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Abstract- Increasingly, PyCom technology is used to create a wearable 
device which count steps [1] and send them to the The Things Network 
(TTN). How to implement a step counter on a PyCom device and how to 
configure the LoRaWAN network to send data to the TTN are the major 
challenges. The aim of this research is to study the feasibility of a LoraWAN 
connected activity tracker/step counter. In this paper, I have developed a 
Micropython step counter algorithm that facilitates the programming of 
PyCom devices to other users. In addition, in this work I investigate the 
communication between PyCom and TTN. Existent Python step counter 
code is transformed into a Micropython one and the communication with 
the TTN is implemented using Atom. I show that this process is possible, 
but it is needed a LoPy PyCom device with a bigger memory. 

I. INTRODUCTION

PyCom technology is used to create a wearable device which count steps 
and send them to the TTN. The most usable information found to do this is 
in the official pyCom device webpage [2]. A LoPy1.0r multipack, which 
include a LoPy1.0r, an Expansion Board and a LoRa/Sigfox antenna is used 
for this project. Even though, the project is focused on software, not on 
hardware (my task was the implementation of the software or a working 
system in Micropython language that can track the steps of a person 
wearing the device and send those to the TTN).  

The major challenges are how to implement a step counter on a pyCom 
device and how to configure the LoRaWAN network to send data to the 
TTN. The step counter algorithm is complex: it includes mathematical and 
physical methods like linear interpolation or programming techniques like 
Threads or Queues. Using the code explained in the chapter related work 
[3], a Micropython code was created based on it. After this code is created 
and is working on the device, the steps which are the output of this 
algorithm are sent to the TTN. This sending is also implemented in this 
language. 

The goals of my research are to study the feasibility of a LoraWAN 
connected activity tracker/step counter. To do this is necessary to make a 
working system that can track the steps of a person wearing the device. “Is 
it possible to generate a step counter algorithm in Micropython and 
introduce this into the LoPy pyCom device?”, “Is it possible to connect the 
activity tracker/step counter with the TTN and send the steps generated in 
the previous question?”. These questions will be explained in detail in the 
chapter ii bellow. 

In this paper, my contribution to the society with this project is a 
Micropython step counter algorithm that facilitates the programming of 
pyCom devices to other users, as well as the communication between 
them and the TTN. We show the feasibility of the proposed method, the 
implementation of PyCom based’ step counter and the sending of the 
steps to the TTN. This is an open-source project, therefore can be used by 
individuals and/or organization who are interested in developing 
pedometer apps. 

The process that I followed to conclude with this project starts with (1) 
understanding an existent Python step counter code, mentioned previously 
and explained in the chapter iv. In the next step, the Python algorithm is 

(2) transformed into a MicroPython one explained in the subchapter iii-h 
investigating about APIs and related modules between these two 
languages. The code generated in Micropython (3) is introduced in a LoPy 
PyCom device, more concretely a LoPy1.0r using a program called Atom. 
After the code has been generated and the steps calculated, these steps 
were sent to the TTN. For this, it was necessary first to (4) investigate 
about how to use the platform “The Things Network” [4]. After that it was
important to know more about (5) Micropython code to communicate the 
device with this platform and then being able to send these steps to this 
TTN. 

The structure is composed by eight main chapters: (1) abstract, (2) 
introduction, (3) research question, (4) body, (5) related work, (6) 
conclusion, (7) appendix and (8) bibliography: 

The abstract contains the problem discussed in the paper plus my own 
contribution. The (i) introduction tells the complete story: the structure of 
this is composed by a context (discussion of the problem area), the 
problem identification (the problem that is (partly) solved in this paper), 
the objective of the research (the goals), an indication of the solution 
(direction) or contribution, what method was used and an explanation of 
the structure of the paper. The (ii) research questions chapter explains the 
main questions that are answered in this paper and why they were 
chosen. (iii) Body contains the content of the project in detail. In this 
paper, this is composed by the subsections:  

a. The internet of things.
b. Step counter or pedometer.
c. LoRa and LoRaWAN
d. LoPy1.0. 
e. Windowed peak detection and its stages.
f. The signal representation: example case.
g. Linear interpolation.
h. From Python to Micropython.
i. Garbage collector.
j. Connection with the TTN. 

The (iv) related work chapter contains references to other research 
projects that have been useful to the implementation of this one. This can 
serve two purposes: summarizing the work of others or positioning my 
work in relation to work of others. The (v) conclusion summarizes and 
suggests further research, the contribution and findings, an outlook on 
future work/remaining problems (this section motivate other researchers 
to participate in my area).  

II. RESEARCH QUESTIONS

For the execution of this project, two main questions have been answered. 
These questions haven’t been suggested by the student, but they were 
imposed by the supervisor. These questions are: 

A. How to create a step counter on the PyCom
device?



This is the first question imposed. To do this, it is not necessary to be 
focused on the hardware, but it is to be focused on the algorithm of a step 
counter. Being sure that every stage of the Windowed Peak Detection 
(WPD) is clear is the first step. For this task it is used the report “Step 
Counter Algorithm for smartphones organization” referenced in the 
chapter i. From this report an algorithm in Python is taken and then it is 
possible to start working. This is explained in more detail in the chapter iv. 
The output of this program is the number of steps that the user who is 
wearing the device walks. Once the algorithm is clear, the main task is to 
transform the Pycom code into a Micropython one and then to introduce 
this in the PyCom device (precisely the LoPy1.0r) using the program Atom 
and a LoPy1.0r multipack with several changes and contributions. 

B. How to configure the LoRaWAN network to send 
step data to the TTN?  

This is the second question imposed. To answer this question, it is 
important to know well the platform TheThingsNetwork referenced 
previously. This platform is used for building networks for the Internet of 
Things by using LoRaWAN technology, which doesn’t use 3G or WiFi, uses 
low battery, long range and low bandwidth. After this is known it is 
necessary to create an account, to create an application and a device in 
this platform. Once it is created some code must be implemented in Atom 
to connect the device LoPy1.0r with this platform. This code is added to 
the previously created code (first question) and the output of the first 
question (number of steps) is sent to the Internet of Things (TTN). This 
process is explained in more detail in the chapter iii-j.   

III. BODY 

Before starting with the explanation of what has been done during the 
implementation of this project, it is important to understand general 
concepts like the Internet of Things (IoT), the LoRa technology, LoRaWAN 
protocol and what is a step counter or pedometer. The first thing that is 
going to be shown in this paper is what do these concepts mean and what 
is the relation between them.  

