Citation
Moreno Santamaria, Belén and Hernandez Ramos, Juan A.
(2019).
Software tool for the design of water flow glazing envelopes.
In: "Seventh European Conference on Renewable Energy Systems (ECRES2019)", 10-12 June 2019, Madrid/Spain.
Abstract
Water flow glazing facades are considered active envelopes able to react or to adapt to the external and internal conditions of the building. The use of the building, the orientation of the facade and the location of the project are relevant inputs to determine the glazing composition as well as the energy strategy involved in the facade. A proper design of the glazing composition and the energy strategy will allow huge energy savings in the whole project.
To achieve this goal, a software tool has been developed to allow the design of a water flow glazing facade. The software tool is an open software code with a graphical user interface. It comprises (i) energy balance considerations associated to potential sun energy for specific locations, (ii) spectral properties of the glazing based on the selection of different glass layers or coatings, (iii) thermal performances of the glazing module based on the absorption properties and (iv) a thermal simulator of zones including insulated opaque facades and water flow glazing facades.
The main result of this work is a software tool to allow project engineers to design water flow glazing facades. Understanding active facades as transparent thermal collectors are carried out by thermal simulation movies. This tool allows the project engineer to determine the water heat gain during the whole year. Besides the graphical user interface, this work constitutes a complete library to simulate water flow glazing envelopes written in modern Fortran. This library has a documented application program interface that allows developers to integrate water flow glazing envelopes in existing energy simulators for buildings.