Deep Neural Networks for Vehicle Driving Characterization by Means of Smartphone Sensors

Tesis Doctoral

Sara Hernández Sánchez
Ingeniera de Telecomunicación

2020
DEEP NEURAL NETWORKS FOR VEHICLE DRIVING CHARACTERIZATION BY MEANS OF SMARTPHONE SENSORS

Autora: SARA HERNÁNDEZ SÁNCHEZ
Ingeniera de Telecomunicación

Directores: LUIS ALFONSO HERNÁNDEZ GÓMEZ
Doctor Ingeniero de Telecomunicación
RUBÉN FERNÁNDEZ POZO
Doctor Ingeniero de Telecomunicación

Madrid, 2020
Department: Señales, Sistemas y Radiocomunicaciones
Escuela Técnica Superior de Ingenieros de Telecomunicación
Universidad Politécnica de Madrid (UPM)

PhD Thesis: Deep Neural Networks for vehicle driving characterization by means of smartphone sensors

Author: Sara Hernández Sánchez
Ingeniera de Telecomunicación (UPM)

Advisors: Luis Alfonso Hernández Gómez
Doctor Ingeniero de Telecomunicación (UPM)
Rubén Fernández Pozo
Doctor Ingeniero de Telecomunicación (UPM)

Year: 2020

Board named by the Rector of Universidad Politécnica de Madrid, on the … of ……………. 202….

Board:

After the defense of the PhD Thesis on the … of ……………. 202…, at the E.T.S.I. de Telecomunicación, the board agrees to grant the following qualification:

The research described in this Thesis was developed at “Grupo de Aplicaciones de Procesado de Señales” (GAPS) between 2016 and 2020. This work was partially funded by the 2016 FPI scholarship from the Spanish Ministry of Science and Innovation (MICINN) and the European Union (FEDER) as part of the TEC2015-68172-C2-2-P project. The author is grateful to Jesús Bernat Vercher for his support and assistance and to the Telefónica I+D and Drivies (PhoneDrive S.L) for supporting the driving research and allowing access to the journey databases.
Resumen

La presente Tesis analiza la caracterización de la conducción a través de los acelerómetros presentes en los smartphones de los conductores, aplicando técnicas de Deep Learning. Mediante esta investigación se estudia tanto las posibilidades de los acelerómetros para llevar a cabo dicha caracterización, como la habilidad de las herramientas de Deep Learning para aprender dichas características.

La mayoría de las investigaciones abordan la caracterización de la conducción empleando un gran número de sensores, siendo necesario frecuentemente tanto instalar equipamiento extra para capturar dichas señales, como tener acceso a la información procedente del vehículo. A pesar de que las señales de los acelerómetros son ampliamente utilizadas, por ejemplo para tareas de reconocimiento de actividad o sistemas de asistencia inteligente, éstas suelen ir acompañadas de otras de diversa naturaleza. En concreto en el campo de la conducción, la mayoría de los trabajos emplean señales procedentes del CAN bus del vehículo, como señales de los pedales de freno y aceleración, información del volante, el motor o el combustible, entre otras. También es habitual el uso de señales de localización, como es el caso del Sistema de Posicionamiento Global (GPS), o sensores de movimiento, como el giróscoplo y el magnetómetro.

Las Redes Neuronales se han convertido en el estado del arte de muchos problemas de Machine Learning. Estas redes están formadas por neuronas o redes de neuronas, donde cada una de ellas actúa como una unidad computacional. Como se conectan las neuronas está relacionado con el algoritmo de aprendizaje empleado para el entrenamiento. Principalmente hay tres tipos: redes de alimentación de una sola capa, redes de alimentación de múltiples capas y redes recurrentes. Para nuestro estudio dentro de la Tesis nos hemos centrado en las redes multicapa y en las recurrentes. Más en concreto en los Perceptrones Multicapa Convolucionales, o como se conocen habitualmente Redes Neuronales Convolucionales (CNN), y en las Redes Long Short-Term Memory (LSTM) y Gated Recurrent Unit (GRU), dentro de las Redes Neuronales Recurrentes (RNN). Cada uno de estos tipos de Red Neuronal posee unas cualidades diferentes para reconocer patrones. Las CNNs están especialmente ideadas para reconocer formas bidimensionales con un alto grado de invarianza a diferentes formas de distorsión (como la traslación o la escala), mediante tres pasos habituales: la extracción de características, el mapeo de características y el submuestreo. Las RNN son sistemas no lineales, caracterizados por presentar al menos un bucle de retroalimentación. Han demostrado ser muy eficaces extrayendo patrones cuando los atributos de los datos son muy dependientes unos de otros, ya que estas redes comparten parámetros en el tiempo. En (Bengio & LeCun, 2007) argumentan que las arquitecturas profundas presentan un gran potencial para generalizar de manera no local, lo cual es muy importante en el diseño de algoritmos de aprendizaje automático aplicables a tareas complejas. Consideramos que la caracterización de la conducción es una tarea altamente compleja, por lo que confiamos en las redes profundas como una buena herramienta de extracción de patrones y autentificación del conductor.
En este trabajo hemos analizado dos problemas duales para abordar la caracterización de la conducción: la determinación del comportamiento del conductor y la autentificación del conductor. Partiendo de la hipótesis de que cada conductor posee un comportamiento único, creemos que la extracción de sus patrones característicos permite tanto analizar el tipo de maniobras o eventos que realiza, como reconocer a dicho conductor frente a otros. Normalmente esta autentificación o reconocimiento comprende tanto la identificación como la verificación del conductor.

Para realizar esta investigación, hemos recopilado dos bases de datos diferentes según la tarea a llevar a cabo. La primera de ellas para la caracterización de las maniobras, está formada por más de 60000 trayectos reales de conducción, de más de 300 conductores diferentes. Para la segunda, empleada para la autentificación de conductores, hay más de 23000 trayectos de un total de 83 conductores.

