

Activity Tracking with IoT and accelerometers
Alejandro Iñigo Córdoba / aio600 / March 21th of 2018

Abstract- Increasingly, PyCom technology is used to create a wearable
device which count steps [1] and send them to the The Things Network
(TTN). How to implement a step counter on a PyCom device and how to
configure the LoRaWAN network to send data to the TTN are the major
challenges. The aim of this research is to study the feasibility of a LoraWAN
connected activity tracker/step counter. In this paper, I have developed a
Micropython step counter algorithm that facilitates the programming of
PyCom devices to other users. In addition, in this work I investigate the
communication between PyCom and TTN. Existent Python step counter
code is transformed into a Micropython one and the communication with
the TTN is implemented using Atom. I show that this process is possible,
but it is needed a LoPy PyCom device with a bigger memory.

I. INTRODUCTION

PyCom technology is used to create a wearable device which count steps
and send them to the TTN. The most usable information found to do this is
in the official pyCom device webpage [2]. A LoPy1.0r multipack, which
include a LoPy1.0r, an Expansion Board and a LoRa/Sigfox antenna is used
for this project. Even though, the project is focused on software, not on
hardware (my task was the implementation of the software or a working
system in Micropython language that can track the steps of a person
wearing the device and send those to the TTN).

The major challenges are how to implement a step counter on a pyCom
device and how to configure the LoRaWAN network to send data to the
TTN. The step counter algorithm is complex: it includes mathematical and
physical methods like linear interpolation or programming techniques like
Threads or Queues. Using the code explained in the chapter related work
[3], a Micropython code was created based on it. After this code is created
and is working on the device, the steps which are the output of this
algorithm are sent to the TTN. This sending is also implemented in this
language.

The goals of my research are to study the feasibility of a LoraWAN
connected activity tracker/step counter. To do this is necessary to make a
working system that can track the steps of a person wearing the device. “Is
it possible to generate a step counter algorithm in Micropython and
introduce this into the LoPy pyCom device?”, “Is it possible to connect the
activity tracker/step counter with the TTN and send the steps generated in
the previous question?”. These questions will be explained in detail in the
chapter ii bellow.

In this paper, my contribution to the society with this project is a
Micropython step counter algorithm that facilitates the programming of
pyCom devices to other users, as well as the communication between
them and the TTN. We show the feasibility of the proposed method, the
implementation of PyCom based’ step counter and the sending of the
steps to the TTN. This is an open-source project, therefore can be used by
individuals and/or organization who are interested in developing
pedometer apps.

The process that I followed to conclude with this project starts with (1)
understanding an existent Python step counter code, mentioned previously
and explained in the chapter iv. In the next step, the Python algorithm is

(2) transformed into a MicroPython one explained in the subchapter iii-h
investigating about APIs and related modules between these two
languages. The code generated in Micropython (3) is introduced in a LoPy
PyCom device, more concretely a LoPy1.0r using a program called Atom.
After the code has been generated and the steps calculated, these steps
were sent to the TTN. For this, it was necessary first to (4) investigate
about how to use the platform “The Things Network” [4]. After that it was
important to know more about (5) Micropython code to communicate the
device with this platform and then being able to send these steps to this
TTN.

The structure is composed by eight main chapters: (1) abstract, (2)
introduction, (3) research question, (4) body, (5) related work, (6)
conclusion, (7) appendix and (8) bibliography:

The abstract contains the problem discussed in the paper plus my own
contribution. The (i) introduction tells the complete story: the structure of
this is composed by a context (discussion of the problem area), the
problem identification (the problem that is (partly) solved in this paper),
the objective of the research (the goals), an indication of the solution
(direction) or contribution, what method was used and an explanation of
the structure of the paper. The (ii) research questions chapter explains the
main questions that are answered in this paper and why they were
chosen. (iii) Body contains the content of the project in detail. In this
paper, this is composed by the subsections:

a. The internet of things.
b. Step counter or pedometer.
c. LoRa and LoRaWAN
d. LoPy1.0.
e. Windowed peak detection and its stages.
f. The signal representation: example case.
g. Linear interpolation.
h. From Python to Micropython.
i. Garbage collector.
j. Connection with the TTN.

The (iv) related work chapter contains references to other research
projects that have been useful to the implementation of this one. This can
serve two purposes: summarizing the work of others or positioning my
work in relation to work of others. The (v) conclusion summarizes and
suggests further research, the contribution and findings, an outlook on
future work/remaining problems (this section motivate other researchers
to participate in my area).

II. RESEARCH QUESTIONS

For the execution of this project, two main questions have been answered.
These questions haven’t been suggested by the student, but they were
imposed by the supervisor. These questions are:

A. How to create a step counter on the PyCom
device?

This is the first question imposed. To do this, it is not necessary to be
focused on the hardware, but it is to be focused on the algorithm of a step
counter. Being sure that every stage of the Windowed Peak Detection
(WPD) is clear is the first step. For this task it is used the report “Step
Counter Algorithm for smartphones organization” referenced in the
chapter i. From this report an algorithm in Python is taken and then it is
possible to start working. This is explained in more detail in the chapter iv.
The output of this program is the number of steps that the user who is
wearing the device walks. Once the algorithm is clear, the main task is to
transform the Pycom code into a Micropython one and then to introduce
this in the PyCom device (precisely the LoPy1.0r) using the program Atom
and a LoPy1.0r multipack with several changes and contributions.

B. How to configure the LoRaWAN network to send
step data to the TTN?

This is the second question imposed. To answer this question, it is
important to know well the platform TheThingsNetwork referenced
previously. This platform is used for building networks for the Internet of
Things by using LoRaWAN technology, which doesn’t use 3G or WiFi, uses
low battery, long range and low bandwidth. After this is known it is
necessary to create an account, to create an application and a device in
this platform. Once it is created some code must be implemented in Atom
to connect the device LoPy1.0r with this platform. This code is added to
the previously created code (first question) and the output of the first
question (number of steps) is sent to the Internet of Things (TTN). This
process is explained in more detail in the chapter iii-j.

III. BODY

Before starting with the explanation of what has been done during the
implementation of this project, it is important to understand general
concepts like the Internet of Things (IoT), the LoRa technology, LoRaWAN
protocol and what is a step counter or pedometer. The first thing that is
going to be shown in this paper is what do these concepts mean and what
is the relation between them.

A. The internet of things

Internet of Things (IoT) is a concept that is referred to the digital
connection of daily objects using the Internet. This idea was proposed by
Kevin Ashton in the MIT Autor-ID Center in 1999, where research in the
Radio Frequency Identification (RFID) field and sensors technologies were
carried out. The Gartner company predict that for 2020 will be
approximately 26 thousand millions of wireless devices connected by The
Internet and Abi Research 30 thousand million. In the future the IPV6(next
generation of applications in the Internet) will allow us to identify all those
devices. These are connected to the network by using low power radio
signals (more active research field of the IoT) and they don’t need WiFi or
Bluetooth. The Alcatel-Lucent service touchatag and the Violeta Mirror
gadget offer a pragmatic orientation to the IoT consumers, where
everyone can link real world elements with the online world using tags like
RDIF or QR codes. As the IoT research is in a very early development, there
is not a standard definition of this term.

In this project a PyCom device is being used as an IoT device (more details
about the device are in chapter iii-d). This device takes acceleration data
by using sensors. The Windowed Peak Detection (WPD) algorithm
(explained in the chapter iii-e) is implemented in this device (explained in
the chapter iii-h) to obtain the steps from the acceleration data. After the
steps are calculated, this information is sent to the TTN (explained in the
chapter iii-j).

B. Step counter or pedometer

Before starting with the previously mentioned explanations, it is important
to know more about what a step counter is.

1 Description and usage

A pedometer is an electronic device that counts the steps that a person
walks by the use of sensors, and thus it records the kilometers or miles
(distance = number of steps x step length). These devices are very
common in sport players. These devices are not only used to count steps,

it is also useful for motivating fitness enthusiasts. Step counters can cheer
up to complete with oneself in getting fit and losing weight. Nowadays, the
software that these pedometers use determines automatically the
variation of the person’s steps (the distance traveled can be measured
directly by a GPS receiver). Step counters are being integrated into an
increasing number of portable consumer electronic devices such as music
players or smartphones. Various websites exist to allow people to track
their progress. Pedometers have been shown in clinical studies to increase
physical activity and reduce blood pressure levels and Body Mass Index [5].
One criticism of the pedometer is that it does not record intensity, but this
can be done by making step goals time limited (for example, 1000 steps in
10 minutes counts as moderate exercise).

2 Technology

The step counter includes a mechanical sensor and a software to count
steps. Nowadays pedometers rely on MEMS (Microelectromechanical
Systems), inertial sensors and sophisticated software to detect steps. The
sensors are very simple. The power consumption is low and the
temperature is stable. To compensate for angular shock and vibration in
the disk it is used these MEMS angular acceleration. These sensors have
either 1, 2 or 3-axis detection of acceleration. The 2-axis accelerometers
measure the dynamic acceleration or vibration and the static acceleration
or gravity. The output of these step counters are signals which can be
analog or digital. These are cycle modulated signals. The use of these
inertial sensors permits more accurate detection of steps and fewer false
positives. Pedometers have to be accurate. The software technology used
to interpret the output of the inertial sensor and "make sense of accurate
steps" varies widely.

C. LoRa and loRaWAN

As well as it is important to know about what a step counter or pedometer
is, it is also important to know about what is loRa and loRaWAN. These will
be use later to connect our device with the TTN.

1. LoRa and IoT

The construction of IoT networks are a common practice to send
information to the TTN. LoRa is one of the most used long range, low
power wireless platform to this commitment. The IoT, as we explained
previously in the chapter iii-a, is improving the interaction between people
and making many other improvements in society like climate change
aspects, pollution or warning of natural disasters. IoT is also helping
business in their operations and reduction of costs. Wireless radio
frequency (RF) is needed to this communication, that’s why it is more
often being integrated into vehicles, public lights, manufacturing
equipment, etc.

2. LoRa technology

This is a more specific description of the used technology for data
transmission with the TTN. This technology offers long range, security and
makes the consumption of power low. Existing cellular networks provide a
lower range in coverage than the networks which use this technology. This
technology is more and more being introduced in chipsets by companies
like Semtech [6] and these chipsets are then integrated into their products
and into wireless telecommunication wide area networks (long range
communications), Low-Power and Wide-Area Networks (LPWAN).

3. LoRaWAN protocol

This protocol is used together with LoRa technology. The developers of
this protocol are LoRa Alliance [7]. This protocol enables low power, and
wide area communications. This is why it is used unlicensed radio
spectrum in the Industrial Scientific and Medical (ISM) bands. This protocol
or standard allows for a quick, bidirectional and secure setup of networks.
This also provides accurate location.

4. Key features of LoRa and LoRaWAN

LoRa and LoRaWAN are characterized for using geolocation and the cost of
these is low because it reduces costs in different ways. The fact that these
are standardized improve interoperability. The needed power is not high
(battery lifetime up to twenty years), the range is long, it allows

penetration in dense urban and indoor regions and it also connects in rural
areas up to thirty miles away. About the security, it uses end-to-end
encryption and about the capacity, it supports millions of messages.

D. LoPy1.0

After these concepts are clear in a theoretical way, these have been
brought to practice. The first thing that we must know about, is the device
that has been used for this project. This is a PyCom device, more
specifically a LoPy1.0r multipack, which include a LoPy1.0r an Expansion
Board and the LoRa/Sigfox antenna. A battery is used to provide power to
the device. We are going to be focused on the LoPy1.0.

Figure 1: LoPy1.0r PyCom Device

The previous image shows the main characteristics of the LoPy1.0. The size
is 55x20x3.5 mm, and the operating temperature is -40 to 85 degrees
Celsius.

This device is the only triple bearer MicroPython enabled micro controller
with LoRa, Wifi and BLE in the market today. This is the perfect enterprise
grade IoT platform for connected Things. LoPy 1.0 offers a combination of
power, friendliness and flexibility (creates and connect things
everywhere).

About its features, it has a powerfull CPU, BLE and state of the art WiFi
radio and a 1km Wifi Range. This devicecan also double up as a Nano LoRa
gateway, it is MicroPython enabled, fits in standard breadboard (with
headers), has ultra-low power usage (a fraction compared to other
connected microcontrollers) and it is available with or without pin headers
soldered on.

