Full text
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview |
Montes, F. and Rubio Cuadrado, Álvaro and Sánchez González, María de la O and Aulló Maestro, Isabel Consuelo and Cabrera, Miguel and Gómez, C. (2019). Occlusion probability in operational forest inventory field sampling with ForeStereo. "Photogrammetric Engineering And Remote Sensing", v. 85 (n. 7); pp. 493-508. ISSN 0099-1112. https://doi.org/10.14358/PERS.85.7.493.
Title: | Occlusion probability in operational forest inventory field sampling with ForeStereo |
---|---|
Author/s: |
|
Item Type: | Article |
Título de Revista/Publicación: | Photogrammetric Engineering And Remote Sensing |
Date: | July 2019 |
ISSN: | 0099-1112 |
Volume: | 85 |
Subjects: | |
Freetext Keywords: | basal area, sampling, number of trees, instrument bias, tree occlusions |
Faculty: | E.T.S.I. Montes, Forestal y del Medio Natural (UPM) |
Department: | Sistemas y Recursos Naturales |
UPM's Research Group: | Genética, Fisiología e Historia Forestal |
Creative Commons Licenses: | Recognition - Non commercial - Share |
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview |
Field data in forest inventories are increasingly obtained using proximal sensing technologies, often under fixed-point sampling. Under fixed-point sampling some trees are not-detected due to instrument bias and oclussions, hence involving an underestimation of the number of trees per hectare (N). The aim here is to evaluate various approaches to correct tree occlusions and instrument bias estimates calculated with data from ForeStereo (proximal sensor based on stereoscopic hemispherical images) under a fixed-point sampling strategy. Distance-sampling and the new hemispherical photogrammetric correction (HPC), which combines image segmentation-based correction for instrument bias with a novel approach for estimating the proportion of shadowed sampling area in stereoscopic hemispherical images, best estimated N and basal area (BA). Distance-sampling slightly overestimated N (11% bias and 0.60 Pearson coefficient with the reference measures) and BA (4%, 0.82). HPC provided less biased N estimates (-6%, 0.61) but underestimated BA (-8%, 0.83). The diameter distribution was more accurately retrieved through HPC.
Type | Code | Acronym | Leader | Title |
---|---|---|---|---|
Government of Spain | 979S/2013 | Unspecified | Fernando Montes Pita | Pasado, presente y futuro de los bosques de montaña: seguimiento y modelización de los efectos del cambio climático y la gestión sobre la dinámica forestal |
Government of Spain | AGL2016-76769-C2-1-R | FORESTCHANGE | Fernando Montes Pita | Influencia del régimen de perturbaciones y la gestión en el balance de carbono, estructura y dinámica de las masas forestales |
Item ID: | 56554 |
---|---|
DC Identifier: | https://oa.upm.es/56554/ |
OAI Identifier: | oai:oa.upm.es:56554 |
DOI: | 10.14358/PERS.85.7.493 |
Official URL: | https://www.ingentaconnect.com/content/asprs/pers/2019/00000085/00000007/art00012 |
Deposited by: | Álvaro Rubio Cuadrado |
Deposited on: | 25 Sep 2019 10:38 |
Last Modified: | 01 Feb 2020 23:30 |