify package provides state-of-the art algorithms for learning Bayesian network classifiers from data. For structure learning it provides variants of the greedy hill-climbing search, a well-known adaptation of the Chow-Liu algorithm and averaged one-dependence estimators. It provides Bayesian and maximum likelihood parameter estimation, as well as three naive-Bayes-specific methods based on discriminative score optimization and Bayesian model averaging. The implementation is efficient enough to allow for time-consuming discriminative scores on medium-sized data sets. bnclassify provides utilities for model evaluation, such as cross-validated accuracy and penalized log-likelihood scores, and analysis of the underlying networks, including network plotting via the Rgraphviz package. It is extensively tested, with over 200 automated tests that give a code coverage of 94%. Here we present the main functionalities, illustrate them with a number of data sets, and comment on related software.

Funding Projects

Type
Code
Acronym
Leader
Title
Horizon 2020
785907
HBP SGA2
Universidad Politécnica de Madrid
Human Brain Project Specific Grant Agreement 2
Government of Spain
C080020-09
Unspecified
Unspecified
Cajal Blue Brain Project
Government of Spain
TIN2016-79684-P
Unspecified
Unspecified
Avances en clasificación multidimensional y detección de anomalías con redes bayesianas
Madrid Regional Government
S2013/ICE-2845-CASI-CAM-CM
Unspecified
Francisco Javier Montero
Conceptos y aplicaciones de los sistemas inteligentes

More information

Item ID: 54545
DC Identifier: https://oa.upm.es/54545/
OAI Identifier: oai:oa.upm.es:54545
DOI: 10.32614/rj-2018-073
Official URL: https://journal.r-project.org/archive/2018/RJ-2018...
Deposited by: Memoria Investigacion
Deposited on: 22 Jan 2020 13:20
Last Modified: 30 Nov 2022 09:00
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM