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The effect of vertical vibration on the long-wave instability of a Marangoni system is
studied. The vibration augments the stahilizing effect of surface tension in bounded
systems. [n laterally unbounded systems nonlinear terms can stabilize non-flat states
and prevent the appearance of dry spots. The cficel of a slight mclination of the
system is also considered.

1. Introduction

Thermocapillary phenomena (Scriven & Sternling 1960; Davis 1987) are of interest
in many applications, including matcrials processing and crystal growth in a micro-
gravity environment (Jurish & Loser 1990; Kuhlmann 1999), and coating (Cazabat
et al. 1990; Katacka & 'Iroian 1997) and drying (Thess & Boos 1999; Matar &
Craster 2001) processes under terrestrial conditions, and often serve as a source of
both convection and instabilitics. Although Bénard was alrcady aware of the role
of surface tension gradients in his seminal experiment (Bénard 1900). the ability of
thermocapillary stresses to drive convection was elucidated only by Rayleigh (1916)
as part of his cxplanation of the appcarance of convection cclls in thin films (scc
also Block 1956; Koschmieder 1993). In such films buovancy is typically negligible
and conveetion is driven by thermocapillary clicets alone, The simplest configuration
exhibiting this effect consists of a horizontal fluid layer supported by a hot plate and
bounded above by a colder free surface. This system, known as the Marangoni Bénard
syslem, has been used cxtensively Lo investigale both thermocapillary phenomena
(Dxavis 1987; Koschmieder 1993; Bragard & Velarde 1998) and the formation of
patterns (Cross & Hohenberg 1993). Some of the thermocapillary instabilities that
are observed are long wave (VanlTook et al. 1997) and have therefore also been
studied in the coniext of thin films (see Oron, Davis & Bankoff 1997 for a recent
revicw, as well as Boos & Thess 1999; Oron 2000; Bestchorn, Pototsky & 'Thicle
2003; Thiele & Knobloch 2004),

In this paper we examine the effect of vertical vibration on these phenomena.
We focus on films that are sufficiently thin that buovancy effects are small, or
equivalently consider low-gravity environments, where residual acceleration, due to
crew manocuvring and machincry, has a significant impact on both maltcrial processing
systems and on-beard experiments (see Skarda 2001 for references). In general,
residual oscillatory acceleration, or g-jitter, 15 broad-band and varies randomly both



in magnitude and direction. This acceleration is usually transmitted through the
support structure or container walls of the Quid system in question. Thus the actual
excitation of the fluid is transmitted via the narrow-band structural response centred
on the natural frequencies of the container or support structure. Although the random
nature of the vibration and the presence of overtones cannot be ignored, the uvsual
first step (which also provides physical insight into fundamental mechanisms}) is to
lake the vibration as monochromaltic, with a constant amplitude and direction,

As is well known, an inverted pendulum can be stabilized by vertical vibration
of the support (Landau & Lifshitz 1987). In Huid systems the same principle has
been used to stabahze the Rayleigh—Taylor instability in an upside-down contamer
(Lapuerta, Mancebo & Vega 2001 and references therein) and interfacial instabilities
of films flowing down an in¢lined plang (Lin & Chen 1998 and relerences therein)., In
particular, Wolf (1970) showed experimentally that normal vibration may suppress
the Rayleigh Tayvlor instability of a flat film in the short-wavelength regime, i.c.
in relatively thick films, Mcchanical and (hermal vibration has also been studicd
in connection with the Rayleigh-Bénard system (Gershuni, Zhukhovitskii & Jurkov
1970; Gresho & Sani 1970), directional solidification (Murray, Coriell & McFadden
1991; Wheeler et al. 1991), and doubly diffusive convection (Gershuni ef al. 1997 and
references therein), and used to control both thermocapillary convection (Nicolas,
Rivas & Vega 1998 and relcrences thereing and thermocapillary instabihiics. Although
this approach is attractive a number of complications remain. I'or example, normal
vibration cannot stabilize the conductive state in an unbounded film (Woods & Lin
1993), while tangential vibration (Or 1997) is only effective for vibration frequencies
that are not too large. In either case the stabilization results are obtained by solving
a Floquct problem, and arc in general quite subtle and non-intuitive, Morcover,
the presence of lateral boundaries may be important. For example, bounded films
can be stabilized by normal vibration, and the stabilizing ¢flcct is greatest lor large
vibration frequencies. In addition, the vibration affects the convective states that result
[rom any instability. Others (Or & Keclly 2002} have used temperature modulation
with similar ideas in mind, while Skarda (2001) considered vibration perpendicular
to the supporting plate. but ignored free-surface deformation even though long-
wave instabilitics can only occur in the presence of free-surface deformation when
gravitational effects are small (Davis 1987). As shown by Or et al. (1999) the resulting
Marangeni instability can be suppressed by an active [cedback control. We mention
also that the influence of normal vibration on the shape of pendant droplets was
investigated by (Faraday 1831, §44 50), while Gavrilyuk, Lukovsky & Timokha
(2004) havc uscd a vanational principle 1o study this system in the large-[requency
limit.

These considerations motivale the present study. We focus on the ciicet of normal
vibration on the long-wave Marangoni instability of thin films on horizental and
inclined planes, and investigate 1ts influence on the linear and nonlinear stability of
unilorm {ilms. In particular, we describe the cffects of vibration on both periodic
wavetrains, and stationary and sliding drops.

The problem is formulated in $2, followed in §3 by a derivation of the relevant
long-wave equation for a vibrated thin film under the assumption of no thermal
expansion. This equation is analysed and integrated numerically in §4 for a film on
a horizontal support. Unboundced flms on an inclined planc arc considercd m § 5.
Concluding remarks follow in § 6. Possible effects of thermal expansion are discussed
in an Appendix.



2. Formulation

We consider a large-aspect-ratio container of depth 4" and cross-section §27,
vibrated vertically with an amplitude 2" and a frequency «”, where the superscript *
denotes dimensional magnitudes. The bottom of the container is maintained at a fixed
temperature 7y and the system loses heat through the [ree surface according Lo
Newton’s law of cooling, 87" /dn" = o, (T —T7). where »” is the coordinate along
the outward normal, o, 15 a phenomenological constant, and 77 is the ambicnt
temperature. In addition, we suppose that the density ¢ is constant (see the Appendix)
and that the surface tension depends linearly on the temperature, o =0y — p(T7 —T7).
In order to facilitate comparison with relaicd results in the literature we non-
dimensionalize lengih, velocity, time and T, — T with d°, v/d*, d2/v and T — T},
respectively, where v is the kinematic viscosity. The resulting non-dimensional conti-
nuity, Navier-Stokes and energy equations in a reference frame attached to the bottom
of the vibrating container (z = () are

Veu+isuw =0, (2.1)
Ju+u-Vu+wdu=—Vp+Vu+d.u {2.2)
gow+uVw+wiw=—d.p+ Vi + 3523”"' (2.3)
30 +u-Vo +wd o = Pr' (V6 + 020), (2.4)

for (x,¥) € $2 and 0 < z < h(x, ¥, t). Here u = {n, v, Q) and w are the horizontal and
vertical components of the velocity, respectively, p (= pressure + (% + aw’ coswi)z —
1)} represents a conveniently modified pressure, and A is the (vertical) free-surface
clevation, In addition

V=1{0.9,.0) (2.5)
denotes the horizontal gradient.
The boundary conditions at the supporting plate are no-slip, fixed temperature,
u=0 w=0=0 atz=0, (2.0)

while at the {ree surface z = & the kinemaltic boundary condition, tangential and
normal stress balance, and heat flux balance, take the form
ah+u-Vh =w, (2.7
B+ Vw —(Vu+ (Vu) ) Vh+[20,w — (3.0 + Vw) - VAIVh

Moo oowal. (28)
Pr

p — (% +aw’ coswl)(h—1)+ £V - [%}
20w — 20,4+ Vw)-Vh + Vh- [Vu+ (Vu)'] - Vh
= 1+ VA ‘

3.0 — Vh Ve = Bill + |VA?|'*(1 — ). (2.10)

(2.9)

As latcral boundary conditions, we consider two possibilitics, () Il lateral walls arc
present, we impose no-slip and no-thermal-flux boundary conditions at these walls,
and suppose that the contact line 1s either pinned or free, namely

=0 w=a,6=0, andeither A=1o0ra,h=0 (2.11)



for (x, yy € 242. llere 352 is the boundary of the cross-section £2 and » is a coordinate
along the cutward unit normal. (5) In laicrally unbounded films we consider periodic
boundary conditions, namely

(.w, p.B)x+ L.y, 2,1y =, w. p, 8Nz, y+ Ly, 2. 6) = (u, w, p, O0x. v, 2, 1),
Mx+ Ly, ) =hlx, v+ Lo t) = hix, y, 1},
(2.12)

and suppose that Ly 3 1, Ly 3 1. For convenience we also consider the vertically
integrated continuily ¢quation,

-h
oh+ V- (/ udz) _o, (2.13)
SO

obtained [rom cguation (2.1) using (2.7).

The above problem depends on the following non-dimensional parameters: the
Prandtl number Pr=v/x, where « is the thermal diffusivity, the Marangoni number
Ma=y(T; — T')d"/pvk, the Biot number Bi=uw,,d"/x, and the forcing amplitude
a=a"/d" and frequency w=w"d**/v. The gravitational and surface tension para-
meters, 4 = gd™ /vt and 7 = apd” / pv?, arc related 1o the usual Bond and Ohnesorge
numbers, Bo = pgd™? faq and Oh = v|p/aed”|}? by @ = BoOh™* and &% = Oh =, where
g is the gravitational acceleration; € =0h' is called the capillary {(or crispation)
number.

The conduction state of the problem (2.1) (2.10), namely
0 — Biz )

1+ Bi

¢cxhibiis two kinds of instabilitics: a shori-wave mstability and a long-wave instability,
Only the latter will be analysed below. The former could be called a Marangoni
Bénard—Faraday instabiliry and its study requircs a numerical solution of a Floguct
problem, as done by Skarda (2001) under the restriction that the free surface remains
undcformed. For lxed Pr, this instability appcars only for quite large Ma, namely
Ma~ 100 (Bragard & Velarde 1998; Skarda 2001). In addition, if the free-surface
deformation is taken into account we have a Faraday instability (Kumar & Tuckerman
1995; Manccbo & Vega 2002). When

1+ %% < o, (2.15)

u=10. w=0 p=0, h=1, (2.14)

this instability can be avoided provided onc chooscs
aw'? = o (0" V)7 < Alw¥ ) = A(w*pgv:’/m?), (2.16)
where A(-) is a function calculated in Mancebo & Vega (2002), shown in figure 1.
Nolc in particular that the marginal instability curve has the horizontal asymplote
A— A, ~1.67asw— o
In what follows wc shall assume that these short scales remain stable. This
assumption is compatible with the distinguished limit
Pr~Bi~Ma~%~1, #7231, (217)

where L denotes the aspect ratio of the container. Since % must be at most ol order
unity in order to avoid strong stabilization by gravity waves (see below) we replace
(2.15) by the slightly more gencral requirement

w3 1, (2.18)
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HMGURE L. 'The rescaled l'araday instability threshold am'? =a'{w" /)% as a function of
oF = pv?jof (see equation(2.16)). Stable (unstable) regions are labelled by S (1),

respectively. The asympiotes for %2 — 0 and @% 2 — o are indicated by doited lines.
Courtesy of F. J. Mancebo.

subject to the constraint (2.16). In fact, the analysis below remains valid for arbitrary
valugs of Bi and &, provided that o '€ Pr< L2, Ma/Pr<<wl and ¥ <o’ L?,
restrictions that are quite reasonable even though Pr varies in practice over a wide
range, from 0.01 for liquid metals to 105 for some silicone oils.

3. Derivation of the long-wave equation

The analysis in this section is a generalization of that by Lapuerta ef al. (2001) who
uscd vertical vibration to control the Raylcigh—Taylor instability in largc-aspect-ratio
containers, Tn the imit (2.17)—(2.18) the main simplifications result from («) the long-
wave approximation and (») the fact that the problem exhibits two well separated
timescales. In the regime

=7 1 and viz=®Y <) 1
S= and Vi= 2 L (3.1
we may introduce the slow space and time variables
. X LY. t
=, =, = —, 32
=, ¥=7 B (3.2)
and seek a solution in the form
"= “;”uo(x, ¥.2. 06" + oo+ =2hoh, + —usu S0+, (3.3)
: . 1 .
W= %w(,(ﬁ?, F.z. 0™ oo+ @ mh .h. + ws(x Foz.f) 4, (3.4
2 7
p=aw’p,(3. 5, 2D+ cot Shoh + p . F, 2B+, (3.5)
7

a

0= Fo,i(;z-, ¥z, 7)e e+ Fh.o_h. L0 5. 2 D+ (3.6)



2
h— L—‘zho(f, 5,06 + co+ z—4h.o.h, FhRE S+ (3.7)
where ¢.c. denotes the complex conjugalc and h.o.h, stands for higher-order oscillatory
harmonics, depending on the fast time variable as e, with s £ 0, +1.
Substitution of this expansion into cquations (2,13+2.10) now Icads Lo a scrics of
equations for the oscillatory and slowly varying parts of the solution, labelled with
the subscripts ¢ and s, respectively. The oscillatory part is nearly inviscid outside two
oscillatory boundary layers attached (o the bottom plate and the free surface, and is
given by

V- U, + a:w{) = 09 iuu + %;po = 0- Gzpo =10, (3.8(1, b.‘ C)
1%, + 1, 693 i b =0 in O <z<h, (3.84)
w, =0 atz =0, (3.9

~ h,—1
OB, =1, —w,+u, Vh,=p, — : 7 =0, &6,=—Bi5, atz="h,, 310u,b.c.d)

where V2 and V are the rescaled horizontal Laplacian and gradient operators,
Vi=02 +8 and V=(d,,0) (3.11)
The slowly varying part is given by
Veu, + 00w =0, du, — Vo, = Vil Vitto + w,0.0, + .0, (3.12a. b)
dp, =30, =0 in 0<z<h, (3.12¢. d)
u, =0, w,=6,=0 alz=0, (3.13a, b, ¢)

dehy — wis + Uy Vhy = pe — %(_ka +ec)—Fh, — 1)+ ,_’;”5'2113 =10, (3.14a, B)
) Ma ~ oS . .
D1, = E[VQS +(3,0)Vhs], 2.9 —Bi(l —4,) =0 al z = A, (3.14¢, d)

by
(/ I, dz) en =0 and either b, =1 or 3,h, =0 for (3.5) € 882, (3.15a, b)
0

if lateral walls are present. For unbounded films the boundary conditions (3.15) must
bc replaced by penodic boundary conditions. Oscillatory viscous boundary layers
contribute O{w™) corrections to the right-hand sides of the boundary conditions
(3.13a) and (3.14¢); since @ >» 1 (see (2.18)) these corrections are small. In addition,
the presence of lateral walls requires a zero Muid fux outside O(L™') boundary layers
attached to the walls; the analysis of these layers is standard and is omitted.

Il we negleet the cllcets of both types of boundarics layers (scc Nicolas & Vega
2003 and references therein) and solve equations (3.8)-(3.14) we obtain

1 1~ 'Z ] 1 o~ ~
8. =zH, p,= E(hs —1), u, = %VJ’:S, w, = —%V‘hs, h, = fEV- (h,Vh,),

I/,‘A' o~ -~ N')
v = fgv S Vh)+ Fih, — 1) — TV,

1., Vie o Ma ~
= =(z2 = 22h WV(p, + — Vi, |2 ZV(h, H), 3.16
U 2( N (p.+4| A|)+Pr {(h H) (3.16)




where
Bi
N=—. 3.17
| + Bih, ( )
The equation for 0, (= —%z%’H . ﬁ'hs + ]EzH ﬁzfz&.) decouples.
The first boundary condition in (3.14) is cquivalent Lo the continuity cquatlion

hs
dh, +V- (/ H, d-:) =10, (3.18)
Al

an ¢quation that can also be oblained [rom ({2.13). Substituting for #, yiclds the
following evolution equation for A, :

Hh, =V~
ths =V 3 2Py

Dropping the subscript s from /4 and uldes [rom V, and introducing the new
parameters

lh‘v<pg+%|§hg|l) Ma g (h;”)} (3.19)

- 52 22 g o %2 Ma T
and the rescaled time variable
T =71 (3.21)
cquation (3.19) becomes
b= =iV ARV Vi + VRV R + 5 VR) — ()] (3.22)
where
Flh) = (,% - %(:MBrh I fB - (3.23)

"This cqualion is to be solved subject Lo the boundary conditions (3.15);
2 1 ‘
3, {Vzh +V (h.V-h + 5|Vh|2) —f (h)} =0, (3.24)

and either 1 = 1 or 3,k =0 for (x, ¥) € 382,

4. Analysis of the long-wave equation for a horizontal substrate
4.1, Linear stability
In an unbounded domain the flat film, £ =1, is linearly stable when
IMBI

2(1 + Biy?

This condition is independent of V5 in view of (3.20) it is also independent of viscosity.

Moreover, since M is proportional to Ma/% and % is quite large for thick films under

terrestrial conditions (Davis 1987), gravily waves tend 1o stabilize the film unless it

is highly viscous or quite thin, Tor instance, in a 1 mm deep silicone oil film with

v=00lcm?s ! we have ¥ =10*; & fulls to 1 if v=1cm?s ! or d* is decreased to
S0pm,

For bounded containers condition (4.1) must be replaced by

IMBi V41
s < 14 :
2(1 + Biy G

< 1. (4.1)

(4.2)
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Ficure 2. A typical linear stability diagram for the flat-film solution (equation {2.14)), indicat-
ing regions of stability {3) and instability (U). The critical parameters w). and « are defined
by the crossing ol the long-wave Marangoni and Faraday mstability thresholds. Stability with
respect to the short-wave Marangoni instability is assumed.

where s 18 the lowest cigenvalue of
ViF +sF = constant in £2, and either F =0 or 3,F = 0 on 8£2. (4.3)

[For instance, for a circular container of unit radius so = ¥ >~ 3.83 or so = ~ 2.40
depending on the boundary condition, where 1 and 1, arc the [irst positive roots of
Jy (the Bessel function of order one) and J|, respectively. If £ is a 1 x D rectangle,
so=%Y1+4/D% or sy =4/D%

Thus i a finite domain the stability condition does depend on V. Moreover, since
V is proportional to the scaled vibration energy ("), equation (4.2) shows that
for a given value of the remaining parameters the system is stable provided that
(a’")? is sufficiently large, subject to the restriction (2.16). The resulting stability
region rescmbles that shown in figure 2. Nole that the lower curve is independent
of viscosity while the upper curve moves downwards and to the right as viscosity
decreases. Thus the forcing frequency for stabilization must be quite large for low-
viscosily liquids.

For containers that are large compared to the wavelength of the fastest linear
modc one may disrcgard the boundary conditions at the walls of the container and
study the behaviour of spatially periodic solutions. This allows comparison with
results obtained for heated thin films without vibration {Thiele & Knobloch 2004).
‘The stability condition s given by cquation (4.2) replacing sy by &% with £ being the
wavenumber of the mode under study. The critical wavenumber is given by

5 G 3MBi
ki= -1}, 44
Y (2(1+Bi)2 ) (44
while the growth rate £ of wavenumber & is
1+Vv 2
B=— %k‘ (K — k). (4.5)

Thus at the linear level the stabilizing role of vibration mimics enhanced surface
tension. This enhancement 15 measured by V and so is again independent of



viscosity: however, viscosity comes into play through condition (2.16). For instance,
this condition s satisficd under microgravily conditions by a container of depth 5 mm
filled with silicone oil with & =20dynem !, v =0.01cm?s™* and p =1 gem ™7, subject
to vibration amplitude &' =35pm and frequency o' = 10* Hz; for these parameter
valucs V =060, For lmghcer viscosity liquids we can use lower vibration {requency and
obtain an even larger enhancement. Tor instance, for v=1cm?s™ !, & =0.5mm and
@' =2 = 10° Hz condition (2.16) remains satisficd but vV =200,

4.2. Lyapunov functional

‘The vibration does not break the variational siructure {(Oron et af, 1997) of the static
counterpart of equation (3.22). Indeed, it we define a Lyapunov functional £ by

1 3 :
6= / [IVA]> + VE|VAE]? + F(B)] dx dy, (4.0)
2
where f(/) is defined by (3.23), it is simple to show that
d# 1 ‘
— = —— [ BV dxdy 4.
&~ 3 [ BIverdiay, (47)
where
U=V h+V(hVh+ |VR) — F(h). (4.8)
The quantity % is defined such that equation (3.22) takes the form
he = =iV - (V). (4.9)

Thus every selution of equations (3.22) (3.23) converges for large times to a steady
slale.
4.3, Steady states

Since the local energy f(#) does not depend on the vibration it is now possible to
draw on the results of Thicle & Knobloch (2004) regarding the nonlincar stability of
a flat film. BEquation (4.7} implies that the steady states of (3.22)-(3.24) are given by

VR4 V(EVh+ L VEP) — Fiih)+ ¢ =0 in R, (4.10)
/ hdxdy = S and either A =1 or 8, =0 if (x, v) £ 352, (4.11)
52

where 8y is the area of £2, and €, is a constant corresponding to the Lagrange
multiplier for either volume conservation or a chemical potential depending on the
situation studicd. Equation (4.10) can also be oblained (rom cquation {3.22} sclling
d-h =0 and using condition (3.24),

In particular, in onc dimension, the steady stales arc given by

W V[RR 4 1B — £+ € =0, (4.12)
or, equivalently, by

LA+ VIR? — Fb)+ Clh+ €y =0, (4.13)
where Cy is another constant. The two constants C;, €5 characterize the steady-state
solutions. Specilically,

Cy = —3VOi + (k) (4.14)
CQ - f(.h'm) - (jlh'ms (415)



0.6

0.4

[ELA

0.2

n - L ' B I ' | ' 1 .
0 10 20 30 0 20 40 I &) 80 100

HGUure 3. Periodic nucleation and single-drop solutions with microscopic contact angle 85 =0
as a function of L for Bi=0.5 and G=1.0 and («.¢) M =3.5 = M, (linearly unstable regime)
and (b.d) M =1.5 < M, (the metastable regime). (2} and (b) the norm for the nucleation
solutions {lower branches) and the drop solutions (upper branches). These meet at cusps
located at (L', 2*). Stable single-drop solutions with &y > 0 are found in the region above the
upper branch. {¢} and (d). The corresponding relatlive energics per unil length E(L). Prolfiles
for the nucleation and drop solutions are shown in figure 5.

where i, and h, denote the film thickness at the inflection point and maximum
thickness, respectively. The angle 0; = |h]| measures the slope of the film at the
inflection point and for drop-like solutions is identificd with the so-called mesoscopic
contact angle. Tt is this angle and not the microscopic contact angle 6y at A =0 that
is normally mcasurced i cxperiments.

Nguation (4.13) must be integrated using the boundary conditions {4.11), namely

L
h=1L1! / hixddey =1 andcitherhi=1lorkh'=0 at x=0,L. (4.10)
Jo

The integral constraint represents mass conscrvalion, and provides an implicit relation
between the constants 'y, €5, or equivalently the quantities 4, h,. The solutions with
Neumann boundary conditions can be obtained from the solutions on a periodic
domain with period 21 ; however, this is not so for Dirichlet boundary conditions and
more generally for Robin (or mixed type) boundary conditions (Crawtord er al. 1991).
In the following we study periodic stationary solutions, described by cquation (4.13),
To facilitate comparison with the vibration-free case (Thiele & Knobloch 2004) we
fix the x-scale £=o0y/pG by setting ¢ =1. This leaves the period of the stationary
solutions as a free parameter. Note that the Bi and M used here correspond to the
Bi and Ma of Thiele & Knobloch (2004), while & = 1.0 corresponds to Bo=1.0.
Since A=1 the periodic solutions can bg paramctrized using the film volume
{or, in one dimension, its spatial period 1.). Thus for each parameter combination
(M. Bi, V) there is a one-parameter family of solutions. Figure 3 shows this family



for different V as a function of the imposed spatial period I in terms of the norm
[$h]=( j;f‘(lz().r) — 1 dx/L)"Y2 (ligure 3a, ) and the relative encrgy per unit Iength
=&/ — (1) {figure 3c,d). Tigure 3{a) shows the norm when the flat film is
unstable (Bi=0.5, M =3.5): a one-parameter family of steady solutions bifurcates
subcritically from the at Glm for which |84 =0, The solutions ont the subcritical
branch are all unstable, and we reter to them as nucleation solutions. This is because
an initial perturbation with a smaller amplitude (and A = 1) will decay to the flat film,
while one with larger amplitude will evolve to a drop-like state on the upper branch
{(see below). A similar statement holds for sliding isothermal drops {Thiele et al. 2001).
‘The branch of nucleaiion solutions terminates al a finite value of L, L. = L°, where the
minimum thickness drops to zero. The upper branch emerging from L° corresponds
to drop-like solutions with microscopic contact angle %y = A, = = 0 sitting on a dry
substrate. Above this branch one can find a large variety of drop-like states with
fhy = (O, as discussed further in Thicle & Knobloch (2004). As shown in figure 3(c) the
cngrgy £ of the nucleation solutions is always larger than that of the Oat Glm for
which Iy =0. Moreover, the figure also indicates that there is a small range of periods
above L” where the fHat film has the lowest energy. Thus even though the fixed-period
drop solutions correspond to local minima of the energy (ie. they are linearly stable)
they do not necessarily represent global minima. As shown in figures 3(5) and 3(d) for
Bi=0.5 and M = 1.5 thc nucleation solutions may be present even when the flat Glm
remains stable for all £, but the corresponding solution branch is now disconnected
from the flat-film solution. We say in this case that the flat-film state is metastable.

The ‘potential’ glh)y= f(h) — Cih with € = £'(1) (shown for Bi=0.5 and various
M in figure 3 of Thicle & Knobloch 2004) determines whether the flat film (h=1)
is unstable, metastable or stable. The boundary between the unstable and metastable
regimes is given by g”(1)=0. and corresponds to the linear stability result (4.1).
‘The transition [rom metastable (o stable corresponds 1o paramcter valucs for which
the minima of g(h) at A=1 and 2 =0 ar¢ identical, i.e. to £(1)=0. This transition
therefore oceurs along the curve

1+ Bi

MHIS = -
3Bi

(4.17)

a quantity that is also independent of V. The resulting stability diagram in the
(Bi, M)-planc is shown in ligurc 4. In particular, in thc limit Bi > [ the {lat Glm
is unstable, metasiable and stable for M = 2Bi/3, 2Bi/3> M > 1/3 and M < 1/3,
respectively. However, metastable drop solutions may exist even below M. Figure 5
shows cxamples of nuclcation and drop solutions for different valugs of V' and
fixed volume. With increasing vibration the droplets become flatter, a result that
resembles that obtained for 1sothermal pendant and sitting droplets by Gavrilyuk et al.
{2004).