Los resultados obtenidos durante la Tesis demuestran la viabilidad de la caracterización de la conducción empleando únicamente los acelerómetros de smartphones de los conductores. Pocos trabajos han abordado dicha caracterización optimizando el número de señales empleadas, así como utilizando sensores que favorecen tanto el ahorro de energía como de coste. Incluso los pocos trabajos que han tratado la caracterización utilizando exclusivamente los acelerómetros incluyen condiciones adicionales, como que el smartphone debe ir colocado en una posición fija para poder identificar las direcciones de orientación durante la conducción. Nosotros desarrollamos un sistema alternativo a las tradicionales matrices de rotación, el cual permite mapear de un sistema de coordenadas del teléfono a un sistema de coordenadas del vehículo. A través de los procedimientos presentados durante la Tesis se han propuesto diferentes técnicas de clasificación de maniobras. Mediante métodos que permiten obtener las aceleraciones longitudinales y transversales de los acelerómetros crudos originales, hemos logrado precisiones del 90.07% en la asignación de estas señales. Para el reconocimiento del conductor también se han analizado arquitecturas de red habitualmente empleadas en otras tareas, como puede ser la clasificación de imágenes o el reconocimiento de voz. Muchos modelos pre-entrenados de la literatura así como muchas técnicas de aumento de datos han sido desarrollados para imágenes, pocos trabajos lo han aplicado sobre series temporales. Mediante nuestras pruebas contribuimos tanto al estudio de técnicas de transformación de señales temporales 1-D a imágenes 2-D, para poder utilizar potentes modelos pre-entrenados del estado del arte, así como al estudio de diferentes técnicas de aumento de datos en series temporales. Nuestros experimentos nos han llevado a resultados en el campo de la identificación de casi el 72% de accuracy para la base de datos de partida, y de casi el 76% para otra base de datos pública de la literatura. Mientras que en verificación se han alcanzado tasas de casi el 80% de precision y 74% de F1 score.

Con el presente trabajo se abren posibles líneas futuras que continúen con la caracterización de la conducción, para mejorar los sistemas de asistencia al conductor y contribuir hacia el camino de la conducción autónoma, mejorando la seguridad, la movilidad y los efectos medioambientales.
Abstract

This Thesis analyzes the driving characterization by means of the accelerometers present in drivers’ smartphones, applying Deep Learning techniques. This research studies both the accelerometer possibilities to address the characterization, and the ability of Deep Learning tools to learn these attributes.

Most research have addressed the driving characterization employing a large number of sensors, generating in many cases the need for both the installation of extra equipment in order to capture these signals, and the access to the vehicle information. Although accelerometer signals are widely used, for example for activity recognition tasks or intelligent assistance systems, these are often complemented by others to different nature. In particular, in the driving task, most works use information from the Controller Area Network (CAN) bus of the vehicle, such as signals from the gas and brake pedals, information from the steering wheel, engine or fuel, among others. It is also common the use of location signals, such as the Global Positioning System (GPS), or motion sensors, as the gyroscope and the magnetometer.

Neural Networks have become the state-of-the-art for many Machine Learning problems. These networks consist of neurons or neuron networks, where each of them acts as a computational unit. How the neurons are connected is related to the learning algorithm used for the training. There are mainly three types: single layer feedforward networks, multilayer feedforward networks and recurrent networks. For our research in the Thesis we have focused on multilayer and recurrent networks. More specifically in Convolutional Multilayer Perceptron, or Convolutional Neural Networks (CNN) as these are commonly known, and in Long Short-Term Memory Networks (LSTM) and Gated Recurrent Units (GRU), within the Recurrent Neural Networks (RNN). Each one of these types of Neural Network has different properties to recognize patterns. CNNs are especially designed to recognize two-dimensional shapes with a high degree of invariance to different forms of distortion (such as translation or scaling), using three common steps: feature extraction, feature mapping, and subsampling. RNNs are non-linear systems, characterized by presenting at least one feedback loop. These are very effective at extracting patterns when the data attributes are highly dependent on each other, since these networks share parameters over time. In (Bengio & LeCun, 2007), it is argued that deep architectures have great potential to generalize in a nonlocal way, which is very important in the design of Machine Learning algorithms applicable to complex tasks. We consider that driving characterization is a highly complex task, therefore we hope these deep networks will be a good tool for pattern extraction and driver authentication.

In this work we have faced two dual problems in order to address the driving characterization: the driver behavior description and the driver authentication. On the basis of the hypothesis that each driver has a unique behavior, we believe that the extraction of their characteristic patterns allows both to analyze the type of maneuvers or events
performed, and to recognize the driver against others. Generally this authentication or recognition includes both identification and verification of the driver.

We have collected two different databases according to the task under analysis. The first one, for the maneuver characterization, is composed of more than 60000 real driving journeys, of more than 300 different drivers. For the second one, employed for driver authentication, there are more than 23000 journeys out of a total of 83 drivers.

The results obtained during the Thesis demonstrate that the driving characterization is possible using only the accelerometer signals from drivers' smartphones. Few works have addressed this characterization optimizing the number of signals employed, as well as using sensors that promote both energy efficiency and costs. Even works that have carried out the characterization using exclusively the accelerometers include additional conditions, such as the need to place the smartphone in a fixed position in order to identify the orientation directions during the driving. We offer an alternative system to traditional rotation matrices, which allows mapping from the smartphone coordinate system to the vehicle coordinate system. By means of the procedures presented in the Thesis, different maneuver classification techniques have been proposed. Using methods that allow obtaining the longitudinal and transversal accelerations from the original raw accelerometers, we have achieved accuracies of 90.07% in the assignment of these signals. For driver recognition, network architectures commonly used in other tasks such as image classification or speech recognition have also been analyzed. Many pre-trained models of the literature as well as many data augmentation techniques have been developed for images, however few works have applied these techniques on time series. Through our tests we contribute both to the study of transformation techniques for 1-D time signals to 2-D images, in order to use powerful pre-trained state-of-the-art models, as well as to the study of different techniques to increase data in temporal signals. Our experiments have achieved results in the field of identification of almost 72% of accuracy for the baseline database, and almost 76% for another public database of the literature. Whereas verification rates have reached almost 80% of precision and 74% of F1 score.

This work opens possible future lines to continue with the driving characterization task, in order to improve driver assistance systems and to contribute to the autonomous driving, improving safety, mobility and environmental effects.
A mis padres, a mi hermano, a Javi y a Silvia.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>III</td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1. Background</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.2. Motivation of the Thesis</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.3. Goals of the Thesis</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1.4. Outline of the Dissertation</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2. Introduction to Deep Neural Networks</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2.1. Basic concepts of Machine Learning</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2.2. Introduction to Neural Networks</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2.3. Convolutional Neural Networks</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.4. Recurrent Neural Networks</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>2.4.1. Bidirectional Networks</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2.4.2. Long Short-Term Memory</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2.4.3. Gated Recurrent Unit</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>2.5. Chapter summary</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>3. Definitions and databases</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>3.1. Introduction to smartphone motion sensors for driving characterization</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>3.2. Definitions and procedures</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>3.3. Database and hardware/software specifications</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>3.4. Chapter summary</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>4. Driving maneuvers characterization</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>4.1. Related works in driving maneuver characterization</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>4.2. Obtaining acceleration forces in the vehicle reference system</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>4.3. Broad driving maneuver characterization</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>4.3.1. Energy-based maneuvers time detection</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>4.3.2. Maneuvers segmentation using fixed-length windows for Deep Learning models</td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>
4.3.3. Maneuvers segmentation using variable-length windows for Deep Learning models .. 52
4.3.4. Maneuvers segmentation using sliding windows for Deep Learning models ... 53
4.3.5. Windowing strategies comparison ... 57

4.4. Improved driving maneuver characterization .. 59
 4.4.1. Method 1: stop detection .. 61
 4.4.2. Method 2: acceleration forces classification 69
 4.4.3. Method 3: longitudinal and transversal acceleration assignment 83
 4.4.4. Maneuver characterization by VMD ... 87
 4.4.5. Comparison with the state of the art ... 88

4.5. Conclusions ... 89

5. Driver recognition ... 91
 5.1. State of the art in driver recognition ... 92
 5.1.1. General driving characterization ... 93
 5.1.2. Driver identification ... 96
 5.1.2.1. Deep Learning for driver identification 99
 5.1.2.2. Driven identification applications 101
 5.1.3. Driver verification .. 103
 5.2. Driver identification .. 105
 5.2.1. Experimental framework ... 106
 5.2.2. Driver identification from accelerometer signals 109
 5.2.2.1. Driver identification procedure 110
 5.2.2.2. Transformation methods from 1-D to 2-D 114
 5.2.2.3. Experiments and Results ... 124
 5.2.2.4. Driver identification error analysis 128
 5.2.3. Driver identification using acceleration signals derived from GPS 135
 5.2.3.1. From \{x,y\} sequences to acceleration signals 138
 5.2.3.2. Experiments and results ... 141
 5.2.3.3. Driver identification error analysis 142
 5.2.3.4. Improving driver identification in AXA Telematics database 145
 5.2.3.5. Comparison with the state of the art 157
 5.3. Driver verification .. 158
 5.3.1. Siamese Neural Networks ... 159
 5.3.2. Embeddings ... 162
5.3.3. Triplet loss ... 164
5.3.4. Comparison with the state of the art ... 167
5.4. Conclusions.. 167

6. Conclusions and Future Work ... 171
 6.1. Conclusions.. 171
 6.2. Research contributions... 175
 6.3. Future work... 178
 6.3.1. Developed work... 178
 6.3.1.1. Roundabout detector with Neural Networks 178
 6.3.1.2. Differentiation of acceleration and deceleration/braking maneuvers .. 180
 6.3.1.3. Differentiation of transport modes 180
 6.3.1.4. Sequence-to-Sequence (Seq2Seq) networks to predict longitudinal and transversal signals of accelerations 181
 6.3.1.5. i-vectors for driver identification 182
 6.3.2. Future new lines... 183

References .. 185
List of Figures

Chapter 1: Introduction

Figure 1.1: Thesis structure. The solid red arrows indicate the recommended order of chapters reading. Chapters 3, 4 and 5 are related to the data used for the experiments and the methods developed to the tasks. Chapter 2 is optional for readers with Deep Learning knowledge. The rest of the chapters include introductions and conclusions of the work.

Chapter 2: Introduction to Deep Neural Networks

Figure 2.1: Deep Learning is considered a subset of Machine Learning, but according to the definition, Machine Learning can be partly or entirely a subset of Artificial Intelligence.

Figure 2.2: Example of Linear Regression. Image obtained from the book “The Hundred-Page Machine Learning Book” (Burkov, 2019).

Figure 2.3: a) Gradient descent with a proper learning rate. b) Gradient descent with a too small learning rate. c) Gradient descent with a too high learning rate.

Figure 2.4: Neuron scheme.

Figure 2.5: Neural Network with one neuron.

Figure 2.6: Multilayer perceptron.

Figure 2.7: Activation functions.

Figure 2.8: a) Example of fully connected feedforward network. b) Example of recurrent network.

Figure 2.9: Original image on the left and its respective decomposition in the RGB channels on the right.

Figure 2.10: Example of 2-D convolution.

Figure 2.11: Example of convolution with an input volume of depth 3.

Figure 2.12: Spatial change of the dimensions of an image when applying 3 convolutional layers.

Figure 2.13: ReLU activation function.

Figure 2.14: Example of a Recurrent Neural Network. Bias weights are omitted.

Figure 2.15: Different configurations of recurring networks.

Figure 2.16: Example of bidirectional network.

Figure 2.17: Traditional LSTM memory block with one cell. Image adapted from (Greff, Srivastava, Jan Koutník, Steunebrink, & Schmidhuber, 2015).

Figure 2.18: LSTM memory block with one cell and with peephole connections. Image obtained from (Greff, Srivastava, Jan Koutník, Steunebrink, & Schmidhuber, 2015).

Figure 2.19: Common motion and location sensors present in smartphones.

Chapter 3: Definitions and databases

Figure 3.1: The smartphone can be in any position inside the vehicle.
Chapter 4: Driving maneuvers characterization

Figure 4.1: The coordinates of the smartphone accelerometers \((X_1, Y_1, Z_1)\) are reoriented to the coordinates of the vehicle \((X_0, Y_0, Z_0)\).