About the specifications:

(1) The LoPy1.0 device has a CPU which is a Xtensa dual-core 32-bit LX6
microprocessor, up to 600 DMIPS, it has a hardware floating point
acceleration, Python multi-threading, and an extra ULP-coprocessor that
can monitor GPIOs, the ADC channels and control most of the internal
peripherals during deep-sleep mode while only consuming 25uA. (2) Its
memory is composed by a RAM of size 512 KB and an external flash of size
4MB. (3) The WiFi that this device use is the 802.11 b/g/n 16mbps one.
About its Bluetooth, (4) is low energy and classic, (5) the LoRa uses
LoRaWAN 1.0.2 stack – Class A and C device, a node ranges up to 40km, a
nano-gateway up to 22km (capacity up to 100 nodes), an RTC running at
150 kHz a security SSL/TLS support. Finally, (6) the device security uses
SSL/TLS support and WPA Enterprise security, and a SHA, DM5, DES, and
AES Hash/encryption.

The datasheet [8] contains the detailed device information.

E. Windowed Peak Detection

Once we know what device we are using to implement the algorithm in it,
we need to know what is the code that we are going to put in it. The
algorithm used is called Windowed Peak Detection.

Windowed Peak Detection is an algorithm used to obtain the number of
steps that the user who is wearing a device with the accelerometer
embedded walks. This algorithm uses as input a set of timestamps (the
microseconds since boot), acceleration "x-axis" values, acceleration "y-
axis" values and the acceleration "z-axis" values. These values were
previously obtained by acceleration sensors which are part of a device
(details of this device explained previously). After the data is obtained by
the device, this is treated by different stages before the number of steps is

calculated. These algorithm or stages have been implemented in
Micropython and then uploaded to the device using Atom (this process is
explained in the chapter iii-h). The original code has been taken from the
Step Counter Algorithm for smartphones organization, which contains all
the repositories associated with the step-counter project from the
Institute of Biomedical Engineering of the University of Oxford previously
referenced.

The Windowed Peak Detection algorithm is divided in five different stages:
pipe-input stage, pre-processing stage, smoothing filter or filtering stage,
peak scorer or scoring stage, peak detection or detection stage and post-
processing stage. The program has a main process and from this, six
threads have been thrown (one per stage). Every thread except pipe-input
(the first one) have common functions like the one that throw the threads
(start), contained in a superclass named WorkerThread. These threads are
connected by pipes or queues, so that the output of one stage can be used
as the input of the next stage. The output values of one stage are stored
into a queue and then the next stage takes these values from that queue.
Below are explained the different stages and how they work.

1. Pipe-input stage

The functionality of this stage is simple. It just takes the data obtained
from the device sensors and put these data into the transaction pipe
(queue). This data is represented as a “data structure” which is composed
by the timestamp, the x-coordinate of acceleration, the y-coordinate of
acceleration, the z-coordinate of acceleration and the magnitude of these
coordinates (this magnitude will be computed in the pre-processing stage).

2. Pre-processing stage

This stage consists in a loop that is working while the thread is active, and
the input queue is not empty. The pre-processing stage (1) takes one value
from the input queue. This value is represented as a “data structure” as it
was explained previously. After this data is taken, (2) if this is the last value
of the queue (string ‘end’), this is appended directly in the output queue
without being treated. If the data taken is not the last one, (3) the time is
scaled, this function is implemented in the Data Structure class and the
mathematical function is this:

self.time = (self.time - startTime) / factor

In this function “startTime” is the time that the data trace started and
“factor” is the scaling factor for converting units (this value is
10^6=1000000 to from ns to ms). This value obtained is stored as the
“self.time” of the Data Structure object. Next step after scaling the time is
(3a) computing magnitude. This function consists in:

self.mag = math.sqrt(math.pow(self.x, 2) + math.pow(self.y, 2) +
math.pow(self.z, 2))

Where “self.x”, “self.y” and “self.z” are the x, y and z coordinates of the
Data Structure. (3b) The Data Structure is then stored in the queue
“self.window” and in the list “self.dataList”. If the “self.window” queue has
at least two values, (3c) the timestamps of those two values are treated
using the mathematical method called linear interpolation (this method is
explained more in detail in the chapter iii-g). After this, it is checked how
many interpolation points could lie in between both. The code used for
doing this is:

for i in range (math.ceil((time2 - time1) / self.interp_ts)):

 interp_time = self.interpolation_count * self.interp_ts

 # If the interpolated time lies in this range, create the new data

point and add it

 if time1 <= interp_time < time2:

 sds = utils.linearInterp(self.window[0], self.window[1],

interp_time)

 self.dataQueue.enqueue(sds)

 self.interpolation_count += 1

Where ‘’inter_ts’’ is defined as 10 and represent the interpolation time
scale in ms. “Interpolation_count” is initialized as 0 in the constructor of
the class and it is adding 1 at each iteration. The values “time1” and
“time2” are the first and the second values in the “self.window” queue.
The linear interpolation function returns a Simple Data Structure where
time is the “interp_time” and the new magnitude is calculated as:

new_mag = slope* (time – time1) + value1

In this function “time” is the interpolation time (interp_time), “time1” is
the time of the first data structure, “value1” is the magnitude of the first
data structure and “slope” is:

slope = (value2 – value1) / (time2 – time1)

To conclude, (3d) as we can see in the previous code, these interpolation
points are stored in the output queue as Simple Data Structures.

3. Filtering stage

Different filters can be applied for this stage: the Hann Filter, the Gaussian
Filter, the Kaiser Bessel Filter or the Centered Moving Average Filter. When
this program is executed, the filter is specified previously. All of them are
implemented but only one can be executed at a time. The one that we are
going to execute first is the Gaussian Filter.

Before starting treating any data, the Gaussian window coefficients are
generated, this is a list that contain values which are the result of a
mathematical expression. This is:

value = math.exp(-0.5 * math.pow((n – (windowSize - 1) / 2) / (std *
windowSize - 1) / 2), 2))

where “windowSize” is the size of the Gaussian Window, in our case we
use 13 and “std” is the adjusted standard deviation, we are using 0.35.

Once it is done, while the thread is active, the filtering stage (1) takes data
from the queue or pipe where the previous stage stored its output and
while there are data in the queue. These data are the interpolation points
which are represented as a simple data structure (that is composed by the
timestamp, the magnitude of the signal and the old magnitude as class
attributes), (2) If the last value of the pipe is being taken (the string
‘’end”), then this value is not treated, and it is directly added to the output
queue and the thread is done (completed and not active). (3) If the data
taken from the input queue is a regular simple data structure, this is
stored in a list called “data” and in a queue called “window”. (3a) If the
size of ‘’window’’ is equals to ‘’windowSize’’ (13 as we saw before), then
the smoothing action is done and then pop operation is performed. The
smoothing action consist in the next code:

ssum = 0
for i in range(len(self.window)):
 ssum += self.window[i].mag * self.gauss_window[i]

The ‘’gauss_window’’ is the list that contain the values ‘’values’’ that we
also saw before and “self.window[i].mag” is the magnitude of the position
“i” of the queue “self.window”.

To conclude with this stage, (3b) the data that is going to be appended as a
simple data structure in the output queue is the average of all points in the
window.

4. Scoring stage

As well as for the previous stage (filtering stage), different functions have
been implemented but only one is executed each time. These functions
are: Pass-through scoring, Maximum Difference scoring, Mean Difference
scoring and Pan-Tompkins scoring. When the code is executed the scoring
function is specified previously, and the one that we are focusing on is
Mean Difference scoring.

This scoring function is a loop that is iterating while the thread is active
and there is data in the input queue. The first step in this stage is (1) taking
the first value of the input queue which was previously appended in the

Filtering Stage as a Simple Data Structure. (2) If the value taken is the last
one (the string “end”), this is directly appended in the output value and
thread is over (completed and not active). If the data taken is not the last
one, (3) this Simple Data Structure is appended in a list called “self.data”
and ‘’self.window’’ as well as in the previous stage. If the size of the
“self.window” queue is equals to the window size (it was previously
declared as 35), (3a) the mean of the window is calculated using the code:

ssum = 0
for i in range(0, self.windowSize):

ssum += self.window[i].mag
mean = ssum / self.windowSize

In this code “self.windowSize” is 35 as we said before, and the
“self.window[i].mag” is the magnitude of the Simple Data Structure of the
position “i” in the queue “self.window”.

After this, (3b) the new magnitude is calculated with the code:

 new_mag = 0 if self.window[midPoint].mag–mean < 0 else
self.window[midPoint].mag - mean
 # Square it
 new_mag *= new_mag

In this code “midPoint” is the “windowSize” divided by 2 (this is int
(17,5)=17) and “mean” was calculated previously. The new magnitude is 0
if the difference between the magnitude of the 17th point and the
previously calculated mean is less than 0 and if this is not, then the new
magnitude is that difference. After that is squared.

To conclude, (3c) the new data appended to the output queue is a Simple
Data Structure with the time of the 17th value of “self.window”, the new
magnitude calculated previously and the old magnitude.

5. Detection stage

This stage consists in a loop that is iterating while the thread is running,
and while the input queue has values in it. The first step that this stage
does is (1) taking the first value of the queue. This value had been added
to the output queue of the last stage as a Simple Data Structure. If this
value is the last one of the queue (the string “end”) (2) then this is directly
appended into the output queue and the thread is over (completed and
not active). If this value is not the last one, (3) this is appended to a list
called “self.data”. This stage consists in using a simple mean and standard
deviation method to find significant values of peak scores from the values
obtained in the previous stage. That is why the algorithm does the next:
Before explaining the update statistics method is important to say that
“self.n”, “self.mean” and “self.std” were previously initialized to 0 in the
constructor before throwing the thread and this values are the internal
statistics. One is summed to “self.n”, if “self.n” is now 1, (3a) “self.mean”
is now the magnitude of the Simple Data Structure taken from the input
queue and “self.std” is still 0. If “self.n” is now 2, “self.mean” is now the
average between the magnitude of the Simple Data Structure taken and
the actual “self.mean” and “self.std” is:

self.std = math.sqrt((math.pow(dp.mag - self.mean, 2) +
math.pow(o_mean - self.mean, 2)) / 2)

Where “dp.mag” is the magnitude of the Simple Data Structure taken,
“self.mean” is the one obtained in the last step and “o_mean” is the
“self.mean” before the last step.

If “self.n” is not 1 or 2, then (3b) the mean iteratively is updated like this:

self.mean = (dp.mag + (self.n - 1) * self.mean) / self.n

And the standard deviation like this:

 std = math.sqrt(((self.n - 2) * math.pow(self.std, 2) / (self.n - 1))
+ math.pow(o_mean - self.mean,2) + math.pow(dp.mag - self.mean, 2) /
self.n)

What each value means was already explained previously.

The last step in this stage is (3c) If “self.n” is bigger than 15, to check if we
are above the threshold. This threshold has been defined as “1.2”. If the
difference between the magnitude of the Simple Data Structure obtained
from the input queue and the actual value “self.mean” is bigger than the
product between “self.std” and “1.2” (threshold), then a Simple Data
Structure with the time of the Simple Data Structure obtained from the
input queue and also its old magnitude is appended to the output queue
and also to the list “self.dataout”.

6. Post-processing stage

This is the last stage of the Windowed Peak Detection. This consist in a
loop that is running while the thread is active, and the input queue has
values in it. If these two conditions are satisfied, then (1) the first value of
the input pipe is taken (this is a Simple Data Structure). (2) If this first
structure is the last one from the queue (the string ‘’end’’), then the last
value from the internal queue “self.queue” is taken, and this is appended
into the output list. Also, the thread is done (completed and not active). If
the Simple Data Structure taken from the input queue is not the last one,
then (3) if the internal queue “self.queue” size is less than 2, then the SDS
is appended. If not (3a), if the time difference (this is the difference
between the time of the SDS taken from the input queue and the time of
the SDS that is in the first position of the internal queue) is bigger than the
threshold (this value has been defined previously as 200), then the old
point is popped from the internal queue (“self.queue”), this is appended to
the output queue and the new point (SDS from input queue) is appended
to the internal queue “self.queue”. In the case that this difference of time
is not bigger than the threshold, (3b) if the magnitude of the SDS taken is
bigger or equals than the first value magnitude of the internal queue
“self.queue”, then the actual value in this queue is popped and the new
SDS from the input pipe is appended (it is only kept the maximum value
point).