A. The internet of things 

Internet of Things (IoT) is a concept that is referred to the digital 
connection of daily objects using the Internet. This idea was proposed by 
Kevin Ashton in the MIT Autor-ID Center in 1999, where research in the 
Radio Frequency Identification (RFID) field and sensors technologies were 
carried out. The Gartner company predict that for 2020 will be 
approximately 26 thousand millions of wireless devices connected by The 
Internet and Abi Research 30 thousand million. In the future the IPV6(next 
generation of applications in the Internet) will allow us to identify all those 
devices. These are connected to the network by using low power radio 
signals (more active research field of the IoT) and they don’t need WiFi or 
Bluetooth. The Alcatel-Lucent service touchatag and the Violeta Mirror 
gadget offer a pragmatic orientation to the IoT consumers, where 
everyone can link real world elements with the online world using tags like 
RDIF or QR codes. As the IoT research is in a very early development, there 
is not a standard definition of this term.  

In this project a PyCom device is being used as an IoT device (more details 
about the device are in chapter iii-d). This device takes acceleration data 
by using sensors. The Windowed Peak Detection (WPD) algorithm 
(explained in the chapter iii-e) is implemented in this device (explained in 
the chapter iii-h) to obtain the steps from the acceleration data. After the 
steps are calculated, this information is sent to the TTN (explained in the 
chapter iii-j). 

B. Step counter or pedometer 

Before starting with the previously mentioned explanations, it is important 
to know more about what a step counter is. 
 

1 Description and usage 

A pedometer is an electronic device that counts the steps that a person 
walks by the use of sensors, and thus it records the kilometers or miles 
(distance = number of steps x step length). These devices are very 
common in sport players. These devices are not only used to count steps, 

it is also useful for motivating fitness enthusiasts. Step counters can cheer 
up to complete with oneself in getting fit and losing weight. Nowadays, the 
software that these pedometers use determines automatically the 
variation of the person’s steps (the distance traveled can be measured 
directly by a GPS receiver). Step counters are being integrated into an 
increasing number of portable consumer electronic devices such as music 
players or smartphones. Various websites exist to allow people to track 
their progress. Pedometers have been shown in clinical studies to increase 
physical activity and reduce blood pressure levels and Body Mass Index [5]. 
One criticism of the pedometer is that it does not record intensity, but this 
can be done by making step goals time limited (for example, 1000 steps in 
10 minutes counts as moderate exercise). 

2 Technology 

The step counter includes a mechanical sensor and a software to count 
steps. Nowadays pedometers rely on MEMS (Microelectromechanical 
Systems), inertial sensors and sophisticated software to detect steps. The 
sensors are very simple. The power consumption is low and the 
temperature is stable. To compensate for angular shock and vibration in 
the disk it is used these MEMS angular acceleration. These sensors have 
either 1, 2 or 3-axis detection of acceleration. The 2-axis accelerometers 
measure the dynamic acceleration or vibration and the static acceleration 
or gravity. The output of these step counters are signals which can be 
analog or digital. These are cycle modulated signals. The use of these 
inertial sensors permits more accurate detection of steps and fewer false 
positives. Pedometers have to be accurate. The software technology used 
to interpret the output of the inertial sensor and "make sense of accurate 
steps" varies widely.  

C. LoRa and loRaWAN 

As well as it is important to know about what a step counter or pedometer 
is, it is also important to know about what is loRa and loRaWAN. These will 
be use later to connect our device with the TTN.  

1. LoRa and IoT 

The construction of IoT networks are a common practice to send 
information to the TTN. LoRa is one of the most used long range, low 
power wireless platform to this commitment. The IoT, as we explained 
previously in the chapter iii-a, is improving the interaction between people 
and making many other improvements in society like climate change 
aspects, pollution or warning of natural disasters. IoT is also helping 
business in their operations and reduction of costs. Wireless radio 
frequency (RF) is needed to this communication, that’s why it is more 
often being integrated into vehicles, public lights, manufacturing 
equipment, etc. 

2. LoRa technology 

This is a more specific description of the used technology for data 
transmission with the TTN. This technology offers long range, security and 
makes the consumption of power low. Existing cellular networks provide a 
lower range in coverage than the networks which use this technology. This 
technology is more and more being introduced in chipsets by companies 
like Semtech [6] and these chipsets are then integrated into their products 
and into wireless telecommunication wide area networks (long range 
communications), Low-Power and Wide-Area Networks (LPWAN). 

3. LoRaWAN protocol 

This protocol is used together with LoRa technology. The developers of 
this protocol are LoRa Alliance [7]. This protocol enables low power, and 
wide area communications. This is why it is used unlicensed radio 
spectrum in the Industrial Scientific and Medical (ISM) bands. This protocol 
or standard allows for a quick, bidirectional and secure setup of networks. 
This also provides accurate location. 

4. Key features of LoRa and LoRaWAN 

LoRa and LoRaWAN are characterized for using geolocation and the cost of 
these is low because it reduces costs in different ways. The fact that these 
are standardized improve interoperability. The needed power is not high 
(battery lifetime up to twenty years), the range is long, it allows 



penetration in dense urban and indoor regions and it also connects in rural 
areas up to thirty miles away. About the security, it uses end-to-end 
encryption and about the capacity, it supports millions of messages.       

D. LoPy1.0 

After these concepts are clear in a theoretical way, these have been 
brought to practice. The first thing that we must know about, is the device 
that has been used for this project. This is a PyCom device, more 
specifically a LoPy1.0r multipack, which include a LoPy1.0r an Expansion 
Board and the LoRa/Sigfox antenna. A battery is used to provide power to 
the device. We are going to be focused on the LoPy1.0. 

 
Figure 1: LoPy1.0r PyCom Device 

The previous image shows the main characteristics of the LoPy1.0. The size 
is 55x20x3.5 mm, and the operating temperature is -40 to 85 degrees 
Celsius.  

This device is the only triple bearer MicroPython enabled micro controller 
with LoRa, Wifi and BLE in the market today. This is the perfect enterprise 
grade IoT platform for connected Things. LoPy 1.0 offers a combination of 
power, friendliness and flexibility (creates and connect things 
everywhere). 

About its features, it has a powerfull CPU, BLE and state of the art WiFi 
radio and a 1km Wifi Range. This devicecan also double up as a Nano LoRa 
gateway, it is MicroPython enabled, fits in standard breadboard (with 
headers), has ultra-low power usage (a fraction compared to other 
connected microcontrollers) and it is available with or without pin headers 
soldered on. 

