Full text
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (5MB) | Preview |
Vega de Prada, José Manuel ORCID: https://orcid.org/0000-0002-4307-9623
(1983).
Singular Langmuir-Hinshelwood Reaction-Diffusion Problems: Strongly Nonisothermal Conditions.
"SIAM Journal on Applied Mathematics", v. 43
(n. 6);
pp. 1367-1389.
ISSN 0036-1399.
Title: | Singular Langmuir-Hinshelwood Reaction-Diffusion Problems: Strongly Nonisothermal Conditions |
---|---|
Author/s: |
|
Item Type: | Article |
Título de Revista/Publicación: | SIAM Journal on Applied Mathematics |
Date: | December 1983 |
ISSN: | 0036-1399 |
Volume: | 43 |
Subjects: | |
Faculty: | E.T.S.I. Aeronáuticos (UPM) |
Department: | Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014] |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (5MB) | Preview |
The steady state reaction-diffusion problem for a permeable catalytic particle is considered, when the reaction rate is of the Langmuir-Hinshelwood type and the activation energy is large. It is shown that there are multiple solutions for the Damkohler number belonging to a certain interval. An arbitrarily large number of solutions appear for symmetric particles: (a) in two dimensions if the adsorption effects are sufficiently important and the reaction order is negative, and (b) in three dimensions. An asymptotic analysis provides approximate analytical expressions for the response curves and for the multiplicity bounds.
Item ID: | 5794 |
---|---|
DC Identifier: | https://oa.upm.es/5794/ |
OAI Identifier: | oai:oa.upm.es:5794 |
Official URL: | http://www.jstor.org/stable/2101182 |
Deposited by: | Memoria de Investigacion 2 |
Deposited on: | 21 Jan 2011 12:56 |
Last Modified: | 22 Oct 2014 10:45 |