Figure 4.2: Diagram of broad driving maneuver characterization process.

Figure 4.3: Signals obtained from an Android smartphone. a) Position of the mobile while the journey was recorded. b) Raw accelerometers. c) Horizontal projection module. d) Vertical projection module.

Figure 4.4: Signals obtained from an iOS smartphone. a) Position of the mobile while the journey was recorded. b) Raw accelerometers. c) Horizontal projection module. d) Vertical projection module.

Figure 4.5: Example of process of delimitation of maneuvering areas. a) Noise/ground zones estimation. b) Joining and centering of events.

Figure 4.6: Two-layer classifier applied for fixed-length window segmentation strategy, broad driving maneuvers characterization.

Figure 4.7: Convolutional Neural Network applied for fixed-length window segmentation strategy, broad driving maneuvers characterization.

Figure 4.8: Basic operation LSTM cell.

Figure 4.9: Histogram of the maneuvers durations for a set of more than 40000 real driving journeys.

Figure 4.10: Preparation of the windows of the network, for maneuvers of less than 100 samples of duration. a) Module of the horizontal projection of accelerations. b) Module of the filtered gyroscopes.

Figure 4.11: Application example about sliding window on a real journey, with a window of 10 seconds shifted to 50%. The probabilities obtained for each class is shown to the right of each image.

Figure 4.12: Real example on driving journey, using for the maneuver classification a Bidirectional LSTM network of one layer (GRU cells), size windows of 10 seconds, shift 20% and labeling the last 2 second of the window. The first subplot presents the module of the horizontal acceleration projections, the second subplot the module of the filtered gyroscope and finally, the third subplot presents the final probabilities obtained (adding the results in each moment of time).

Figure 4.13: Confusion matrix obtained for the maneuver classification experiments using sliding window and sequence variable length. a) LSTM network with two stacked layers, GRU cells and 64 neurons. b) LSTM network with two stacked layers, GRU cells and 128 neurons.

Figure 4.14: Overall scheme of the three developed methods for obtaining the vehicle movement direction (VMD).

Figure 4.15: Scheme method 1 of stop detection.

Figure 4.16: Confusion matrix for the stop detector, strategy 1: a) according to the number of windows of each class, b) according to the type of force.

Figure 4.17: Histogram of the stop and non-stop zones durations.

Figure 4.18: Confusion matrix for the stop detector, strategy 2: a) according to the number of windows of each class, b) according to the type of force.

Figure 4.19: Some of the algorithm steps to obtain the VMD using event classification and stop detector. a) Example of process to obtain orientation vectors. b) Example of acceleration and braking samples of the stops fitted to the orientation directions. c) Example of the vectors used to obtain the final VMD.
Figure 4.20: Signals corresponding to two maneuvers detected during a driving journey. A) Raw accelerometers. B) Raw gyroscope. C) Horizontal projection module. D) Module of filtered gyroscope.

Figure 4.21: Distribution vectors related to the mobile.

Figure 4.22: Example of data projection through PCA. A) Observations on the variables X1 and X2. B) The same observations with respect to their principal components Y1 and Y2.

Figure 4.23: Scheme method of acceleration forces classification.

Figure 4.24: Deep neural network architecture for maneuver classification.

Figure 4.25: Confusion matrix on raw accelerometers tests. Method 2: A) According to the number of tested acceleration forces, B) According to the type of force.

Figure 4.26: Confusion matrix on raw accelerometers tests removing gravity, method 2: A) According to the number of tested acceleration forces, B) According to the type of force.

Figure 4.27: Confusion matrix on horizontal projections tests, method 2: A) According to the number of tested acceleration forces, B) According to the type of force.

Figure 4.28: Confusion matrix on raw accelerometers tests removing gravity and adding speed estimation, method 2: A) According to the number of tested acceleration forces, B) According to the type of force.

Figure 4.30: Two-dimensional t-distributed stochastic neighbor embedding (t-SNE 2D) projections of feature vectors for raw accelerometers input signals to the output of the convolutional network (CNN) (left representations) and gated recurrent unit (GRU) network (right representations). A), D) Projection depends on type of acceleration force. B), E) According to gravity distribution. C), F) According to noise threshold of the journey (m/s²).

Figure 4.31: t-SNE 2D projections of feature vectors for raw accelerometers removing gravity input signals to the output of GRU network. A) Projection depends on type of acceleration force. B) According to gravity distribution. C) According to noise threshold of the journey (m/s²).

Figure 4.32: t-SNE 2D projections of feature vectors for horizontal projections input signals to the output of GRU network. A) Projection depends on type of acceleration force. B) According to gravity distribution. C) According to noise threshold of the journey (m/s²).

Figure 4.33: t-SNE 2D projections of feature vectors for raw accelerometers removing gravity input signals plus speed estimation to the output of GRU network. A) Projection depends on type of acceleration force. B) According to gravity distribution. C) According to noise threshold of the journey (m/s²).

Figure 4.34: Scheme method of longitudinal and transversal acceleration assignment.

Figure 4.35: Deep neural network architecture for longitudinal and transversal prediction, method.

Figure 4.36: Roundabout maneuver. A) Principal components of the accelerometers. B) Predicted output of the maneuver method 3. C) Maneuver map.

Figure 4.37: A) Driving maneuver vectors. B) Map maneuver with start at the purple point and end at the red point.

Chapter 5: Driver recognition

Figure 5.1: Driver recognition objective: modeling specific driver behavior by using accelerometer signals.

Figure 5.2: Journey example of the “LEVIN VEHICLE TELEMATICS DATA” database. A) Accelerometers signals. B) Velocity data.

Figure 5.3: Information about the database TDdrives,IdenVer used for driver identification and verification according to: A) the type of smartphone operating system, B) the type of route, and C) gravity force measured by axis.
Figure 5.1: Deep Neural Network architecture for driver identification.

Figure 5.2: Residual block (two-layer residual block).

Figure 5.3: Architecture 50-layer residual.

Figure 5.4: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Recurrence plot of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.

Figure 5.5: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Gramian Angular Summation Field of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.

Figure 5.6: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Gramian Angular Difference Field of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.

Figure 5.7: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Markov Transition Field of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.