About the specifications:  

(1) The LoPy1.0 device has a CPU which is a Xtensa dual-core 32-bit LX6 
microprocessor, up to 600 DMIPS, it has a hardware floating point 
acceleration, Python multi-threading, and an extra ULP-coprocessor that 
can monitor GPIOs, the ADC channels and control most of the internal 
peripherals during deep-sleep mode while only consuming 25uA. (2) Its 
memory is composed by a RAM of size 512 KB and an external flash of size 
4MB. (3) The WiFi that this device use is the 802.11 b/g/n 16mbps one. 
About its Bluetooth, (4) is low energy and classic, (5) the LoRa uses 
LoRaWAN 1.0.2 stack – Class A and C device, a node ranges up to 40km, a 
nano-gateway up to 22km (capacity up to 100 nodes), an RTC running at 
150 kHz a security SSL/TLS support. Finally, (6) the device security uses 
SSL/TLS support and WPA Enterprise security, and a SHA, DM5, DES, and 
AES Hash/encryption. 

The datasheet [8] contains the detailed device information. 

E. Windowed Peak Detection 

Once we know what device we are using to implement the algorithm in it, 
we need to know what is the code that we are going to put in it. The 
algorithm used is called Windowed Peak Detection. 

Windowed Peak Detection is an algorithm used to obtain the number of 
steps that the user who is wearing a device with the accelerometer 
embedded walks. This algorithm uses as input a set of timestamps (the 
microseconds since boot), acceleration "x-axis" values, acceleration "y-
axis" values and the acceleration "z-axis" values. These values were 
previously obtained by acceleration sensors which are part of a device 
(details of this device explained previously). After the data is obtained by 
the device, this is treated by different stages before the number of steps is 

calculated. These algorithm or stages have been implemented in 
Micropython and then uploaded to the device using Atom (this process is 
explained in the chapter iii-h). The original code has been taken from the 
Step Counter Algorithm for smartphones organization, which contains all 
the repositories associated with the step-counter project from the 
Institute of Biomedical Engineering of the University of Oxford previously 
referenced. 
 
The Windowed Peak Detection algorithm is divided in five different stages: 
pipe-input stage, pre-processing stage, smoothing filter or filtering stage, 
peak scorer or scoring stage, peak detection or detection stage and post-
processing stage. The program has a main process and from this, six 
threads have been thrown (one per stage). Every thread except pipe-input 
(the first one) have common functions like the one that throw the threads 
(start), contained in a superclass named WorkerThread. These threads are 
connected by pipes or queues, so that the output of one stage can be used 
as the input of the next stage. The output values of one stage are stored 
into a queue and then the next stage takes these values from that queue. 
Below are explained the different stages and how they work. 
 

1. Pipe-input stage  
 

The functionality of this stage is simple. It just takes the data obtained 
from the device sensors and put these data into the transaction pipe 
(queue). This data is represented as a “data structure” which is composed 
by the timestamp, the x-coordinate of acceleration, the y-coordinate of 
acceleration, the z-coordinate of acceleration and the magnitude of these 
coordinates (this magnitude will be computed in the pre-processing stage). 
 

2. Pre-processing stage 

This stage consists in a loop that is working while the thread is active, and 
the input queue is not empty. The pre-processing stage (1) takes one value 
from the input queue. This value is represented as a “data structure” as it 
was explained previously. After this data is taken, (2) if this is the last value 
of the queue (string ‘end’), this is appended directly in the output queue 
without being treated. If the data taken is not the last one, (3) the time is 
scaled, this function is implemented in the Data Structure class and the 
mathematical function is this: 

self.time = (self.time - startTime) / factor 

In this function “startTime” is the time that the data trace started and 
“factor” is the scaling factor for converting units (this value is 
10^6=1000000 to from ns to ms). This value obtained is stored as the 
“self.time” of the Data Structure object. Next step after scaling the time is 
(3a) computing magnitude. This function consists in: 

self.mag = math.sqrt(math.pow(self.x, 2) + math.pow(self.y, 2) + 
math.pow(self.z, 2)) 

Where “self.x”, “self.y” and “self.z” are the x, y and z coordinates of the 
Data Structure. (3b) The Data Structure is then stored in the queue 
“self.window” and in the list “self.dataList”. If the “self.window” queue has 
at least two values, (3c) the timestamps of those two values are treated 
using the mathematical method called linear interpolation (this method is 
explained more in detail in the chapter iii-g). After this, it is checked how 
many interpolation points could lie in between both. The code used for 
doing this is: 

for i in range (math.ceil((time2 - time1) / self.interp_ts)): 

             interp_time = self.interpolation_count * self.interp_ts 

             # If the interpolated time lies in this range, create the new data 

point and add it 

             if time1 <= interp_time < time2: 

                      sds = utils.linearInterp(self.window[0], self.window[1], 

interp_time) 

                      self.dataQueue.enqueue(sds) 

                      self.interpolation_count += 1 
 



Where ‘’inter_ts’’ is defined as 10 and represent the interpolation time 
scale in ms. “Interpolation_count” is initialized as 0 in the constructor of 
the class and it is adding 1 at each iteration. The values “time1” and 
“time2” are the first and the second values in the “self.window” queue. 
The linear interpolation function returns a Simple Data Structure where 
time is the “interp_time” and the new magnitude is calculated as: 

new_mag = slope* (time – time1) + value1 

 
In this function “time” is the interpolation time (interp_time), “time1” is 
the time of the first data structure, “value1” is the magnitude of the first 
data structure and “slope” is: 

slope = (value2 – value1) / (time2 – time1) 

To conclude, (3d) as we can see in the previous code, these interpolation 
points are stored in the output queue as Simple Data Structures. 

3. Filtering stage 

Different filters can be applied for this stage: the Hann Filter, the Gaussian 
Filter, the Kaiser Bessel Filter or the Centered Moving Average Filter. When 
this program is executed, the filter is specified previously. All of them are 
implemented but only one can be executed at a time. The one that we are 
going to execute first is the Gaussian Filter. 

Before starting treating any data, the Gaussian window coefficients are 
generated, this is a list that contain values which are the result of a 
mathematical expression. This is: 

value = math.exp(-0.5 * math.pow((n – (windowSize - 1) / 2) / (std * 
windowSize - 1) / 2), 2)) 

where “windowSize” is the size of the Gaussian Window, in our case we 
use 13 and “std” is the adjusted standard deviation, we are using 0.35. 