The above results indicate that vibration stabilizes the flat film against instability
and quantily the clleet. Specilically, we have scen that lor increasing V'

(i) the threshold for lincar instability of the film is shifted towards larger
wavelength, ie. system size (see equation (4.4) and figure 6);

(it} the range of existence of the drop solutions is shifted towards larger periads,
ie. smaller drops do not exist any more (see the location of the cusp (L=L") in
figurc 3 and figurc 6);

(i) the boundary between metastable and stable flat films shifts towards larger
system size;
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Ficure 5. Solution profiles for Bi=0.5, G = 1.0, fixed volume L and different values of V.
(a) Drop solutions for L =30, M = 3.5, (§) nucleation solutions for L = 100, M = 1.5 (only part
ol the period 13 shown).
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Fraure 7. The mesoscopic contact angle ¢; as a function of V for dilferent values off M when
Bi=05 G=10and L=100.

(iv) the amplitude (ie. the maximum height) of the drops decreases, as does the
norm (sce figurcs 3 and 5a);

(v} the mesoscopic contact angle #; decreases as illustrated by the drop profiles in
figure 5. The dependence of & on V is shown for different M in figure 7;

{vi) for metastable flat films the nucleation solution (the critical dent) that has to
be overcome to generate instability becomes deeper and broader, as illustrated in
figurc 5(b);

{(vil) for a fixed volume of liquid (i.c. the spatial period L) the encrgy 7 (figure 3)
of the drop increases with increasing V, indicating that the drop absorbs part of the
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HGure 8. Streamlines ¢ of the convection pattern inside a drop on a dry substrate for
Bi=05G=10,M=15and L=50. (a) V=0, = —4i x 1074, {(h) V=20, ¢y = —i x 1074,
for i=1...9 The fluid rises near the drop surface and descends within the drop. The drop
profile itself corresponds to v =0.

vibration energy. This energy is not dissipated but goes into modifying the shape of
the drop (see below).

It is instructive to examing the corresponding changes in internal convection within
the drops. We do so using contour lines of the streamfunction ¢ given by

MG Bik
(1+ Bihy

Zlh Z3
2 6

2
W(x,z7)= ( ) [ —GR +V(2RR + hE™M] + % (4.1%)
Figurc 8 shows that in the presence of vibration the circulation penetrates much deeper
into the drop, even though it is in fact weaker. As a result the overall dissipation for
V =20 15 approximately half of the dissipation for V =0.

We remark that the presence of the factor L >3 1 relating the horizontal and
vertical coordinates in equations (3.2) and (3.7) implies that all ‘pairwise’ comparisons,
such as d,,u <€ 04, uscd Lo simplily the Navier—Stokes ¢quation in the long-wave
approximation are satisfied; a direct comparison of v and w is not required for
the validity of this approximation, and closed streamlines, such as those in figure 8,
do not violate the conditions required by the theory. In particular, the long-wave
approximation remains valid m a moving reference frame, used in the following
scction to study the inlluence of vibration on a flowing [ilm on a slightly inclined
substrate.

5. Thin film on an inclined plane
5.1, Stationary states
When the substrate is slightly inclined in the x-direction, a driving term due to
gravitalional acccleration has (o be incorporated in equation(3.22), yiclding
0ch = =4V ARV [Vh+ V(hVh + LVA]) — f(h)]} —ah’ah. (5.1

ITere «/f is the inclination of the substrate relative to the horizontal; f(k) is
unchanged and defined as in (3.23).



Stationary solutions in one dimension in a frame moving downstream with velocity
v therelore satisfy the equation

h-$ fif ir n r 2
?{(1 + VIR +2VRE — U +at —vh + Co =10, (5.2)

Here A depends only on the comoving variable & =x — vr, and €y is a constant of
integration that, in contrast 1o the reflection-symmetric case « = 0, cannot be scl
to zero. The constant Cy may be identified with the flux of liquid in the comoving
system, We choose

Co= — %hguf + vhy = Iy + vhy, (5.3
corrgsponding 1o a uniform film of thickness Ay The corresponding flux in the
laboratory frame is then given by I, = —hj /3. Note that for a given value of I}
there may be a second homogencous solution with the same tlux, given by

» 1 [3v 3
ho = hy| —= = — =, 54
¢ 0( 2+v ahy, 4) (34)

where iy specifies the value of I Such a solution is present whenever v/ohi = 1/3,
and allows for shock or front solutions. It corresponds to the so-called conjugate
solution, as discusscd in the [alling (ilm context, for instance, by Chang (1989) and
Neguyen & Balakotaiah {2000).

Spatially periodic wniformly travelling solutions of equations (5.2), (5.3} can be
found analytically for small amplitudes and computed using continuation (IDoedel
et al. 1997) in either the period L or one of the other dimensionless parameters of the
problem, As before we fix the mean film thickness to A =1 mmplying a dependence
of the constant Cy on the other parameters. The resulting nonlinear solutions solve
a nonlincar cigenvalue problem for the speed » specified by equation (5.2) subject to
periodic boundary conditions with period L.

To solve this problem in the weakly nonlincar regime we let =1+ 8y + €8, +
38+, where 0 < ¢ <1 and the 83, j = 0, have zero mean in order to ensure mass
conservation. We must also expand v and €y in powers of €2 v =uvy+ vy + v+ ...,
Cy— v +(a/3)=¢?Ky+.... Thus K> represents a correction to the [lux required by
mass conservation,

At O(e) we obtain the lincar problem

Fy =21+ V)5 — L N8 + (o — ve)dg = 0. (5.5)

Hcre primes on the variable 8, indicate derivatives with respect (o £ while those on f
indicate derivatives with respect to h and evaluated at £ =1, Fiquation (5.5) is solved
by 3y = a sin k&, where

(1+ WV + 771 =0, vy = . {(5.0)
This equation determines the threshold for the instability. For example, in a periodic
domain of length L we must have k=&, = 2ran/L, n=1,2,.... In the following

we shall be interested in values of L close the corresponding critical values

L,=2an /(T +V)/f ). n=1,2,...,namely L=L, +¢p.

At next order we solve the problem

L8 = —(L4+3V)8e8y" — V88 + (1) + S F7(1D) 808 — ady + vid — K2 (5.7)



3i = a*(Asin2kE + Beos2kg), v =0, K, =-lda, (5.8)
where
o L v == vy
WM T apm [TV ' (59)

Finally, at @{¢*), we have 1o solve the problem %48, = Na(8q, 8, ). The selvability
conditions at this order yield

—1 (/M + LY. (510)
B (2 4VICA+ L) L) kA + (4 - Be. G5.1)

o=

Here k=%, = 2an/L,, and

3GMBI 3GMBI(1 + 3Bi)
M= SOMBL gy _ ’
F 2(1+ Bi)’ S 2(1 + Biy’
3GMBI(1 + 4Bi + 6BF)
S == (1+ B)* ' (512)

We can think of equation (5.10) as an equation for g given «. It follows that if & = 0
the bifurcation s supercritical, while if ¢ < 0 it is subcritical. The case =0 is
therefore the transition case and corresponds to

2

Pz

"

= LI+ £ = LY + LA £ ). (5.13)

This condition can be viewed as an equation for egither M or V or indeed «; its
predictions agree well with numerical computations, as discussed next.