Figure 5.8: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Spectrogram of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.

Figure 5.9: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Features layers (from CNN) of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.

Figure 5.10: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Hidden Markov Model of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.

Figure 5.11: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Longitudinal acceleration, transversal acceleration and angular velocity, respectively.

Figure 5.12: Example of driving maneuver. a, b, c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d, e, f) Deep Neural Network architecture for getting the feature vectors used as images.

Figure 5.13: Strategies to select time-segments for driver identification.

Figure 5.14: Deep Neural Network architecture for driver identification, replacing the pre-trained ResNet50 model with simple convolutional layers.

Figure 5.15: Confusion matrix for ResNet-50+GRU with feature maps, for TIDrives_IdenVer.

Figure 5.16: Confusion matrix for ResNet-50+GRU with feature maps, for TIDrives_IdenVer.

Figure 5.17: Top-1 and Top-5 accuracy results in driver identification for ResNet-50+GRU with feature maps, for TIDrives_IdenVer.

Figure 5.18: Cumulative Match Characteristic curve for the ResNet+GRU identification network, using the feature maps from the CNN as inputs, database TIDrives_IdenVer.

Figure 5.19: Two-dimensional t-distributed stochastic neighbor embedding (t-SNE 2D) projections of the feature vectors of the dense layers, using CNN like inputs in the ResNet+GRU model.

Figure 5.20: Projections for 25 drivers, database TIDrives_IdenVer.

Figure 5.21: Examples of test journey sections, representing for each one: the raw accelerometers and the horizontal projection modulus of the accelerations. a), b) and c): Journeys of driver seven, which the network has incorrectly classified for driver eighteen. d), e) and f): Journeys of driver eighteen correctly identified.

Figure 5.22: Examples of test journey sections, representing for each one: the raw accelerometers and the horizontal projection modulus of the accelerations. a) and b): Nine driver journeys incorrectly classified as twenty five driver. c) and d): Nine driver journeys correctly classified. e) and f): Journeys of driver twenty five correctly identified.

Figure 5.23: Background noise levels for the test journeys, according to whether these trips have been correctly associated with each driver or not.

Figure 5.24: Accuracies obtained for the windows of the test journeys, depending on the type of maneuver present in the windows.

Figure 5.25: Example of polyline with five vertices reduced to a polyline of three vertices with the RDP algorithm (tolerance ε). a) Polyline of five vertices. b) Polyline of three vertices.
Figure 5.27: Histogram of driving maneuver lengths in a set of 47240 journeys in TIDrives_IdenVer database. a) Acceleration maneuver duration. b) Turn maneuver duration. 139
Figure 5.28: Example of maneuver detection obtained empirically for the AXA Driver Telematics database. The stem in cyan represents the areas where the acceleration/deceleration maneuvers are detected and in red, the turn events are detected. a) Speed. b) Longitudinal acceleration. c) Transversal acceleration. d) Angular velocity............................... 140
Figure 5.29: Driver identification process, for the AXA Driver Telematics database.................................. 141
Figure 5.30: Top-1 and top-5 accuracy results in driver identification using the ResNet50+GRU model, database of AXA Driver Telematics... 143
Figure 5.31: Cumulative Match Characteristic curve for the ResNet50+GRU identification network, using the feature maps from the CNN as inputs, database of AXA Driver Telematics........... 143
Figure 5.32: Accuracies at window level, for the architecture of ResNet50+GRUs, based on: a) journeys with a given number of windows, b) journeys with a minimum number of windows, 144
Figure 5.33: Recurrent Neural Network architecture, for driver identification in AXA Driver Telematics database.. 145
Figure 5.34: Overall architecture proposed by (Cui, Chen, & Chen, 2016) for time series classification. imagen obtained from (Cui, Chen, & Chen, 2016). .. 147
Figure 5.35: Examples of WW data augmentation. Image obtained from (Rashid & Louis, 2019).... 147
Figure 5.36: Image obtained from (Petitjean, et al., 2016) a) Different input signals belonging to the same class. b) Average time series produced by Euclidean average. c) Average time series produced by DBA. .. 148
Figure 5.37: Histogram of the distributions for the A) longitudinal accelerations, B) transversal accelerations distribution, and C) angular velocities... 150
Figure 5.38: Top-1 and top-5 accuracy results in driver identification for 1-layer LSTM model and data augmentation techniques, database of AXA Driver Telematics... 154
Figure 5.39: Cumulative Match Characteristic curve for 1-layer LSTM model and data augmentation techniques, database of AXA Driver Telematics... 155
Figure 5.40: Accuracies at window level, for 1-layer LSTM model and data augmentation techniques, database of AXA Driver Telematics, based on: A) journeys with a given number of windows, B) journeys with a minimum number of windows... 156
Figure 5.41: Siamese Neural network for driver verification... 160
Figure 5.42: Precision, Recall and F1 score per driver, for driver verification using Siamese Neural network architecture. ... 161
Figure 5.43: Result curves for driver verification with Siamese Neural Network: DET plot (purple) and ROC plot (magenta), TIDrives_IdenVer database... 161
Figure 5.44: Accuracies obtained for classification of individual windows depending on the type of maneuver, with Siamese Neural Network architecture. ... 162
Figure 5.45: Typical architecture for a DNN used for obtaining embeddings.. 163
Figure 5.46: Example of one of the architecture used to extract the embeddings for the driver verification. ... 164
Figure 5.47: Triplet loss goal: to minimize distances between anchor (A) and positive (P) examples and to maximize distances between anchor (A) and negative (N) examples............................ 165
Figure 5.48: Triplet loss training for driver verification... 166

Chapter 6: Conclusions and Future Work

Figure 6.1: Example of real journey, where the whole trip is classified according to two classes: no roundabout maneuver and roundabout maneuver. Driving events are marked with a green dotted box, formed by a blue box when it corresponds to acceleration/deceleration zone and a red box when it corresponds to turn zone. Roundabouts are marked in a solid brown box. A)
Module of the horizontal projection of accelerations. b) Module of the filtered gyroscopes. c) Probabilities obtained in the classification by the neural network.