Once it is done, while the thread is active, the filtering stage (1) takes data 
from the queue or pipe where the previous stage stored its output and 
while there are data in the queue. These data are the interpolation points 
which are represented as a simple data structure (that is composed by the 
timestamp, the magnitude of the signal and the old magnitude as class 
attributes), (2) If the last value of the pipe is being taken (the string 
‘’end”), then this value is not treated, and it is directly added to the output 
queue and the thread is done (completed and not active). (3) If the data 
taken from the input queue is a regular simple data structure, this is 
stored in a list called “data” and in a queue called “window”. (3a) If the 
size of ‘’window’’ is equals to ‘’windowSize’’ (13 as we saw before), then 
the smoothing action is done and then pop operation is performed. The 
smoothing action consist in the next code: 

ssum = 0 
for i in range(len(self.window)): 
   ssum += self.window[i].mag * self.gauss_window[i] 

 

The ‘’gauss_window’’ is the list that contain the values ‘’values’’ that we 
also saw before and “self.window[i].mag” is the magnitude of the position 
“i” of the queue “self.window”. 

To conclude with this stage, (3b) the data that is going to be appended as a 
simple data structure in the output queue is the average of all points in the 
window. 

4. Scoring stage 

As well as for the previous stage (filtering stage), different functions have 
been implemented but only one is executed each time. These functions 
are: Pass-through scoring, Maximum Difference scoring, Mean Difference 
scoring and Pan-Tompkins scoring. When the code is executed the scoring 
function is specified previously, and the one that we are focusing on is 
Mean Difference scoring. 

This scoring function is a loop that is iterating while the thread is active 
and there is data in the input queue. The first step in this stage is (1) taking 
the first value of the input queue which was previously appended in the 

Filtering Stage as a Simple Data Structure. (2) If the value taken is the last 
one (the string “end”), this is directly appended in the output value and 
thread is over (completed and not active). If the data taken is not the last 
one, (3) this Simple Data Structure is appended in a list called “self.data” 
and ‘’self.window’’ as well as in the previous stage. If the size of the 
“self.window” queue is equals to the window size (it was previously 
declared as 35), (3a) the mean of the window is calculated using the code: 

ssum = 0 
for i in range(0, self.windowSize): 

ssum += self.window[i].mag 
mean = ssum / self.windowSize 

 

In this code “self.windowSize” is 35 as we said before, and the 
“self.window[i].mag” is the magnitude of the Simple Data Structure of the 
position “i” in the queue “self.window”. 

After this, (3b) the new magnitude is calculated with the code: 

              new_mag = 0 if self.window[midPoint].mag–mean < 0 else            
self.window[midPoint].mag - mean 
               # Square it 
               new_mag *= new_mag 

 
 

In this code “midPoint” is the “windowSize” divided by 2 (this is int 
(17,5)=17) and “mean” was calculated previously. The new magnitude is 0 
if the difference between the magnitude of the 17th point and the 
previously calculated mean is less than 0 and if this is not, then the new 
magnitude is that difference. After that is squared.  

To conclude, (3c) the new data appended to the output queue is a Simple 
Data Structure with the time of the 17th value of “self.window”, the new 
magnitude calculated previously and the old magnitude. 

5. Detection stage 

This stage consists in a loop that is iterating while the thread is running, 
and while the input queue has values in it. The first step that this stage 
does is (1) taking the first value of the queue. This value had been added 
to the output queue of the last stage as a Simple Data Structure. If this 
value is the last one of the queue (the string “end”) (2) then this is directly 
appended into the output queue and the thread is over (completed and 
not active). If this value is not the last one, (3) this is appended to a list 
called “self.data”. This stage consists in using a simple mean and standard 
deviation method to find significant values of peak scores from the values 
obtained in the previous stage. That is why the algorithm does the next: 
Before explaining the update statistics method is important to say that 
“self.n”, “self.mean” and “self.std” were previously initialized to 0 in the 
constructor before throwing the thread and this values are the internal 
statistics.  One is summed to “self.n”, if “self.n” is now 1, (3a) “self.mean” 
is now the magnitude of the Simple Data Structure taken from the input 
queue and “self.std” is still 0. If “self.n” is now 2, “self.mean” is now the 
average between the magnitude of the Simple Data Structure taken and 
the actual “self.mean” and “self.std” is: 

self.std = math.sqrt((math.pow(dp.mag - self.mean, 2) + 
math.pow(o_mean - self.mean, 2)) / 2) 

Where “dp.mag” is the magnitude of the Simple Data Structure taken, 
“self.mean” is the one obtained in the last step and “o_mean” is the 
“self.mean” before the last step. 

If “self.n” is not 1 or 2, then (3b) the mean iteratively is updated like this: 

self.mean = (dp.mag + (self.n - 1) * self.mean) / self.n 

And the standard deviation like this: 

 std = math.sqrt(((self.n - 2) * math.pow(self.std, 2) / (self.n - 1)) 
+ math.pow(o_mean - self.mean,2) + math.pow(dp.mag - self.mean, 2) / 
self.n) 

What each value means was already explained previously. 



The last step in this stage is (3c) If “self.n” is bigger than 15, to check if we 
are above the threshold. This threshold has been defined as “1.2”. If the 
difference between the magnitude of the Simple Data Structure obtained 
from the input queue and the actual value “self.mean” is bigger than the 
product between “self.std” and “1.2” (threshold), then a Simple Data 
Structure with the time of the Simple Data Structure obtained from the 
input queue and also its old magnitude is appended to the output queue 
and also to the list “self.dataout”. 

6. Post-processing stage 

This is the last stage of the Windowed Peak Detection. This consist in a 
loop that is running while the thread is active, and the input queue has 
values in it. If these two conditions are satisfied, then (1) the first value of 
the input pipe is taken (this is a Simple Data Structure). (2) If this first 
structure is the last one from the queue (the string ‘’end’’), then the last 
value from the internal queue “self.queue” is taken, and this is appended 
into the output list. Also, the thread is done (completed and not active). If 
the Simple Data Structure taken from the input queue is not the last one, 
then (3) if the internal queue “self.queue” size is less than 2, then the SDS 
is appended. If not (3a), if the time difference (this is the difference 
between the time of the SDS taken from the input queue and the time of 
the SDS that is in the first position of the internal queue) is bigger than the 
threshold (this value has been defined previously as 200), then the old 
point is popped from the internal queue (“self.queue”), this is appended to 
the output queue and the new point (SDS from input queue) is appended 
to the internal queue “self.queue”. In the case that this difference of time 
is not bigger than the threshold, (3b) if the magnitude of the SDS taken is 
bigger or equals than the first value magnitude of the internal queue 
“self.queue”, then the actual value in this queue is popped and the new 
SDS from the input pipe is appended (it is only kept the maximum value 
point). 

