Full text
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview |
Adánez García-Villaraco, José Miguel, Al-Hadithi, Basil M. and Jiménez Avello, Agustín ORCID: https://orcid.org/0000-0003-4918-5918
(2019).
Multidimensional membership functions in T–S fuzzy models for modelling and identification of nonlinear multivariable systems using genetic algorithms.
"Applied Soft Computing", v. 75
;
pp. 607-615.
ISSN 1568-4946.
https://doi.org/10.1016/j.asoc.2018.11.034.
Title: | Multidimensional membership functions in T–S fuzzy models for modelling and identification of nonlinear multivariable systems using genetic algorithms |
---|---|
Author/s: |
|
Item Type: | Article |
Título de Revista/Publicación: | Applied Soft Computing |
Date: | February 2019 |
ISSN: | 1568-4946 |
Volume: | 75 |
Subjects: | |
Freetext Keywords: | Fuzzy rules; Takagi–Sugeno model; Genetic algorithm; Multidimensional membership functions |
Faculty: | Centro de Automática y Robótica (CAR) UPM-CSIC |
Department: | Otro |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview |
(ENG) In this work, a new method for Takagi–Sugeno (T–S) fuzzy modelling based on multidimensional membership functions (MDMFs) is proposed. It is verified that the fuzzy inference method of one-dimensional membership functions (1DMFs) may place the fuzzy rules in inappropriate locations for modelling of nonlinear multivariable systems, while the application of MDMFs allows a better identification through a smaller number of fuzzy rules. The proposed method uses a genetic algorithm (GA) for the adjustment of the MDMFs and the T–S method for modelling and identification of the nonlinear system. As a validation example, a non linear multivariable system, a coupled tanks system, is chosen.The results show that the proposed method presents less identification error than the T–S method, with less number of fuzzy rules. (SPA) En este artículo de investigación se propone un método nuevo para el modelado borroso basado en funciones de pertenencia multidimensionales. Se emplea un algoritmo genético para el ajuste de las funciones de pertenencia multidimensionales y el método de Takagi-Sugeno para el modelado y la identificación del sistema no lineal. Se muestra que, comparado con el método tradicional de la inferencia borrosa de funciones de pertenencia monodimensionales, el método propuesto permite una mejor identificación mediante un menor número de reglas borrosas.
Item ID: | 55412 |
---|---|
DC Identifier: | https://oa.upm.es/55412/ |
OAI Identifier: | oai:oa.upm.es:55412 |
DOI: | 10.1016/j.asoc.2018.11.034 |
Official URL: | https://www.sciencedirect.com/science/article/pii/... |
Deposited by: | Memoria Investigacion |
Deposited on: | 13 Jun 2019 07:02 |
Last Modified: | 29 Feb 2020 23:30 |