Figure 6.2: Example of real journey, where only the events are classified according to two classes: no roundabout maneuver and roundabout maneuver. Driving events are marked with a green dotted box, formed by a blue box when it corresponds to acceleration/deceleration zone and a red box when it corresponds to turn zone. Roundabouts are marked in a solid brown box.

Module of the horizontal projection of accelerations. b) Module of the filtered gyroscopes. c) Probabilities obtained in the classification by the neural network.

Figure 6.3: Desired signals that we should predict against the results obtained as output in the Seq2Seq network. a) Original and predicted longitudinal signals. b) Original and predicted transversal signals.
List of Tables

Chapter 2: Introduction to Deep Neural Networks

Table 2.1: Common sensors in mobile phone systems .. 27

Chapter 4: Driving maneuvers characterization

Table 4.1: Outstanding works related to maneuver characterization in the state of the art. The table has been sorted alphabetically according to the reference .. 38
Table 4.2: Results in maneuver classification experiments using fixed-length windows. 51
Table 4.3: Results in maneuver classification experiments using variable length windows. 53
Table 4.4: Results in maneuver classification experiments using sliding window 54
Table 4.5: Results in maneuver classification experiments using sliding window and sequence variable length ... 57
Table 4.6: Results in stop classification .. 63
Table 4.7: Results obtained in the calculation of the VMD with the method of stop detection68
Table 4.8: Number of journeys, maneuvers and overlapping windows used for the acceleration forces characterization, by operating system and dataset .. 73
Table 4.9: VMD results using raw accelerometers, method 2 .. 75
Table 4.10: VMD results using raw accelerometers removing gravity, method 2 76
Table 4.11: VMD results using horizontal projections, method 2 .. 77
Table 4.12: VMD results using raw accelerometers removing gravity adding speed estimation, method 2 ... 78
Table 4.13: Comparison of performances in VMD estimation when we require 60 or more samples. .. 80
Table 4.14: Possible combinations of the input signals for the method 3 training network 85
Table 4.15: Results obtained for the longitudinal and transversal component prediction, method 3. ... 87
Table 4.16: Smartphone-based estimation of vehicle movement direction 88

Chapter 5: Driver recognition

Table 5.1: State of the art in driving characterization (alphabetically ordered) 95
Table 5.2: State of the art in driver identification (alphabetically ordered) 98
Table 5.3: State of the art in Deep Learning for driver identification (alphabetically ordered) .. 100
Table 5.4: State of the art in driver identification applications (alphabetically ordered) 103
Table 5.5: State of the art in driver verification (alphabetically sorted) 105
Table 5.6: Driver identification accuracy for TIDrives_IdenVer ... 126
Table 5.7: Complexity for each driver identification architecture ... 127
Table 5.8: Confidence intervals for driver identification with the TIDrives_IdenVer database 127
TABLE 5.9: RESULTS OF THE WORK OF (DONG, ET AL., 2016) FOR DRIVER IDENTIFICATION, IN THE DATABASE OF AXA "DRIVER TElematics Analysis". ... 137

TABLE 5.10: RESULTS FOR DRIVER IDENTIFICATION USING THE ResNet50+GRU MODEL, DATABASES OF AXA DRIVER ... 142

TABLE 5.11: CONFIDENCE INTERVALS FOR DRIVER IDENTIFICATION USING THE ResNet50+GRU MODEL. 142

TABLE 5.12: RNN MODEL RESULTS FOR DRIVER IDENTIFICATION ON AXA DRIVER Telematics, FOR 25 DRIVERS. .. 151

TABLE 5.13: RESULTS FOR DRIVER IDENTIFICATION, DATABASE OF AXA DRIVER Telematics, FOR 25 DRIVERS, APPLYING DATA AUGMENTATION TECHNIQUES. .. 152

TABLE 5.14: CONFIDENCE INTERVALS FOR DRIVER IDENTIFICATION. ... 154

TABLE 5.15: DRIVER IDENTIFICATION RESULTS FOR 50 DRIVERS OF THE OF AXA DRIVER Telematics database. .. 157

TABLE 5.16: RESULTS IN DRIVER VERIFICATION FOR SIAMESE NEURAL NETWORK. .. 160

TABLE 5.17: DRIVER IDENTIFICATION ACCURACY RESULTS WITH INPUTS AT JOURNEY LEVEL, TO OBTAIN EMBEDDINGS FOR DRIVER VERIFICATION TASK, DATABASE TIDrives_IdenVer. .. 164

TABLE 5.18: RESULTS IN DRIVER VERIFICATION TRIPLET LOSS TRAINING, TIDrives_IdenVer DATABASE. 166
Glossary