F. The signal representation: example case 

The algorithm is already explained, now it is shown a signal representation 
of the data at the output of every stage for a specific example:  

In this example, the next values are used: 

For (1) pre-processing stage, it is used as interpolation time scale in 
milliseconds (“inter_ts”) and time scale factor (“ts_factor”) 100 and 
1000000 respectively. For (2) filtering stage, it is executed the “Smoothing 
filter” and it is used as size of the filter window (“windowSize”) and as 
standard deviation (“std”) 51 and 0.35 respectively. For (3) scoring stage, it 
is executed the “Mean difference scoring” and it is used as scoring size of 
the window (“windowSize”) 10. For (4) detection stage, it is used as the 
standard deviation threshold to call a peak a peak (“threshold”) 1.2. And 
finally, for (5) post-processing stage, it is used as time threshold for 
eliminating peaks (“time_threshold”) 200 milliseconds.  

The next images have been obtained from the report “An optimized 
algorithm for accurate steps counting from smart-phone accelerometry” 
previously referenced and are represented each stage values for this 
example. 

1. Pipe-input stage 

This signal represents in the x-axis the samples from 0 to 1500 and in the 
y-axis the difference in time between those in milliseconds. In this image 
can be seen that this difference is always around 10 milliseconds but there 
are clear desviations. 

 
Figure 2: Pipe-input data representation.  

2. Pre-processing stage 

This signal represents the pre-processed data. In the x-axis it is 
represented the time in milliseconds from 0 to 12000 and in the y-axis it is 
represented the magnitude in m/s^2. At each time, the magnitude of the 
signal is different. This magnitude is the acceleration magnitude. As we 
can see, the magnitude starts in 10 m/s^2 and change with the time. The 
mean magnitude for the all signal is 10. 

 
Figure 3: Pre-Processing data representation. Example with 

inter_ts = 100 and ts_factor = 1000000  

3. Filtering stage 

After applying the pre-processing process to the values, these values are 
filtered, and the result of this filtering is this signal. In this signal is 
represented as well as in the previous one the time in milliseconds in the 
x-axis and the magnitude in m/s^2 in the y-axis. As we can see, as well as 
the previous stage, the magnitude starts in 10 m/s^2 at 0 milliseconds and 
change with the time. The mean magnitude for the all signal is also 10. 

 



 
Figure 4: Smoothing filter data representation. Example with 

window_size = 51, type = gaussian and std = 0.35 

 

4. Scoring stage 

Once the pre-process stage and the smoothing filter is passed to the data, 
the scoring stage happens. After this, the representation of the outputs is 
this signal. In it, the peak score data is represented. In the x-axis it is 
represented the time in milliseconds from 0 to 10000 and in the y-axis it is 
represented the peak score from -1.0 to 0.8.  

 
Figure 5: Mean-difference scoring data representation. Example 

with window_size = 10 and type = mean_diff 

5. Detection stage 

Once the previous stages are done, the detection stage happens. In the 
next figure is represented the result signal of this stage. In it, the peak data 
is shown. In the x-axis is represented the time in milliseconds from 0 to 
12000 and in the y-axis is represented the magnitude in m/s^2 from 7 to 
14. As we can see the magnitude starts in 10 for 0 milliseconds and change 
with the time. The mean magnitude of the all signal is also 10. 

 
Figure 6: Detection data representation. Example with threshold = 

1.2 

6. Post-processing stage 

This is the last stage. After all stages are done, the confirmed peak data is 
obtained. This next figure represents these data. In the x-axis is 
represented the time in milliseconds from 0 to 12000 and in the y-axis is 
represented the magnitude in m/s^2 from 7 to 14. As we can see, the 
magnitude for 0 milliseconds is 10 and it change with the time. The mean 
magnitude of the all signal is also 10. 

 
Figure 7: Post-Processing data representation. Example with 

time_threshold = 200 

The images have been obtained from the report “An optimized algorithm 
for accurate steps counting from smart-phone accelerometry” previously 
referenced. 

G. Linear Interpolation 

As we could see previously, linear interpolation has been used for the 
implementation of this algorithm. A more detailed explanation of this 
mathematical method is here. 

The linear interpolation is a particular case of the general interpolation of 
Newton. With the Newton interpolation polynomial, it is possible to 
approximate a value from the function f(x) to an unknown “x” value. For 
the particular case in which an interpolation is linear (interpolation 
polynomial of grade one), which adjust itself to the values in the points x1 
and x2 is expressed like this: 

 

1. L.I. for an independent variable 



In a table are represented some values from the function, but not all. 
Sometimes, we are interested in the value of the function for a value of 
the independent variable different than those which are in the table. In 
that case we can take the closest value to the searched one or get closer 
by using interpolation. The interpolation will give us a small error respect 
to the value of the real function, but it is always better than taking the 
closest one from those which are in the table. Let see how to calculate the 
value of the function for a value of the independent variable which is 
between two values of the table for linear interpolation. 

Because of the table we know: 

 

And: 

 

Now we want to know: 

 

Being: 

 

The linear interpolation consists in drawing a straight line which cross the 
points (x1, y1) and (x2, y2), y = r(x) and calculate then the intermediate 
values taking in account this straight line instead of the function y = f(x). 
The next image was taken from “La Guia” webpage [9]   

 
Figure 8: Linear interpolation representation 

For this operation and seeing the picture, we are going to rely on the 
similarity of triangles  and . 

This is: 

 

From this we obtain: 

 

Or what is the same: 

 

The value that we are looking for is: 

 

This is: 

 

H. From Python to Micropython 

Once we understand the Windowed Peak Detection algorithm, we 
proceed to explain how the process of translating from the Python code 
given by the University of Oxford (the Step Counter Algorithm for 
smartphones organization) was, previously referenced to the Micropython 
code, which is the only language compatible with the LoPy1.0r pyCom 
device. 

To start with this chapter, it is important to say that Python and 
Micropython are very similar languages with some important differences 
that I will explain in this section. It is also important to say that for this 
work, the official pyCom webpage previously referenced has been 
essential. 