F. The signal representation: example case

The algorithm is already explained, now it is shown a signal representation
of the data at the output of every stage for a specific example:

In this example, the next values are used:

For (1) pre-processing stage, it is used as interpolation time scale in
milliseconds (“inter_ts”) and time scale factor (“ts_factor”) 100 and
1000000 respectively. For (2) filtering stage, it is executed the “Smoothing
filter” and it is used as size of the filter window (“windowSize”) and as
standard deviation (“std”) 51 and 0.35 respectively. For (3) scoring stage, it
is executed the “Mean difference scoring” and it is used as scoring size of
the window (“windowSize”) 10. For (4) detection stage, it is used as the
standard deviation threshold to call a peak a peak (“threshold”) 1.2. And
finally, for (5) post-processing stage, it is used as time threshold for
eliminating peaks (“time_threshold”) 200 milliseconds.

The next images have been obtained from the report “An optimized
algorithm for accurate steps counting from smart-phone accelerometry”
previously referenced and are represented each stage values for this
example.

1. Pipe-input stage

This signal represents in the x-axis the samples from 0 to 1500 and in the
y-axis the difference in time between those in milliseconds. In this image
can be seen that this difference is always around 10 milliseconds but there
are clear desviations.

Figure 2: Pipe-input data representation.

2. Pre-processing stage

This signal represents the pre-processed data. In the x-axis it is
represented the time in milliseconds from 0 to 12000 and in the y-axis it is
represented the magnitude in m/s^2. At each time, the magnitude of the
signal is different. This magnitude is the acceleration magnitude. As we
can see, the magnitude starts in 10 m/s^2 and change with the time. The
mean magnitude for the all signal is 10.

Figure 3: Pre-Processing data representation. Example with

inter_ts = 100 and ts_factor = 1000000

3. Filtering stage

After applying the pre-processing process to the values, these values are
filtered, and the result of this filtering is this signal. In this signal is
represented as well as in the previous one the time in milliseconds in the
x-axis and the magnitude in m/s^2 in the y-axis. As we can see, as well as
the previous stage, the magnitude starts in 10 m/s^2 at 0 milliseconds and
change with the time. The mean magnitude for the all signal is also 10.

Figure 4: Smoothing filter data representation. Example with

window_size = 51, type = gaussian and std = 0.35

4. Scoring stage

Once the pre-process stage and the smoothing filter is passed to the data,
the scoring stage happens. After this, the representation of the outputs is
this signal. In it, the peak score data is represented. In the x-axis it is
represented the time in milliseconds from 0 to 10000 and in the y-axis it is
represented the peak score from -1.0 to 0.8.

Figure 5: Mean-difference scoring data representation. Example

with window_size = 10 and type = mean_diff

5. Detection stage

Once the previous stages are done, the detection stage happens. In the
next figure is represented the result signal of this stage. In it, the peak data
is shown. In the x-axis is represented the time in milliseconds from 0 to
12000 and in the y-axis is represented the magnitude in m/s^2 from 7 to
14. As we can see the magnitude starts in 10 for 0 milliseconds and change
with the time. The mean magnitude of the all signal is also 10.

Figure 6: Detection data representation. Example with threshold =

1.2

6. Post-processing stage

This is the last stage. After all stages are done, the confirmed peak data is
obtained. This next figure represents these data. In the x-axis is
represented the time in milliseconds from 0 to 12000 and in the y-axis is
represented the magnitude in m/s^2 from 7 to 14. As we can see, the
magnitude for 0 milliseconds is 10 and it change with the time. The mean
magnitude of the all signal is also 10.

Figure 7: Post-Processing data representation. Example with

time_threshold = 200

The images have been obtained from the report “An optimized algorithm
for accurate steps counting from smart-phone accelerometry” previously
referenced.

G. Linear Interpolation

As we could see previously, linear interpolation has been used for the
implementation of this algorithm. A more detailed explanation of this
mathematical method is here.

The linear interpolation is a particular case of the general interpolation of
Newton. With the Newton interpolation polynomial, it is possible to
approximate a value from the function f(x) to an unknown “x” value. For
the particular case in which an interpolation is linear (interpolation
polynomial of grade one), which adjust itself to the values in the points x1
and x2 is expressed like this:

1. L.I. for an independent variable

In a table are represented some values from the function, but not all.
Sometimes, we are interested in the value of the function for a value of
the independent variable different than those which are in the table. In
that case we can take the closest value to the searched one or get closer
by using interpolation. The interpolation will give us a small error respect
to the value of the real function, but it is always better than taking the
closest one from those which are in the table. Let see how to calculate the
value of the function for a value of the independent variable which is
between two values of the table for linear interpolation.

Because of the table we know:

And:

Now we want to know:

Being:

The linear interpolation consists in drawing a straight line which cross the
points (x1, y1) and (x2, y2), y = r(x) and calculate then the intermediate
values taking in account this straight line instead of the function y = f(x).
The next image was taken from “La Guia” webpage [9]

Figure 8: Linear interpolation representation

For this operation and seeing the picture, we are going to rely on the
similarity of triangles and .

This is:

From this we obtain:

Or what is the same:

The value that we are looking for is:

This is:

H. From Python to Micropython

Once we understand the Windowed Peak Detection algorithm, we
proceed to explain how the process of translating from the Python code
given by the University of Oxford (the Step Counter Algorithm for
smartphones organization) was, previously referenced to the Micropython
code, which is the only language compatible with the LoPy1.0r pyCom
device.

To start with this chapter, it is important to say that Python and
Micropython are very similar languages with some important differences
that I will explain in this section. It is also important to say that for this
work, the official pyCom webpage previously referenced has been
essential.

Four main steps have been followed to do this transaction:

1. Familiarizing with the Atom program

This program can be downloaded from the official Atom webpage [10].
After having the program, it is necessary to install the Pymakr Plugin. The
steps needed to install this are explained in the chapter 3.3.1 of the Pycom
documentation [11].

Once the Atom program is installed with the required Pymakr Plugin,
either connecting through USB serial using a comport or an IP address for
a telnet connection, the LoPy1.0r multipack can be connected to the
computer. In this case it was used the comport COM3. Now the translation
process can start.

2. Obtaining values from the accelerometer

The first task that had to be done with the device is to obtain the
accelerometer x-axis values, accelerometer y-axis values and
accelerometer z-axis values from the device sensors and the timestamp in
microseconds since boot for each of these set of values. To do this, libraries
like “LIS2HH12.py”, “pytrack.py” and “pycoproc.py” were necessary. These
libraries have been obtained after following the steps mentioned in the
chapter 4.2.3 of the pyCom documentation previously referenced of the
official pyCom webpage (also referenced previously). The webpage where
all the pyCom libraries are is the GitHub repository: “MicroPython libraries
and examples that work out of the box on Pycom’s IoT modules” [12].