A

ADAS
Advanced driver assistant systems

AE
Autoencoder

AESOM
Autoencoder and self-organized maps

AI
Artificial intelligence

ANN
Artificial neural network

AUC
Area under the curve

B

BN
Bayesian network

BPTT
Backpropagation through time

BRNN
Bidirectional recurrent neural networks

C

CAN
Controller area network

CapsNets
Capsule networks

CEC
Constant error carousel

CMC
Cumulative Match Characteristic

CNNs or CovNets
Convolutional neural networks
D

DBA
DTW barycenter averaging

DE
Differential entropy

DET
Detection error tradeoff

DL
Deep learning

DNN
Deep neural network

DTW
Dynamic time warping

E

ECU
Electronic control unit

EEG
Electroencephalography

EER
Equal error rate

F

FFNN
Feed-forward neural network

FN
False negatives

FP
False positives

G

GADF
Gramian angular difference field

GAN
Generative adversarial networks

GASF
Gramian angular summation field

GBDT
Gradient boosting decision tree

GMM
Gaussian mixture model

GPS
Global positioning system
GRU
Gated recurrent unit

GSM
Global system for mobile communications

H

HCA
Hierarchical cluster analysis

HMM
Hidden Markov model

I

IMU
Inertial measurement unit

IoT
Internet of Things

K

kNN
k-Nearest neighbor

L

LDA
Linear discriminant analysis

LSTM
Long-short term memory

LLE
Locally-linear embedding

LVQ
Learning vector quantization

M

mAP
Mean average precision

ML
Machine learning

MFCC
Mel frequency cepstral coefficients

MLP
Multi-layer perceptron
<table>
<thead>
<tr>
<th>MTF</th>
<th>Markov transition field</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVN</td>
<td>Multivariate normal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>Naive Bayes</td>
</tr>
<tr>
<td>NCA</td>
<td>Neighborhood component analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OBD</td>
<td>On board diagnostics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PLDA</td>
<td>Probabilistic linear discriminant analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RDP</td>
<td>Ramer–Douglas–Peucker</td>
</tr>
<tr>
<td>ReLU</td>
<td>Rectified linear unit</td>
</tr>
<tr>
<td>ResNet</td>
<td>Residual network</td>
</tr>
<tr>
<td>ResNet50</td>
<td>Residual network of 50 layers</td>
</tr>
<tr>
<td>RF</td>
<td>Random forest</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, green and blue</td>
</tr>
<tr>
<td>RMLP</td>
<td>Recurrent multilayer perceptron</td>
</tr>
<tr>
<td>RMSP</td>
<td>Root mean square propagation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RNN</td>
<td>Recurrent neural network</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating characteristic</td>
</tr>
<tr>
<td>RP</td>
<td>Recurrence plot</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating characteristics</td>
</tr>
<tr>
<td>Seq2Seq</td>
<td>Sequence-to-sequence</td>
</tr>
<tr>
<td>SMOTE</td>
<td>Synthetic minority over-sampling technique</td>
</tr>
<tr>
<td>SOM</td>
<td>Self-organized mapping</td>
</tr>
<tr>
<td>STFT</td>
<td>Short-time Fourier transform</td>
</tr>
<tr>
<td>SVM</td>
<td>Support vector machines</td>
</tr>
<tr>
<td>TN</td>
<td>True Negatives</td>
</tr>
<tr>
<td>TP</td>
<td>True Positives</td>
</tr>
<tr>
<td>t-SNE</td>
<td>t-distributed stochastic neighbor embedding</td>
</tr>
<tr>
<td>UBM</td>
<td>Universal background model</td>
</tr>
</tbody>
</table>
V

VMD
Vehicle movement direction

W

WCCN
Within class covariance normalization

WW
Window warping

WS
Window slicing
Chapter 1

Introduction

The significant current research and technological achievements have allowed the progress of driving systems, improving assistance systems and getting closer to complete autonomous driving. One of the main concerns related to this field is to lower the number of traffic accidents. According to the World Health Organization, WHO (World Health Organization, 2020), among the main risk factors are the human errors, the speeding, the distracted driving or unsafe vehicles. This reveals that driver behavior is a very important part in order to reduce this rate of road traffic injuries. An appropriate characterization of driver behavior can help both improve road safety and build more robust autonomous driving systems.

New car insurance models have also appeared called pay as you drive (PAYD) and pay how you drive (PHYD), in which the insurance cost depends on factors such as driver behavior or distance driven. This type of insurance tries to encourage better driving, favoring safer driving.

Recent mobility systems have also changed. Especially in cities, new mobility alternatives such as carsharing have appeared, which allow to use rented cars or transport vehicles with driver (VTC licenses) that offer services facing private property. These transformations in mobility present new challenges in driving, making it necessary in many cases the driver authentication.

1.1. Background

Advanced driver-assistance systems (ADAS) are functions oriented to improve driver, passenger and pedestrian safety, by means of electronic systems that automate, adapt and improve the vehicle systems. These assistance systems allow the evolution towards autonomous driving, where the figure of the driver as we know it today will not exist. The main objective of ADAS is to reduce both the severity and the number of vehicle accidents.

For proper operation of the assistance systems, these must consider driver behavior. Considerable research works have focused on these aspects, categorizing driver...
behavior within different styles, such as (Johnson & Trivedi, 2011), which classifies driver styles between non-aggressive and aggressive. The categories can not only be oriented to consider a safe or risky driver, but also to detect specific patterns, such as (Dai, Teng, Bai, Shen, & Xuan, 2010), who try to detect drunk drivers, or (Bergasa, Almería, Almazán, Yebes, & Arroyo, 2014), identifying inattentive driving behaviors, when the driver is drowsy or distracted.

Most accidents are due to human factors. So, detecting and classifying the maneuvers or events performed by drivers is very important, both to anticipate their movements and to distinguish a specific driver from the rest. There are many researches related to the characterization of the maneuvers, such as (Ly, Martin, & Trivedi, 2013), which classifies events into three classes: braking, acceleration and turning. Or works more specific in the classification, such as (Chen, Yu, Zhu, Chen, & Li, 2015), which try to identify different types of abnormal driving behaviors: weaving, swerving, sideslipping, fast U-turn, turning with a wide radius and sudden braking.

In driver authentication, there is a distinction between two different tasks, driver identification and driver verification. Many works have studied driver identification as (Martínez, Echanobe, & del Campo, 2016) or (Chowdhury, Chakravarty, Ghose, Banerjee, & Balamuralidhar, 2018). The applications of driver identification are very diverse and can be oriented to fleet management, such as (Tanprasert, Saiprasert, & Thajchayapong, 2017), where it is analyzed a group of 10 school bus drivers, even to distinguish drivers employing the same vehicle, as in (Moreira-Matias & Farah, 2017). Furthermore, verification has been widely used for biometric authentication, such as in signature verification or face verification, but it is also demanded in driving tasks as evidenced works like (Il Kwak, Woo, & Kang Kim, 2016) or (Wahab, Quek, Keong Tan, & Takeda, 2009).

According to the United Nations (UN) organization, more than half of the world population lives in cities and it is also expected that by 2050 the figure will be almost 70%. This predominant urban lifestyle influences how we move and causes consequences for the environment. This origins that research related to driving not only focus on driver behavior, but on other topics such as vehicle mode recognition, such as (Hemminki, Nurmi, & Tarkoma, 2013) or (Fang, et al., 2016), energy consumption and pollution estimation, as (Astarita, Guido, Edvige Mongelli, & Pasquale Giofrè, 2014), or traffic direction signs detection, like (Karaduman & Eren, 2017).