Four main steps have been followed to do this transaction: 

1. Familiarizing with the Atom program 

This program can be downloaded from the official Atom webpage [10]. 
After having the program, it is necessary to install the Pymakr Plugin. The 
steps needed to install this are explained in the chapter 3.3.1 of the Pycom 
documentation [11]. 

Once the Atom program is installed with the required Pymakr Plugin, 
either connecting through USB serial using a comport or an IP address for 
a telnet connection, the LoPy1.0r multipack can be connected to the 
computer. In this case it was used the comport COM3. Now the translation 
process can start. 

2. Obtaining values from the accelerometer 

The first task that had to be done with the device is to obtain the 
accelerometer x-axis values, accelerometer y-axis values and 
accelerometer z-axis values from the device sensors and the timestamp in 
microseconds since boot for each of these set of values. To do this, libraries 
like “LIS2HH12.py”, “pytrack.py” and “pycoproc.py” were necessary. These 
libraries have been obtained after following the steps mentioned in the 
chapter 4.2.3 of the pyCom documentation previously referenced of the 
official pyCom webpage (also referenced previously). The webpage where 
all the pyCom libraries are is the GitHub repository: “MicroPython libraries 
and examples that work out of the box on Pycom’s IoT modules” [12]. 

The next program was implemented in MicroPython. This takes the values 
(timestamp, acc. x-axis, acc. y-axis and acc. z-axis) from the accelerometer 
and write those values in a “.csv” file called “output.csv”. The code 
function implemented to do this is: 

import utime 
import time from LIS2HH12 import LIS2HH12 
from pytrack import Pytrack 
def put_data_into_a_file(): 

py = Pytrack() 
acc = LIS2HH12() 
cont = 0 
while cont<10: 

dt=utime.ticks_us() 
cont+=1 
x,y,z = acc.acceleration() 
output = '{},{},{},{}'.format(dt,x,y,z) 
print(output) 
f=open('output.csv','a') 
f.write(output) 
f.write("\n") 
f.close() 
time.sleep_ms(100) 

 
In this function we can see: how a pytrack (“py=Pytrack()”) and a LIS2HH12 
(“acc=LIS2HH12()”) objects have been created. A while loop is iterating 10 
times (“while cont < 0”) in each of these iterations, the time is taken 
(“utime.ticks_us()”) in microseconds since the boot and the x-axis, y-axis 
and z-axis values are taken from the accelerometer (“x,y,z = 



acc.acceleration”). To conclude, the obtained values (timestamp, 
accelerometer x, y and z values) are printed into a file which is created the 
first iteration and open the next 9 (“f=open(´output.csv´,’a’)”, 
“f.write(output)”, f.write(“/n”)” and “f.close()”). To conclude, every 
iteration happens after waiting 100 miliseconds (“time.sleep_ms(100)”). 

3. Making sure that the file is correctly created 

The created file is now stored in a small internal file system accessible 
from each PyCom Device which is called “/flash”. When the device starts 
up it always boot from the “boot.py” located in the “/flash” file system. 
The file system is accessible via the native FTP server running on each 
Pycom device. The file “boot.py” of this project has been modified, so that 
the device is being connected to a specific router (for example a personal 
home WiFi router). Now that this connection is done, and the file has been 
created, we can access to this server and this file by opening an FTP client. 
In this case, FileZilla client was used. It was installed, open and the 
connection was done following the steps in chapter 1.3.5 of the pyCom 
documentation already referenced. Once the connection is done it is 
possible to obtain the file from the server and put it in your computer. 
When the file is in your computer, it can be open with a program that 
support “.csv” files like for example Microsoft Excel.  

After doing all this process and opening the file, the content of this has this 
appearance: 

 
Figure 9: Screenshot of the "output.csv" file example case. The first 

value is the timestamp in microseconds, the second value is the 
accelerometer x-axis value, the third one is the accelerometer y-

axis value and the forth one is the accelerometer z-axis value 

In this file each raw represents one different sample. 

4. Linking the file creation with the WPD 

After this file is created, the algorithm explained previously in the chapter 
iii-e needs to be executed taking this as the input. To do this, it is 
necessary to translate first the WPD code that we originally had in Python 
to Micropython and then link it with the file creation code.  

This process is not very complex. As well as the modules “LIS2HH12.py”, 
“pytrack.py” and “pycoproc.py” previously imported, the module 
“deque.py” has to be imported too. These “.py” files are pasted in the 
folder “/lib” in the Micropython project. The file “deque.py” is imported 
because it is included in Python, but not in Micropython. This module was 
obtained from the GitHub “Core Python libraries ported to Micropython” 
repository [13].  

The hardest part of this process of translating the WPD from Python to 
Micropython is the creation of threads. In Python the threads were 
created like this:  

from threading import Thread 
self.thread = Thread(target=self.target, args=self.args) 

 

While in Micropython they are created like this: 

import _thread 
_thread.start_new_thread(self.target,self.args) 

         

It is important to say that, as the implementation of these threads is 
different, we don’t have “self.thread” variable anymore and because of 

that other parts of the code are affected like for example the function 
“isRunning(self)” that determines if a thread is still working or if it is not. 

Libraries like “utime”, “ujson”, “_thread” or “uos” are used and functions 
like “utime.ticks_us()”, “ujson.load(file)”, “_thread.start_new_thread 
(self.target, self.args)” or “uos.random(3)” are executed. These are 
Micropython modules and can be found in chapter 6.3 of the pyCom 
Documentation previously referenced. 

5. Biggest problem with this transaction 

The most important problem that I have faced with this translation process 
(from Python to Micropython) was the low memory oet_thresf the device 
RAM memory. This memory is 67008 Bytes. This value was obtained by 
executing the command “machine.mem_info()” in the Atom command 
prompt. This value is too low to keep all the created program (file_creation 
+ WPD). Therefore, it was spent a lot of time searching a way of saving as 
much memory as possible and doing the code more efficient. 

The main option that was found is the use of garbage collectors. These 
have been introduced in the code for a better efficiency of this. Its 
functioning is explained in the next section. 

I. Garbage collector 

The garbage collector is an implicit memory management programming 
mechanism which is implemented in some languages like Python or 
MicroPython in this case, but also in many others. This mechanism has 
been used to manage the memory of the device and so that, being able to 
introduce all the Python code into the LoPy1.0r pyCom device. 