The next program was implemented in MicroPython. This takes the values
(timestamp, acc. x-axis, acc. y-axis and acc. z-axis) from the accelerometer
and write those values in a “.csv” file called “output.csv”. The code
function implemented to do this is:

import utime
import time from LIS2HH12 import LIS2HH12
from pytrack import Pytrack
def put_data_into_a_file():

py = Pytrack()
acc = LIS2HH12()
cont = 0
while cont<10:

dt=utime.ticks_us()
cont+=1
x,y,z = acc.acceleration()
output = '{},{},{},{}'.format(dt,x,y,z)
print(output)
f=open('output.csv','a')
f.write(output)
f.write("\n")
f.close()
time.sleep_ms(100)

In this function we can see: how a pytrack (“py=Pytrack()”) and a LIS2HH12
(“acc=LIS2HH12()”) objects have been created. A while loop is iterating 10
times (“while cont < 0”) in each of these iterations, the time is taken
(“utime.ticks_us()”) in microseconds since the boot and the x-axis, y-axis
and z-axis values are taken from the accelerometer (“x,y,z =

acc.acceleration”). To conclude, the obtained values (timestamp,
accelerometer x, y and z values) are printed into a file which is created the
first iteration and open the next 9 (“f=open(´output.csv´,’a’)”,
“f.write(output)”, f.write(“/n”)” and “f.close()”). To conclude, every
iteration happens after waiting 100 miliseconds (“time.sleep_ms(100)”).

3. Making sure that the file is correctly created

The created file is now stored in a small internal file system accessible
from each PyCom Device which is called “/flash”. When the device starts
up it always boot from the “boot.py” located in the “/flash” file system.
The file system is accessible via the native FTP server running on each
Pycom device. The file “boot.py” of this project has been modified, so that
the device is being connected to a specific router (for example a personal
home WiFi router). Now that this connection is done, and the file has been
created, we can access to this server and this file by opening an FTP client.
In this case, FileZilla client was used. It was installed, open and the
connection was done following the steps in chapter 1.3.5 of the pyCom
documentation already referenced. Once the connection is done it is
possible to obtain the file from the server and put it in your computer.
When the file is in your computer, it can be open with a program that
support “.csv” files like for example Microsoft Excel.

After doing all this process and opening the file, the content of this has this
appearance:

Figure 9: Screenshot of the "output.csv" file example case. The first

value is the timestamp in microseconds, the second value is the
accelerometer x-axis value, the third one is the accelerometer y-

axis value and the forth one is the accelerometer z-axis value

In this file each raw represents one different sample.

4. Linking the file creation with the WPD

After this file is created, the algorithm explained previously in the chapter
iii-e needs to be executed taking this as the input. To do this, it is
necessary to translate first the WPD code that we originally had in Python
to Micropython and then link it with the file creation code.

This process is not very complex. As well as the modules “LIS2HH12.py”,
“pytrack.py” and “pycoproc.py” previously imported, the module
“deque.py” has to be imported too. These “.py” files are pasted in the
folder “/lib” in the Micropython project. The file “deque.py” is imported
because it is included in Python, but not in Micropython. This module was
obtained from the GitHub “Core Python libraries ported to Micropython”
repository [13].

The hardest part of this process of translating the WPD from Python to
Micropython is the creation of threads. In Python the threads were
created like this:

from threading import Thread
self.thread = Thread(target=self.target, args=self.args)

While in Micropython they are created like this:

import _thread
_thread.start_new_thread(self.target,self.args)

It is important to say that, as the implementation of these threads is
different, we don’t have “self.thread” variable anymore and because of

that other parts of the code are affected like for example the function
“isRunning(self)” that determines if a thread is still working or if it is not.

Libraries like “utime”, “ujson”, “_thread” or “uos” are used and functions
like “utime.ticks_us()”, “ujson.load(file)”, “_thread.start_new_thread
(self.target, self.args)” or “uos.random(3)” are executed. These are
Micropython modules and can be found in chapter 6.3 of the pyCom
Documentation previously referenced.

5. Biggest problem with this transaction

The most important problem that I have faced with this translation process
(from Python to Micropython) was the low memory oet_thresf the device
RAM memory. This memory is 67008 Bytes. This value was obtained by
executing the command “machine.mem_info()” in the Atom command
prompt. This value is too low to keep all the created program (file_creation
+ WPD). Therefore, it was spent a lot of time searching a way of saving as
much memory as possible and doing the code more efficient.

The main option that was found is the use of garbage collectors. These
have been introduced in the code for a better efficiency of this. Its
functioning is explained in the next section.

I. Garbage collector

The garbage collector is an implicit memory management programming
mechanism which is implemented in some languages like Python or
MicroPython in this case, but also in many others. This mechanism has
been used to manage the memory of the device and so that, being able to
introduce all the Python code into the LoPy1.0r pyCom device.

This program as well as any other, use a certain amount of memory. The
programmer can use some libraries that manage the memory by reserving
memory spaces to be used later, freeing memory spaces reserved
previously, compacting free memory spaces and consecutive, counting
what spaces are free and which are not, etc. This is good because the use
of memory is efficient, but this can bring you to commit mistakes.
Therefore, the garbage collector (implicit memory management) exists.

When this garbage collector is used, it is not needed to invoke routines to
break free memory. This memory reservation is automatic. In Python, the
memory is reserved each time an object is created by the programmer,
but the programmer doesn’t know how much memory is reserved.

 The garbage collector is informed of every reserves that are produced by
the program and the compiler collaborates for being possible to count all
the existent references in a concrete reserved memory space.

When the garbage collector is invoked, it searches in the list the reserved
spaces looking at the reference counter in each space. If the counter is
zero, it means that the space of memory is not used anymore and can be
broken free.

The garbage collector is effective and is usually used when there is no
more free memory in the device.

The next functions are generated by the garbage collector:

enable(): activates the automatic garbage collector.

disable(): deactivates the automatic garbage collector.

isenabled(): returns true if the automatic garbage collector is activated.

collect(): starts a full collection. Every generations are checked, and it
returns the number of inaccessible objects that are found.

set_debug(flags): it stablishes the garbage collector debugging indicators.
The debugging information is shown in sys.stderr.