These solutions can be extended into the fully nonlingar regime using numerical
continuation. This 1s most easily done by starting from the neutrally stable solutions
of the lincarized problem, ic. sinusoidal solutions with period L. =2r/ &, where k. is
given by equation (4.4), or equivalently by equation (3.6). We may start from a solution
consisting of just onc period L. or from a ‘replicated” solution with period sl where
n is an integer. We call the resulting solution branches emanating from the zero
amplitude state (uniform film) #-mode primary branches. Branches bifurcating from
these in secondary bifurcations are called sccondary solution branches. The a2 > 1
primary branches can be obtained directly from the n =1 branch by multiplying the
solution period by a. Solutions on such branches have ‘internal symmetry’ Z,, in
addition to the SO(2) symmetry due to translation invariance of the system. The
secondary bifurcations either respect the discrete Z, symmetry (in which case they
correspond o saddle-node bilurcations) or break i, creating a sccondary branch of
lower symmetry,

We focus here on the n=1 primary branches, a selection of which is shown in
figure 9. Fach panel shows curves for different values of V for a fixed inclination
angle o and G=1.0. Bi=0.5, M =3.5. The figure shows that increasing ¥V at fixed
a changes the bilurcating branches and the corresponding film profiles in a way
that resembles qualitatively the changes found for V =0 when « increases. Thus the
presence of vibration does not lead to qualitatively new types of behaviour.
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HGURE Y. The »=1 solution branches obtained by continuation from small-amplitude
solutions for different values of @ and V when G =10, Bi=0.5, M =3.5, and {a) o« =0.01,
(b) 0.07, () O.1, {d} 0.19, (&) 0.29, () 0.5 {a—[) The values of 77~ correspond to the legend
in (a).

For small o (figure 9a) an increase in V has a similar effect as on the horizontal
substrate, namely the vibration decrcascs the L» norm of the profiles. Figures 10(a)
and 10{b) show that as the vibration number increases for fixed ¢ the drop profile
begins to resemble a spherical cap. At the same time the internal circulation penetrates
much deeper into the drop. Moreover, the drift velocity v of both nucleation and drop
solutions of fixed period decreases with increasing vibration (figure 11a), primarily
because oscillations in the mesoscopic contact angle tend to pin the siate i place.
ITowever, the situation for the surface wave states present at larger inclinations o
is quite different (see below), largely because for these states the mesoscopic contact
angle is unimportant.

Provided « is not too large (figure 9a ¢) an increase in V induces a transition from
large-amplitude sliding drop solutions (o small-amplitude surface waves. This rellects
the transition from a Cahn-TTilliard-type dynamics to a Kuramoto—Sivashinsky-type
dynamics described by Thiele & Knobloch (2004), and is accompanied by a change in
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Ficure 10. Drop profiles with associaled sireamlines in the comoving [rame. (a, ) o =0.01,
and (¢, d) « =0.1. The parameters are L =80, G=1.0, Bi=0.5, M =3.5 and V =0 for (a.c),
and V=20 for {b,d). The streamline intervals and drop velocities v are (a) Ay =0.005,
v=0.01L, (h) Ay =0.005, v=0.0063, (¢} Ay =0.005, v =0.072, and (d) Ay =0.01, v =0.099,
Solid (dashed) streamlines represent clockwise (counter-clockwise) flow; dotted lines in (@) show
intermediate clockwise streamlines with A =0.001,

the character of the primary bifurcation from subcritical to supercritical at V =V,
given by cquations (5.13) and (5.6). This dramatic change in the surlace profile is
accompanied by a similarly dramatic change in the flow pattern (cf. figures 10¢ and
10d). In the absence of vibration (V =0) the drop is flat, with a capillary ridge at
the lcading [ront, above a pair of strongly asymmelric convection rolls; behind the
capillary ridge the streamlines are nearly parallel, while at the back of the drop there
is again a stronger upward flow driven by the surface tension gradient. In contrast,
when V is increased to V =20 the drops are replaced by a freely flowing film with a
small surface undulation and streamlines that are almost parallel {figure 10d). This
slale is similar to the surlace wave stales present al larger inclinations when V =0,

Tor large « (figure 9 /) surface waves dominate already for V =0. As V increases
their amplitude decreases while their spatial period increases. Since the amplitude of
the surface deflection is reduced, vibration makes the film less unstable, Tn addition
the drift velocity v increases with increasing vibration (figure 115) largely because it
augments the effective gravitational acecleration acting on these states.

The overall change from drop-like solutions to surface waves with increasing
inclination or vibration strength can be captured by focusing on the loci of the
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Frqure 11. The drilt velocity along the # =1 solution branch lor diflerent values of 'V and
{¢) ¢=0.01 (nucleation states above, drop states below), (») ¢ =0.5 {surface waves). T'he
parameters are G =1.0, Bi=0.5, M =3.5.

main saddle-node biturcations and the change from sub- to supercritical primary
bifurcation. Figurc 12(a) shows these loci as a function of V for dillcrent «
whereas figure 12(b) compares the analvtical prediction (3.13) for the transition
from subcritical to supcreritical primary bifurcation o the numcrical results, For
very small inclinations, « =0.01, only on¢ saddle-node bifurcation is present, and
this moves towards larger periods with increasing V. Thus the primary bifurcation is
subcritical, and il remains so until V = 760, The ligurc shows that the distance (on
a logarithmic scale) between the saddle-node and the primary bifurcation remains
approximately constant. Thus the range of periods with unstable nucleation solutions
increases with increasing V (cf. figure 9a).

For larger inclinations, e.g. o =0.1, the primary bifurcation becomes supercritical
as indicated by the appcarance of the upper dashed line in figure 12(a). This linc
represents the Toci of the right-most saddle-node bifurcations (¢f. figure 9). In contrast,
the locus of the left-most saddle-node bifurcation remains essentially unchanged. This
implies that for larger ¥ there is a large range in /. where stable surface waves and
drop-like states coexist. However, as « increases yet more this coexistence range
shrinks drastically. For cxample, for ¢ =0.19 the transition from sub- to supcrcritical
primary bifurcation occurs at V = (.8, indicating the appearance of surface waves,
while the left-most saddle-node hifurcation moves off to infinity when V = 6. No
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HGure 12, (a} Loci of the main saddle-node bifurcations on the » =1 primary branch in the
(V, LY-plane for different inclinations . T'he thin detted line denotes the primary instability of
the flat film solution. {(#) The transition from sub- to supercritical primary bifurcation in the
(V,aj-plane obtained analytically {equations (5.13) and (5.6)). The solid circles correspond to
the numerical results shown in (a@). The parameters are G =1.0, Bi=0.5 M =3.5.

drop-like states can exist beyond this value of V. The oscillation in this curve reflects
the formation of an 1sola of solutions: at V = 3.2 an isola detaches from the primary
branch near the left-most saddle-node in a reverse ‘necking’ bifurcation. The resulting
loop of stationary states shrinks and vanishes at V =~ 5.7,