This program as well as any other, use a certain amount of memory. The 
programmer can use some libraries that manage the memory by reserving 
memory spaces to be used later, freeing memory spaces reserved 
previously, compacting free memory spaces and consecutive, counting 
what spaces are free and which are not, etc. This is good because the use 
of memory is efficient, but this can bring you to commit mistakes. 
Therefore, the garbage collector (implicit memory management) exists. 

When this garbage collector is used, it is not needed to invoke routines to 
break free memory. This memory reservation is automatic. In Python, the 
memory is reserved each time an object is created by the programmer, 
but the programmer doesn’t know how much memory is reserved. 

 The garbage collector is informed of every reserves that are produced by 
the program and the compiler collaborates for being possible to count all 
the existent references in a concrete reserved memory space.  

When the garbage collector is invoked, it searches in the list the reserved 
spaces looking at the reference counter in each space. If the counter is 
zero, it means that the space of memory is not used anymore and can be 
broken free. 

The garbage collector is effective and is usually used when there is no 
more free memory in the device. 

The next functions are generated by the garbage collector: 

enable(): activates the automatic garbage collector. 

disable(): deactivates the automatic garbage collector. 

isenabled(): returns true if the automatic garbage collector is activated. 

collect(): starts a full collection. Every generations are checked, and it 
returns the number of inaccessible objects that are found. 

set_debug(flags): it stablishes the garbage collector debugging indicators. 
The debugging information is shown in sys.stderr. 

Later are enumerated the debugging options that could be mixed by bit 
operations to control the debug. 

get_debug(): it returns the debugging active options in the present. 



set_threshold(threshold0[, threshold1[, threshold2]]): it stablishes the 
garbage collectors umbral (collection frequency). If the threshold0 is 
stablished like 0, the collection is deactivated. 

The collector classifies the objects in three generations, depending on how 
much collections have survived. The new objects are situated in the 
youngest generation (0 generation). If one object survives a collection, it is 
translated to the next generation (older). As the generation 2 is the oldest 
generation, the objects stay in it after the collection.  

To decide when it must be executed, one collector has the reserved spaces 
count and frees objects since the last collection. When the number of 
reservations minus the number of frees exceeds threshold0, the collection 
starts. Initially, only the 0 generation is checked. If the 0 generation was 
checked more than threshold1 times since the generation 1 is tested, then 
it is also tested the 0 generation. Analogically, threshold2 controls the 
number of collections of the generation 1 that must be done before 
collecting the generation 2. 

get_threshold(): it returns the actual collection limits in the form 
(threshold0, threshold1, threshold2)  

The variable garbage returns a list of inaccessible objects found by the 
collector, but that it was not able to collect. 

J. Connection with the TTN 

Once the Windowed Peak Detection algorithm is introduced in the device 
LoPy1.0r, the program created in Micropython takes the timestamps in 
microseconds, the acceleration x-axis, the acceleration y-axis and the 
acceleration z-axis from the accelerometer embedded in this device 
iteratively and return as output of the program the number of steps 
walked by the person who is wearing this. 

As an Internet of Things project, this is not enough. The data obtained 
from the algorithm (steps) needs to be shared with every user who is 
interested in taking this. Therefore, the second task to do is sending this 
data to the TheThingsNetwork (TTN). 

To send data to the TTN, the first task to do is reading as much as possible 
about this communication. It is already explained in the chapter iii-c the 
theory of LoRa technology and LoRaWAN protocol. Now it is going to be 
explained how to connect the LoPy1.0r device with the TTN in practice. 

The platform that is going to be used is: “The Things Network: building a 
global internet of things network together” which is previously referenced. 
In the also referenced pyCom documentation in the chapter 1.4.3.2 is 
explained the first steps that should be done. These are:  

1. Navigate to their website and create an account 

The website is: https://www.thethingsnetwork.org  

2. Create an application 

In order to register the device to send data with the things network, an 
application must be created first. To do this, it is necessary to enter an 
application ID as well as a Description & Handler Registration. 

3. Register a device 

This is needed to connect nodes to a things network gateway. Forms like 
the Device ID and the Device EUI must be completed. The code used to 
obtain the Device EUI is: 

from network import LoRa 
Import binascii 
lora = loRa() 
print(“DevEUI: %s” % 
(binascii.hexlify(lora.mac()).decode(‘ascii’))) 

 
After writing this code in the prompt of the Atom program with the device 
connected you obtain the Device EUI and this could now be added. The 
activation method can be also changed between OTAA and ABP. In this 
project OTAA is used (Over-the-Air Activation) because is the preferred 
and most secure way to connect with TTN. Devices perform a join-

procedure with the network, during which a dynamic DevAddr is assigned 
and security keys are negotiated with the device. 
 
Once we have created an account, an application and registered a device, 
the next step is the implementation of the code which will connect the 
device with the application created. 
A new thread has been created in the algorithm after every stages have 
concluded. In this new thread, in the implemented code the module 
“LoRa” has been imported from “network” and the object “lora” has been 
created: 

lora = LoRa(mode=LoRa.LORAWAN) 
 

The same application EUI and key written in the webpage when this was 
created is now inserted in two different variables in the code using the 
function: 

binascii.unhexlify(‘hexadecimal_string’) 
 
Being “hexadecimal_string” the EUI or the key in hexadecimal.  
The next step is joining the application by using the code line: 
 
lora.join(activation=LoRa.OTAA, auth=(app_eui, app_key), timeout=0) 
 
While the “lora” object is not joining the application, the message “Not yet 
joined…” is shown in the screen. The module “socket” is imported and this 
is used to create a socket object: 
 

s=socket.socket(socket.AF_LORA,socket.SOCK_RAW) 
 
The socket options are added:  
 

s.setsockopt(socket.SOL_LORA,socket.SO_DR, 5) 
 
And the socket blocking is defined as False: 
 

s.setblocking(False) 
 

To conclude, once the device is joining the application and the socket is 
created, a while loop is running non-stop sending the number of steps that 
are being counted. If the application returns any data, it is also shown in 
the command prompt as an output. Every iteration occurs every 2.5 
seconds. 
Before sending the number of steps it was proved with random values 
with the function: 
 

rand = uos.urandom(3) 
 
To see if the connection is happening, in the section “Application Data” the 
sent data should appear every certain time. Once it occurs, the connection 
is created, and the data is sent.   
The next image is a screenshot of the message “200” been received to the 
platform every 2.5 seconds from the device: 
 

 
Figure 10: Screenshot of the data sent from the device to the 
TheThingsNetwork platform 

 
In the section “Payload” of this image is the data sent from the device to 
the TTN platform where “32 30 30” represent the string “200” in ASCII 
code and hexadecimal.  
  