Later are enumerated the debugging options that could be mixed by bit
operations to control the debug.

get_debug(): it returns the debugging active options in the present.

set_threshold(threshold0[, threshold1[, threshold2]]): it stablishes the
garbage collectors umbral (collection frequency). If the threshold0 is
stablished like 0, the collection is deactivated.

The collector classifies the objects in three generations, depending on how
much collections have survived. The new objects are situated in the
youngest generation (0 generation). If one object survives a collection, it is
translated to the next generation (older). As the generation 2 is the oldest
generation, the objects stay in it after the collection.

To decide when it must be executed, one collector has the reserved spaces
count and frees objects since the last collection. When the number of
reservations minus the number of frees exceeds threshold0, the collection
starts. Initially, only the 0 generation is checked. If the 0 generation was
checked more than threshold1 times since the generation 1 is tested, then
it is also tested the 0 generation. Analogically, threshold2 controls the
number of collections of the generation 1 that must be done before
collecting the generation 2.

get_threshold(): it returns the actual collection limits in the form
(threshold0, threshold1, threshold2)

The variable garbage returns a list of inaccessible objects found by the
collector, but that it was not able to collect.

J. Connection with the TTN

Once the Windowed Peak Detection algorithm is introduced in the device
LoPy1.0r, the program created in Micropython takes the timestamps in
microseconds, the acceleration x-axis, the acceleration y-axis and the
acceleration z-axis from the accelerometer embedded in this device
iteratively and return as output of the program the number of steps
walked by the person who is wearing this.

As an Internet of Things project, this is not enough. The data obtained
from the algorithm (steps) needs to be shared with every user who is
interested in taking this. Therefore, the second task to do is sending this
data to the TheThingsNetwork (TTN).

To send data to the TTN, the first task to do is reading as much as possible
about this communication. It is already explained in the chapter iii-c the
theory of LoRa technology and LoRaWAN protocol. Now it is going to be
explained how to connect the LoPy1.0r device with the TTN in practice.

The platform that is going to be used is: “The Things Network: building a
global internet of things network together” which is previously referenced.
In the also referenced pyCom documentation in the chapter 1.4.3.2 is
explained the first steps that should be done. These are:

1. Navigate to their website and create an account

The website is: https://www.thethingsnetwork.org

2. Create an application

In order to register the device to send data with the things network, an
application must be created first. To do this, it is necessary to enter an
application ID as well as a Description & Handler Registration.

3. Register a device

This is needed to connect nodes to a things network gateway. Forms like
the Device ID and the Device EUI must be completed. The code used to
obtain the Device EUI is:

from network import LoRa
Import binascii
lora = loRa()
print(“DevEUI: %s” %
(binascii.hexlify(lora.mac()).decode(‘ascii’)))

After writing this code in the prompt of the Atom program with the device
connected you obtain the Device EUI and this could now be added. The
activation method can be also changed between OTAA and ABP. In this
project OTAA is used (Over-the-Air Activation) because is the preferred
and most secure way to connect with TTN. Devices perform a join-

procedure with the network, during which a dynamic DevAddr is assigned
and security keys are negotiated with the device.

Once we have created an account, an application and registered a device,
the next step is the implementation of the code which will connect the
device with the application created.
A new thread has been created in the algorithm after every stages have
concluded. In this new thread, in the implemented code the module
“LoRa” has been imported from “network” and the object “lora” has been
created:

lora = LoRa(mode=LoRa.LORAWAN)

The same application EUI and key written in the webpage when this was
created is now inserted in two different variables in the code using the
function:

binascii.unhexlify(‘hexadecimal_string’)

Being “hexadecimal_string” the EUI or the key in hexadecimal.
The next step is joining the application by using the code line:

lora.join(activation=LoRa.OTAA, auth=(app_eui, app_key), timeout=0)

While the “lora” object is not joining the application, the message “Not yet
joined…” is shown in the screen. The module “socket” is imported and this
is used to create a socket object:

s=socket.socket(socket.AF_LORA,socket.SOCK_RAW)

The socket options are added:

s.setsockopt(socket.SOL_LORA,socket.SO_DR, 5)

And the socket blocking is defined as False:

s.setblocking(False)

To conclude, once the device is joining the application and the socket is
created, a while loop is running non-stop sending the number of steps that
are being counted. If the application returns any data, it is also shown in
the command prompt as an output. Every iteration occurs every 2.5
seconds.
Before sending the number of steps it was proved with random values
with the function:

rand = uos.urandom(3)

To see if the connection is happening, in the section “Application Data” the
sent data should appear every certain time. Once it occurs, the connection
is created, and the data is sent.
The next image is a screenshot of the message “200” been received to the
platform every 2.5 seconds from the device:

Figure 10: Screenshot of the data sent from the device to the
TheThingsNetwork platform

In the section “Payload” of this image is the data sent from the device to
the TTN platform where “32 30 30” represent the string “200” in ASCII
code and hexadecimal.

IV. RELATED WORK

The key words: IoT, step counter, pedometer, accelerometer, LoRa
technology and LoRaWAN protocol have been used for the literature
study.

This search has been done in the sources: Google Scholar, ACM Digital
Library and IEEE Xplore.

Many researches have been found but not all have been useful for this
project. Researches related with smartphone step counters using
magnetometers, remote debugging for LoRa, accelerometers for medicine
(blood preasure, patients with decerebral disorders, …) or LoRaWAN
attack prevention have been found but have not been used for this
project.

Other researches related with security connections using LoRaWAN, step
counters in Java, pan-tompkins algorithm, smartwatch step counter or
Low-Power and Wide-Area Networks (LPWAN) have also been found and
because of the relation with our project, these have been useful.

The research that have been the most used for the implementation of this
project has been the already referenced “Step Counter Algorithm for
smartphones organization” by the University of Oxford, which have help us
understanding the Windowed Peak Detection algorithm process and has
provided us with a Python code of this algorithm.

This last-mentioned project is composed by a research paper, a report and
a Git repository in which we can find the Windowed Peak Detection
algorithm for different platforms and in different languages. It can be
found in languages like Python, Java or Android. It is also added a
repository with the data set that they have use to make their testing. This
data set is composed by “.csv” files that they take as inputs in the program
to later obtain the number of steps. We have use the accelerometer of the
LoPy1.0r PyCom device to create the file “output.csv” with real values.

For this project we have used the Python code taken from the Oxford Step
Counter repository and from them we have started working.