At even larger inclinations, o =0.29, the primary bifurcation is always supercritical
(cf. figure 9¢), and the upper dot-dashed line in figure 12{a) no longer reaches the
thin dotied line, An isola 13 present atl small V, but only surface waves are present
for V = L&

5.2. Linear stability

We next turn {o the lincar stability propertics of the stationary selutions obtained in
§5.1 for the inclined substrate. Because we are interested in the overall influence of
vibration we restrict our attention to the a =1 primary branch, i.e. we do not study
instabilitics lcading to coarscning; (or the latier we would have o investigate the
stability properties of » = 1 primary branches as well,

To determing the stability propertics of the stationary nonlincar solutions hp(&)
of equation (5.2) obtained in §5.1 we write £(&) = ho(¥) + chy(£) e, where k) is an
infinitesimal perturbation of #, in the frame moving with the velocity v. Equation (5.1)
in on¢ dimension, lincarized in ¢, yiclds an cigenvalug problem for the growth rate #
and the associated eigenfunction i(£):

By = Llho, b by k' By VR (5.14)

where L is a fourth-order linear differential operator acting on the perturbation hy (&)
whose coeflicients depend nonlingarly on Ay and its spatial derivatives.

The solution of this problem s again based on continuation techniques. The
cigenvalucs and cigenfunctions arc obtained in a threc-step procedurc. First, we
determine Ao as described in §3.1. Second, the eigenvalue problem is discretized in
space using equidistant discretization and solved numerically. However, this technique
is severely limited in its applicability because it lacks accuracy for large periods or
steep profiles ho(é) and, more generally, for small eigenvalues A. To avoid these
diflicultics we¢ cmploy in a third step numcrical continuation of the solution of the
nonlingar gigenvalue proablem (5.2) together with the linear e¢igenvalue problem (5.14).
The complete system used in the third step therefore consists of eleven first-order
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Fraure 13. The lincar stability of # =1 stalionary solutions of dillerent periods as a [unction
of the vibration number V for (a) @ =0.19 and () @ =0.4. 'The solid lines delimit the instability
region (shaded) and correspend to stationary instability in the comoving frame. 'I'he dashed
lines indicate the location of subsequent oscillatory instabilities. The dotted line in (@) indicates
the locus of the saddle-nede bifurcations at which the primary branch acquires stability, while
Lthe dotied line in {b) corresponds Lo the primary (supereritical) bifurcation. Thus in (b)) n=1
solulions exislt only above the dotled line. The parameters are G =1.0, Bi=0.5 M =3.5.

differential equations (three for iy and four for the real and imaginary parts of ki,
respectively). Using this procedure with the result of step two as a starting point we
can calculate both Ay and Ay, and the associated eigenvalues v and £, in parallel
for any system parameters. Moreover, points of special interest, such as the location
of zero growth rate (i.e. bifurcation points), can also be followed through parameter
space.

As a gencral tendeney we {ind thal incrcasing the vibration number V stabilizcs
the stationary solutions. TTowever, there are small ranges of V in which the opposite
happens. We illustrate these conclusions in figure 13 computed for two inclinations «.



Iigure 13{a), for o =0.19, summarizes the linear stability properties on the upper
part of the n =1 primary branch (¢l ligurc 9d). The branch is stable with respect Lo
real modes but becomes unstable to a variety of oscillatory modes as I increases.
When V = () there is a small unstable region near L = 1Q; thereafter the branch is stable
up to an instability threshold L. = 20, As L increases, more and more oscillatory
modes become unstable. Thus the branch is unstable for I. > L.. As V increases the
instability intcrval ncar £. = 10 starts 1o shrink and ¢ventually vanishes when Vo= 0.7,
The instability threshold £, initially moves towards larger periods leaving a larger
range of stable solutions. However, between V o~ 2 and V =~ 3 the threshold shifts
shightly towards smaller L, decrcasing the range ol stable solutions. Onee Vo> 3 the
stationary solutions correspond to surface waves and L, moves rapidly towards larger
periods as Voinercascs, indicating that vibration has a strong stabilizing mflugnce on
these states. At 1. = 250 and ¥V = 4.9 the instability thresholds for different modes
start to cross, with the fourth oscillatory mode eventually becoming dominant. It is
this mode that destabilizes the high-£ part of the n =1 branch once V = 5.2,

Iigure 13(h) shows the corresponding results for & =0.4. In this case all states are
surface waves, The figure shows that these states are always stable with respect o
real modes but become unstable to oscillatory ones as I increases. The instability
threshold L. is determined by two ditterent oscillatory modes. At small V, V < 1.7,
the instability is dominated by a mode that 1s unstable ¢ven when V =0, In facl,
there is a very small range of V, 0 < V « (0.1, where I.. decreases with increasing V
(from 62.5 to 61.3). For ¥V == 1.7 a different mode takes over that is not present when
V =0. Between V = 3 and V = 4 a small but finite range of stable periods exists near
L =380, but for larger V the threshold L, increases monotonically, confirming again
that vibration has a generally stabilizing influence.

6. Concluding remarks

In this paper we have derived, using lubrication theory. an evolution equation
describing the cllect of high-frequency verlical oscillation on a thin flm on cither
a horizontal substrate or a slightly inclined one. The equation incorporates, in
addition to vibration. thermocapillary effects, hydrostatic and Laplace pressure, and
gravitalional driving when the substrate is nclined, and represents a new thin-film
gquation, The eguation was derived under the assumption that short-wave Taraday
instability is abscnt, and conscquently that the only modes of intercst arc long
wave. [n addition we assumed that the short-wave Marangoni instability (Golovin,
Nepomnyashchy & Pismen 1994) is also absent. The former assumption is not very
restrictive; the latter restricts the practical application of our analysis to films that
are not too thick. TTowever, the film cannot be too thin either, in order to justity
our omission of van der Waals interaction with the substrate. For films of thickness
100 nm or less the resulting disjoining pressure can be included in a straightforward
tashion (Bestehorn er al. 2003). However, our theory applies to films this thin only
[or extremely high vibration frequencics, w' = 10%0 s~' for A= 100nm.

