
SWSDesigner: The Graphical Interface of ODESWS

Asunción Gómez-Pérez1, Rafael González-Cabero1, Manuel Lama2

1Departamento de Inteligencia Artificial, Facultad de Informática.
Campus de Montegancedo s/n, Universidad Politécnica de Madrid, 28660 Boadilla del Monte,

Madrid. Spain.
asun@fi.upm.es, rgonza@delicias.dia.fi.upm.es

2Departamento de Electrónica e Computación, Facultad de Física.

Campus Sur s/n, Universidade de Santiago de Compostela, 15782 Santiago de Compostela,
A Coruña.

lama@dec.usc.es

Abstract. ODESWS is a development environment to design Semantic Web
Services (SWS) at the knowledge level. ODESWS describe the service follow-
ing a problem-solving approach in which the SWS are modelled using tasks, to
represent the SWS functional features, and methods, to describe the SWS inter-
nal structure. In this paper, we describe the ODESWS graphical interface
(called SWSDesinger). This interface enables users to design SWS independ-
ently of the semantic markup language in which the service will be imple-
mented, and once the design has been export the service to an SWS implemen-
tation language.

Introduction

Currently, there are some proposals to edit/design SWS, but the main drawback of
these available editing tools is that they work at the representation level. Cosecuently,
these tools are language-dependent, like the WSMO Editor [1], this means that: (1)
SWS designed with these tools are less reusable; (2) the designs are more prone to
inconsistencies or errors; (3) the design can be constrained with the chosen language
characteristics. Also, many tools that claim to be SWS editors are no more than on-
tology editors, like the widely used option of OWL-S development with the OWL
plug-in for Protegé-2000 [2]. This option not only suffers from all the problems enu-
merated above, but also adds the problem of working with an ontology instantiation,
not with a SWS-like structure.

To solve these problems, we have proposed a framework, called ODESWS[3], for
the design of SWS at the knowledge level, which is language-independent. This
framework is based on: (1) a stack of ontologies that describe explicitly the different
features of SWS; (2) a set of axioms used to check the consistency and correctness of
the service descriptions; and (3) the assumption that a SWS are modeled as a prob-
lem-solving method (PSM) that describes how the service is decomposed into its
components, and which is the reasoning process that describes the service execution.

We also have implemented this framework, creating the ODESWS environment
[3][4].

In this paper we describe SWSDesigner, the user interface of the ODESWS envi-
ronment.

SWSDesigner, the ODESWS graphical interface

The design of SWSDesigner has been inspired in the classical modelling of the prob-
lem-solving methods, so it contains hierarchical trees of tasks-methods, input/output
interaction diagrams among the sub-tasks that compose a method, and diagrams to
specify the control flow that describes the coordination of the execution of the sub-
tasks. Taking this into account, in the SWSDesigner we distinguish the following
general components:
• Trees show the hierarchy of the knowledge components needed to define the

service, such as tasks, methods, and ontologies.
– Tasks and methods trees (right part of Figure 2) allow users to just create the

tasks and methods associated with a service, describing its functional features
in the case of tasks, and internal structure in the case of methods. Once tasks
and methods have been created, from these trees the user could drag the icons
representing a task or method and drop them in the diagrams as needed.

– Ontology trees (left part of Figure 2) show the concepts and attributes of the
ontology (or ontologies) used to specify the service input/output roles. Then,
the user could drag the icons representing a concept/attribute and drop them in
the diagrams that enable the specification of the input/output roles of both
tasks and methods.

• Views allow users to specify all the features of a service, and they are represented
as tabs (see the upper part of Figure 2):

– Service definition View is used to specify the functional and non-functional
features of a service, containing its input/output roles (interaction diagram),
pre/post-conditions (logical diagram), providers, commercial classification,
geographical location, and quality rating parameter.

 (a) (b)

Fig. 1. A method (a) is composed of a set of sub-tasks, which are solved by other methods; and (b) defines the
coordination of the execution of the sub-tasks (usually with workflows).

– Decomposition View (Figure 1 a) allows users to specify the decomposition of

the method (that solves the task associated with the service) into its sub-tasks,
which will be solved by other methods, and so forth. The user carries out this
specification by dragging the icons of the tasks and methods from the related
trees and dropping such icons into the view.

– Knowledge Flow View allows users to define the input/output interactions
among the sub-tasks of a method: the user, when requires, connects the output
of a sub-task to the input of other sub-task, and establish the mappings be-
tween the roles used in the definition of a sub-task (carried out in the service
definition view) and the roles named when such sub-task is used as an internal
component of a method. For example, City could be an input role of the task
Task_FindCinema and when that task is used as part of the method
Method_BuyMovieTicket, its input role could be named as selectedCity. In this
view, the user also defines the mappings between the roles of a method and
the roles of the task solved by that method: the role names of methods and
tasks could be different.

– Control Flow View (Figure 1 b) enables users to describe the control flow of
the method. The elements of this view are the sub-tasks of the method, which
are dragged-and-dropped from the task tree, and the workflow constructions
(if-then, while-until, split and join), which are introduced through a contextual
menu.

Once the user has designed the service following all the complementary views
provided by the SWSDesigner, it is necessary to translate that service from the
graphical representation into a semantic-oriented language such as OWL-S or
WSMO. To enable this translation, the SWSDesigner invokes the SWSInstanceCrea-
tor execution, which uses the graphical model of SWS to create the instances of the

Fig. 2. Knowledge Flow View of a method in SWSDesginer.

Tasks
Tree

Ontologies
Tree Knowledge

Flow
Diagram

Views
Tabs

SWS description ontologies. Then, SWSTranslator is invoked to translate these in-
stances into the language selected by the user (currently OWL-S).

Conclusions

The tools that currently enable users to design SWS depend on the capabilities of
representation and reasoning of a specific SWS-oriented language. Those tools are
constrained by the language expressiveness; the service must be designed using the
capabilities provided by the language in which will be expressed. Furthermore, users
usually introduce both errors and inconsistencies, which could be minimized using
tools that operate at the knowledge level.

To solve these problems we provide tools to facilitate the design SWS in a lan-
guage-independent manner. For it, we have developed the ODESWS conceptual
framework and the environment that supports such framework. Once the service is
completely designed using SWSDesigner it will be checked to detect inconsistencies
and/or errors that could be present in the user design. If they are not detected, user
will select the language in which the SWS will be expressed, and it will be automati-
cally created.

Acknowledgements

This work has been partially financed by the Esperonto project (IST-2001-34373) and
by a grant provided by the Community Autonomous of Madrid.

References

[1] Lausen, H., Felderer, M., and Roman, D., eds. (2004), “Web Service Modeling
Ontology (WSMO) Editor”, Available: http://www.wsmo.org/2004/d9/v01

[2] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, Mark A. Musen (2004)
 The Protégé OWL Plugin: An Open Development Environment for Semantic Web Appli-

cations Third International Semantic Web Conference - ISWC 2004
[3] A. Gómez-Pérez, R. González-Cabero and M. Lama (2004): ODE SWS: A framework for

designing and Composing Semantic Web Services. IEEE Intelligent Systems, 19(4):24-31.
[4] O. Corcho, M. Fernández-López, A. Gómez-Pérez, and M. Lama (2003): An environment

for Development of Semantic Web Services. Proceedings of the IJCAI-Workshop on On-
tologies and Distributed Systems, Acapulco, Mexico.

[5] A. Gómez-Pérez, R. González-Cabero, and M. Lama (2004): Development of
Semantic Web Services at the Knowledge Level. ECOWS. Erfurt, Germany.