From this project it was also used the report to understand how the
Windowed Peak Detection algorithm work.

V. CONCLUSION

About the first question: “How to create a step counter on a PyCom
device?” it is not possible because of the low memory of the pyCom
device. At least it was not found the way of saving enough memory. What
is possible for sure is translating a Python algorithm into a Micropython
one and inserting this into the device: the creation of threads, queues and
every necessary mechanism to develope the device is possible in
Micropython.

About the second question: “How to configure the LoRaWAN network to
send data to TheThingsNetwork?“ it is possible by following the steps and
implementing the code showed previously.

It was a hard work which took months but at the end the results were
satisfactory.

The most important conclusion that we get after doing this project is that
it is not possible to introduce the Windowed Peak Detection Algorithm in a
LoPy1.0r PyCom device because of the low RAM memory of this (around
70000 Bytes).

VI. APPENDIX

The WPD is composed by the next classes in Micropython:

 main.py:

The function put_data_into_a_file() is called, different data is taken from
the “.json” device for each stage and a Wpd object has been created with
this values as parameters.

 boot.py:

Makes a connection between the device and the router that is configured
in it.

 windowedPeakDetection.py:

The necessary queues and lists are created in the constructor, InputPipe,
WpdPreProcessor, SmoothingFilter, PeakScorer, PeakDetector,
WpdPostProcessor and ConnectionToTTN objects have also been created.
This class contains the function start() which call the function start() of
every objects created before in the constructor (self.pipe,
self.smoothingFilter, self. peakScorer, self.peakDetection,
self.postProcessing and self.connection)

 workerThread.py:

This class creates some Boolean attributes in the constructor as self.active,
self.completed or self.target referred to the thread that is starting every
time that the function start() created in this class is called. This function
starts a simple thread. This is the superclass of the classes
WpdPreProcessor, SmoothingFilter, PeakScorer, WpdPostProcessor and
WpdPostProcessor.

 inputPipe.py:

This class contains the function start() which throw a new thread. This is
the only stage class that does not call the function start of the superclass
WorkerThread previously called. The function pipeInput() is implemented.
This function is executed when the thread is thrown. The function
cleanup() is implemented. This function is implemented to save memory.

 preProcessing.py:

This is a subclass of the class WorkerThread. It contains a constructor and
the function preProcess() that is executed every time the thread is thrown.

 smoothingFilter.py:

This is a subclass of the class WorkerThread. It contains a constructor, the
function gaussian() which is executed every time the thread is thrown and
the function gaussianCoefs() which is called in the gaussian() function.

 peakDetector.py:

This is a subclass of the class WorkerThread. It contains a constructor and
the function peakDetect() which is executed every time the thread is
thrown.

 peakScorer.py:

This is a subclass of the class WorkerThread. It contains a constructor and
the function meanDiff() which is executed every time the thread is thrown.

 postProcessing.py:

This is a subclass of the class WorkerThread. It contains the constructor
and the function postProcessing() which is executed every time the thread
is thrown.

 dataStructure.py:

This class contains a constructor, the function scaleTime(self, startTime,
factor), computeMagnitude(), getX(), getTime() and getMagnitude().

 simpleDataStructure.py:

This class contains a constructor with the attributes “self.time”, “self.mag”
and “self.oldMag”.

 queue.py:

This class contains a constructor, the function isEmpty(), enqueue(self,
item), deque() and size().

 utils.py:

This script contains functions like loadAccelCsv(filepath) which takes the
data from the “.csv” file, the function put_data_into_a_file() which takes
the data from the accelerometer and write that data in a new “.csv” file,

and the function linearInterp(dp1,dp2,time) which is called from the pre-
Processing thread.

And the “. json” file:

 config.json:

This file contains “inter_ts” = 10 and “ts_factor” = 1000000 for pre-
processing, “window_size” = 3, “type” = “gaussian”, ”std” = 0.3,
“cutoff_freq” = 3 and “sample_freq” = 100 for filtering, “window_size” =
13 and “type” = “mean_diff” for scoring, “threshold” = 1.2 for detection
and “time_threshold” = 200 for post-processing. These data is represented
in a “.json” file format.

The file creation is implemented in:

 utils.py: The content of this script is already explained.

And the connection with the TheThingsNetwork is implemented in:

 connectionToTTN.py:

This class is subclass of the class WorkerThread. This class contains a
constructor and the function connection() which is executed every time
the thread is thrown. This function connects the device with the TTN
platform and send a random value every 2.5 seconds.

The code of this connection is this:

Figure 11: Screenshot of the code implemented in Micropython for
the connection between the device and the TTN platform

VII. BIBLIOGRAPHY

[1] Low Level Hardware support: Charles Bell 2017, MicroPython
for the Internet of Things: https://doi.org/10.1007/978-1-4842-
3123-4_6

[2] PyCom Technology: Pycom, Next Generation Internet of Things
Platform: https://www.pycom.io

[3] Step Counter Algorithm for smartphones organization
(University of Oxford): An optimized algorithm for accurate
steps counting from smart-phone accelerometry: Dario Salvi,
Carmelo Velardo, Jamieson Brynes, Lionel Tarassenko.

[4] The things network: Building a global internet of things network
together: https://www.thethingsnetwork.org/

[5] Walking 10000 Steps/Day or More Reduces Blood Pressure and
Sympathetic Nerve Activity in Mild Essential Hypertension
Masataka IWANE, Mikio ARITA, Shigehiro TOMIMOTO, Osamu
SATANI, Masanobu MATSUMOTO, Kazuhisa MIY ASHITA, Ichiro
NISHIO, 8, 2000.

[6] Semtech: beyond remarkable: https://www.semtech.com/
[7] LoRa Alliance: Wide Area Networks for IoT: https://www.lora-

alliance.org/
[8] LoPy1.0 datasheet version1.0:

https://www.mouser.com/datasheet/2/872/lopy-specsheet-
1129426.pdf

[9] La Guia 2000: Matematicas:
https://matematica.laguia2000.com/general/interpolacion-
lineal

[10] Offical Atom webpage: A hackable text editor for the 21st
Century: https://atom.io/

[11] Pycom documentation: https://docs.pycom.io/
[12] MicroPython libraries and examples that work out of the box on

Pycom’s IoT modules: https://github.com/pycom/pycom-
libraries

[13] Core Python libraries ported to Micropython. GitHub repository:
https://github.com/micropython/micropython-lib