Our study of the resulting evolution equation revealed that normal vibration has in
general a stabilizing influence. This is so for (a) a flat film on a horizontal substrate, (H)
stationary drops on a horizontal substrate, (¢) sliding drops on an inclined substrate,
and (4) surface wave states on an inclined substrate. In particular, vibration raises
the thresheld wavelength for (he instability of flat lilms and decreases the mesoescopic
contact angle of drops while smoothing their profile and decreasing their height (cf,
figure &). Vibration also moves the drop states to larger periods, ie. a stationary



Fluid H1 70 Silicon oil 5¢8 Silicon oil 10cS

Deunsity p (kg/m*} 1680 920 v40

Kinematic viscosity v (10 ¢ m?/s) 0.5 50 10.2

‘Thermal diffusivity « (107% m®/s) 0.043 0.00% 0.1

Surlace tension gradicni y =do/dT NA NA 0.69
(107 kg/s*K)

Surlace tension oy {kg/s%) 0014 0.0197 0.0201

TasLE 1. Malerial parameters for 5¢8 and 10§ silicon oil, and lor HT70, taken [tom VanHook
et al. {1997); Engel & Swilt (2000); Juel et al. (2000). HT70 is a perfluorinated hydrocarbon
{also called a Galden fluid).

vibrating drop cannot exist if’ its volume is too small. [Towever, the resulting drop-like
states may be more subcritical than in the absence of vibration. At larger inclinations
vibration cant turn subcritical primary bifurcations into supcreritical ones, and
generally makes such bifurcations more supercritical, thereby favouring surface waves
over drop-like states. Thus vibration shifts the transition from Cahn Hilliard-type
dynamics to Kuramoto-Sivashinsky-type dynamics described in Thiele & Knobloch
{(2004) towards smaller inclination angles. At the same time vibration improves the
mixing propertics of Marangoni convection, particularly in large droplets, an ellect
that may have imporiant consequences for drops consisting of binary mixtures where
concentration effects can modify not only the surface tension but the static or dynamic
contact angles as well.

At present there are no experimental studies of the influence of high-frequency
normal vibration on long-wave Marangoni instability or on drop shapce on a heated
substrate. Even in the absence of vibration, experiments on the long-wave Marangoni
instability of a thin liquid laycr or the behaviour of sitling drops on a heated horizontal
substrate are relatively sparse (VanlTook er al. 1995, 1997). To our knowledge no
cxperimental results are available on the dependence of the contact angle of silling
drops on substrate temperature or of the instability wavelength on the temperature
and film thickness. Such investigations are worthwhile, however, and could be used to
study the influcnce of high-frequency vibration. In the following we suggest a possiblc
experiment of this type.

Table | lists matcrial parameters for specilic fluids used in ¢xisting Marangoni
experiments, Typical values are x =0.05 x 107°m*s™! (note that the Prandil number
can be large), p =1000kgm °, 0y =0.02kgs 2, and y=1.0 x 10 *kgs * K L. A
typical range lor the imposed temperature dillerence 1s 0.05 < 87 < 5.0 K, whilc the
thickness of the flat film satisfies 30 < 4 < 230pm (VanlTook et al. 1993). The
requirement that the parameter G in equation (3.20) be equal to 1 {assumed here)
leads to a value of the horizontal length L*=0.0013m. If we take 4" =150m,
then the requirement that V ~ 1 in equation (3.20} leads to a’w* =0.55ms !. With
these values the requircment that points below the marginal instability curve in
figure 1 be stable to the Taraday instability leads to the condition that @* fe™/v <1,
requiring that w'v = 3000. Thus o’ p?v?/of 3 100. Typical parameter values leading
to points in the Faraday-stable regime are then the following: (a) v=0.003m?s",
w=100s ! &’ =55mm; () v1=0.0003m’s !, w=1000s ', & =0.55mm; or {c) v =
(0.00003m?s™!, @ =10000s"", a* =0.055mm. If instcad, wec require that vV ~ 20 (as
in many calculations in the paper), then a*w ~24 ms™", and o v must be greater than
60000, which leads to (a) v =0.06m’s 1, 0 =100s !, ¢’ =24mm; (b} v =0.006m>s 1,



w=1000s ', ¢"=2.4mm; or {¢) v=00006m"s !, @=10000s !, & =024mm. We
arc awarc thal somc of these combinations of & and «* can be diflicull 1o attain
in practice, but they provide an indication of the requirements of the theory. On the
other hand, the requirement that M ~ 1 yiglds 7 — 17" ~ 2K, which agrees well with
existing long-wave Marangoni experiments (Vanllook et al. 1997}

The proposed experiments could be used on the one hand to study the influence
of vibration on long-wave Marangoni instability in large-aspect-ratio domains, and
on the other hand to study the characteristics of individual sitting and sliding drops
undcr the mfluence of heating and vibration, In the former the interesting questions
range from the suppression of the initial surface instability to the effect of vibration
on long-time coarsening behaviour; in the latter case theory predicts that on an
inclingd substrate the transition [rom drop-like states 1o surface waves should be very
sensitive to vibration.

The thin-film model incorporating vibration derived here can be extended (o the
study of a number of interesting open questions concerning the effect of (normal)
vibration on the dynamics of thin liquid films, including moving contact lines
(Huh & Scriven 1971), coarsening dynamics {Besichorn et ol 2003; Mcerkt et al.
2005) and modes of instability of multilayer films (Pototsky et al. 2004, 2003). In
particular, the influence of vibration on various transverse instabilitics of advancing
and receding contact lines (see, for instance, Cazabat et al. 1990; Brzoska, Brochard-
Wyart & Rondelez 1992; Spaid & Homsy 19%6; Veretennikov, [ndeikina & Chang
1998; Bertozz et al, 1998; Dicz, Kondic & Berlozz 2001; Thicle & Knobloch 2003)
is of particular interest, both from a fundamental point of view and for practical
applications. We also anticipate applications of the theory to the problem of levelling
of a rough liquid surface (Schwartz et al. 1996), where we expect that an initially
rippled stable thin liquid layer will level faster in the presence of vibration because
the effective increase in surface tension ‘hardens’ the surface. Finally, we also expect
that instabilities due to localized or heterogeneous heating (Kabov 1998; Skotheim,
Thicle & Scheid 2003; Kalliadasis, Kiyashko & Demckhin 2003) may be controlled
through the use of vibration, reducing for instance the probability of dry spots in
hcal cxchangers.

This research was supported in part by DGES, NASA and EU under Grants
M ITM2004-03808, NNC04GA47G and MRIN-CT-2004-005728.

Appendix. Effect of thermal expansion

In the derivation of the evolution equation we have neglected buoyancy effects due
10 density changes i the body of the film. To justify this assumption wc permit the
density to depend on temperature according to p=pp|l — (7" — T3}, and include
the resulting density changes whenever they couple to (frequency-modulated) gravity.
This assumption constitulcs the Boussinesg approximation and is amply satisfied in
thin films, With the resulting additional term the vertical momentum eguation (2.3)
is replaced by

w4+t Voo + wiyw = —d.p +Vw + i?i w — e(% + aw’ cos wtH. (6.1)
where
e=plIy — 1)<l (6.2)

is a measure of thermal expansion, and is related to the Rayleigh number, Ra =
BT, — TM)d™ flkyv) = e%Pr. Proceeding as in § 3, we replace equations (3.8¢) and



{3.12a) by

: Vi .
3, p, = fga\,. d.p, = —|%0, + ?'(00 L) in0«z <k (6.3)

and the boundary condition (3.14h) by
Ps — % l{g0; + 1)h, + e(h, — Do, + e — G(h, — 1)+ FVh, =0 atz=h,. (64)

Since & is small but % cannot be too large {in order to avoid stabilization by gravity
waves (Davis 1987) the new terms introduced by thermal expansion contribute only
small corrections Lo the results oblained 1n §3.
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