IV. RELATED WORK 

The key words: IoT, step counter, pedometer, accelerometer, LoRa 
technology and LoRaWAN protocol have been used for the literature 
study.  

This search has been done in the sources: Google Scholar, ACM Digital 
Library and IEEE Xplore. 

Many researches have been found but not all have been useful for this 
project. Researches related with smartphone step counters using 
magnetometers, remote debugging for LoRa, accelerometers for medicine 
(blood preasure, patients with decerebral disorders, …) or LoRaWAN 
attack prevention have been found but have not been used for this 
project. 

Other researches related with security connections using LoRaWAN, step 
counters in Java, pan-tompkins algorithm, smartwatch step counter or 
Low-Power and Wide-Area Networks (LPWAN) have also been found and 
because of the relation with our project, these have been useful. 

The research that have been the most used for the implementation of this 
project has been the already referenced “Step Counter Algorithm for 
smartphones organization” by the University of Oxford, which have help us 
understanding the Windowed Peak Detection algorithm process and has 
provided us with a Python code of this algorithm.  

This last-mentioned project is composed by a research paper, a report and 
a Git repository in which we can find the Windowed Peak Detection 
algorithm for different platforms and in different languages. It can be 
found in languages like Python, Java or Android. It is also added a 
repository with the data set that they have use to make their testing. This 
data set is composed by “.csv” files that they take as inputs in the program 
to later obtain the number of steps. We have use the accelerometer of the 
LoPy1.0r PyCom device to create the file “output.csv” with real values. 

For this project we have used the Python code taken from the Oxford Step 
Counter repository and from them we have started working.  

From this project it was also used the report to understand how the 
Windowed Peak Detection algorithm work.   

V. CONCLUSION 

About the first question: “How to create a step counter on a PyCom 
device?” it is not possible because of the low memory of the pyCom 
device. At least it was not found the way of saving enough memory. What 
is possible for sure is translating a Python algorithm into a Micropython 
one and inserting this into the device: the creation of threads, queues and 
every necessary mechanism to develope the device is possible in 
Micropython. 

About the second question: “How to configure the LoRaWAN network to 
send data to TheThingsNetwork?“ it is possible by following the steps and 
implementing the code showed previously.  

It was a hard work which took months but at the end the results were 
satisfactory.  

The most important conclusion that we get after doing this project is that 
it is not possible to introduce the Windowed Peak Detection Algorithm in a 
LoPy1.0r PyCom device because of the low RAM memory of this (around 
70000 Bytes).  

VI. APPENDIX 

The WPD is composed by the next classes in Micropython: 

 main.py:  

The function put_data_into_a_file() is called, different data is taken from 
the “.json” device for each stage and a Wpd object has been created with 
this values as parameters. 

 boot.py:  

Makes a connection between the device and the router that is configured 
in it. 

 windowedPeakDetection.py:  

The necessary queues and lists are created in the constructor, InputPipe, 
WpdPreProcessor, SmoothingFilter, PeakScorer, PeakDetector, 
WpdPostProcessor and ConnectionToTTN objects have also been created. 
This class contains the function start() which call the function start() of 
every objects created before in the constructor (self.pipe, 
self.smoothingFilter, self. peakScorer, self.peakDetection, 
self.postProcessing and self.connection) 

 workerThread.py:  

This class creates some Boolean attributes in the constructor as self.active, 
self.completed or self.target referred to the thread that is starting every 
time that the function start() created in this class is called. This function 
starts a simple thread. This is the superclass of the classes 
WpdPreProcessor, SmoothingFilter, PeakScorer, WpdPostProcessor and 
WpdPostProcessor. 

 inputPipe.py:  

This class contains the function start() which throw a new thread. This is 
the only stage class that does not call the function start of the superclass 
WorkerThread previously called. The function pipeInput() is implemented. 
This function is executed when the thread is thrown. The function 
cleanup() is implemented. This function is implemented to save memory.  

 preProcessing.py:  

This is a subclass of the class WorkerThread. It contains a constructor and 
the function preProcess() that is executed every time the thread is thrown. 

 smoothingFilter.py:  

This is a subclass of the class WorkerThread. It contains a constructor, the 
function gaussian() which is executed every time the thread is thrown and 
the function gaussianCoefs() which is called in the gaussian() function. 

 peakDetector.py:  

This is a subclass of the class WorkerThread. It contains a constructor and 
the function peakDetect() which is executed every time the thread is 
thrown. 

 peakScorer.py:  

This is a subclass of the class WorkerThread. It contains a constructor and 
the function meanDiff() which is executed every time the thread is thrown. 

 postProcessing.py:  

This is a subclass of the class WorkerThread. It contains the constructor 
and the function postProcessing() which is executed every time the thread 
is thrown. 

 dataStructure.py:  

This class contains a constructor, the function scaleTime(self, startTime, 
factor), computeMagnitude(), getX(), getTime() and getMagnitude(). 

 simpleDataStructure.py:  

This class contains a constructor with the attributes “self.time”, “self.mag” 
and “self.oldMag”. 

 queue.py:  

This class contains a constructor, the function isEmpty(), enqueue(self, 
item), deque() and size(). 

 utils.py:  

This script contains functions like loadAccelCsv(filepath) which takes the 
data from the “.csv” file, the function put_data_into_a_file() which takes 
the data from the accelerometer and write that data in a new “.csv” file, 



and the function linearInterp(dp1,dp2,time) which is called from the pre-
Processing thread. 

 

And the “. json” file: 

 config.json:  

This file contains “inter_ts” = 10 and “ts_factor” = 1000000 for pre-
processing, “window_size” = 3, “type” = “gaussian”, ”std” = 0.3, 
“cutoff_freq” = 3 and “sample_freq” = 100 for filtering, “window_size” = 
13 and “type” = “mean_diff” for scoring, “threshold” = 1.2 for detection 
and “time_threshold” = 200 for post-processing. These data is represented 
in a “.json” file format.  

The file creation is implemented in: 

 utils.py: The content of this script is already explained. 

And the connection with the TheThingsNetwork is implemented in: 

 connectionToTTN.py:  

This class is subclass of the class WorkerThread. This class contains a 
constructor and the function connection() which is executed every time 
the thread is thrown. This function connects the device with the TTN 
platform and send a random value every 2.5 seconds. 

The code of this connection is this: 

 
Figure 11: Screenshot of the code implemented in Micropython for 
the connection between the device and the TTN platform 
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