As we have mentioned, the characterization of driving covers different topics. To model this characterization, different work frameworks have been implemented. Typical frameworks include inputs from various sensors and vehicle controllers. The most used information has been the vehicle controller area network (CAN) data, as shown (Zhang, et al., 2019), which uses the CAN bus signal to driver identification. In particular, the most employed signals are related to the engine (as the activation of air compressor or the friction torque), the fuel (as the fuel consumption or the accelerator pedal value) and the transmission (as the transmission oil temperature or the wheel velocity). The use of proper vehicle data and signals allows access to a lot of information, however additional hardware is usually necessary, such as on-board diagnosis (OBD-II) adapters plugged into the vehicle’s CAN. Little by little the trend is to use, as data collection equipment, devices more accessible. There are other many works that use smartphones, because they are cost and
energy efficient devices, portables and user-friendly. For instance, in (Fazeen, Gozick, Dantu, Bhukhiya, & González, 2012) it is used to analyze driver behaviors and external road conditions, or in (Lu, Nguyen, Nguyen, & Nguyen, 2018) to detect the vehicle mode and the driving activity (stopping, going straight, turning left and turning right).

This evolution in technology, as with smartphones, has allowed progress in the ADAS and has reached numerous sectors. Companies like Nvidia offer their platforms for building applications that algorithms for object detection, map localization and path planning. Increased computing capacity allows developing deeper and more intense algorithms, improving application areas related to Machine Learning.

1.2. Motivation of the Thesis

To improve vehicle assistance systems, it is necessary to incorporate information related to both driver behavior characterization and driver recognition. This data allows creating more robust driving systems, improving safety, traffic, pollution and consumption levels.

Each driver has a unique and different behavior when she/he is driving. In order to obtain these patterns, it is important to detect and analyze the type of maneuvers or events carried out by these drivers. Besides, the development of ride-sharing services for both professional drivers and vehicles shared with other passengers has changed the transport sector. The appearance and increase in such services and fleet management systems has generated the need for correctly identifying a driver or verifying that a driver is an authorized person.

The use of sensors for engineering tasks extends to many fields. With their development, they are widely employed in fields of activity recognition, driving characterization, assistance systems or self-driving or autonomous cars. To capture this driving information, data generated by the vehicle is generally used, as well as a large number of sensors. However, these frameworks usually require to install additional equipment or OBD systems, which made difficult the accessibility to the measurements. This has caused that many current research tend to employ everyday devices, which facilitate access to monitoring, as is the case with smartphones. The growth in the use of smartphones in scientific investigations is mainly because these devices present high performance with multi-core microprocessors, increasing their computational capacity and the integration of advanced sensor technologies.

Current smartphones have a wide variety of sensors, being motion and location sensors the most used in the field of driving. Among the motion sensors that are usually found in smartphones are accelerometers, gyroscopes and magnetometers. Location sensors include GPS (Global Positioning System) or compass. The problem with some of the mentioned sensors such as the gyroscope, is that in order to save on manufacturing costs, some phones do not incorporate it or rely on a virtual gyroscope, which do not obtain the same precision. The GPS has the drawback of the terminal’s battery consumption, which increases significantly with its use. On the other hand, the magnetometer is sometimes not accurate, obtaining useless measurements.
Accelerometers are a motion sensor that can be used to capture these driving patterns. Also, they are low cost and energy efficient sensors that are present in all current smartphones. Even research using exclusively smartphones incorporates the information from more sensors, in addition to accelerometers, to characterize driver behavior. So the investigation using only this motion detector in the field of driving characterization has not been sufficiently explored.

The main motivation of this Thesis is to carry out both the characterization of driver behavior and its recognition efficiently, using only the accelerometers present in drivers’ smartphones. In order to address it, the aim is to explore the possibilities that current Deep Learning techniques offer. Although Deep Learning is a subset of Machine Learning, these algorithms are currently in greater demand due to their good results particularly when training on high amounts of data. These algorithms have a great learning capacity and reach more abstract representations of the data. For this reason, we consider it as a tool with great potential to capture the most appropriate features to perform the driving characterization challenge.

1.3. Goals of the Thesis

Motivated by the issues previously mentioned, the main goal of the Thesis focuses on improving the driving characterization with smartphone sensors, specifically low-consumption sensors, such as accelerometers, using Deep Neural Networks. To carry out this objective, it is necessary to define and identify each one of the parts that comprise the characterization. In our case we understand this as a dual problem: 1) the determination of the driving behavior and 2) the identification and verification of the driver. For this purpose, we have decided to use Deep Learning techniques, exploring the most suitable models, and studying the appropriate techniques and tools, depending on the task to be faced.

Derived from these goals, we define a series of tasks to address them, which we have grouped into the following:

- Study of the state-of-the-art in driving characterizing techniques using sensors. For the determination of the driving behavior, maneuver characterization, and driver identification and verification.
- In-depth study of the state-of-the-art in Deep Learning techniques, Neural Network architectures, and non-Deep Learning techniques, traditional models, in the different areas of application of the Thesis to detect activity and driving patterns using sensors.
- Database collection suitable for research goals. It is important to use real driving data due to its high heterogeneity, and also to have an adequate volume of them. The amount of data required in Deep Learning applications is usually high, in contrast to more traditional techniques that can offer good performances with a smaller volume. For instance, in voice recognition (Ng, Coursera-structuring machine learning projects, 2018), with around 3000 hours of audio it can be built traditional
recognition systems that work well, however end-to-end systems start to obtain really good results from 10000 hours.

- Analysis and processing of the databases used for driving characterization, as well as searching for publicly available databases and related studies to contrast our results with existing research.
- Design and selection of appropriate Deep Learning models/architectures for our driving characterization objectives.
- Proposal for improvements to Deep Learning models through the study of different sources/data/input signals, learning methods, training strategies, etc.
- Learning and handling tools to use and develop Deep Neural Networks.

1.4. Outline of the Dissertation

The Thesis has been divided into six chapters (Figure 1.1). The description of each of them is detailed below.

- Chapter 1: Introduction. This chapter presents the main reasons to the development of the Thesis, as well as the goals to contribute to the defined tasks.

- Chapter 2: Introduction to Deep Neural Networks. Review of the basic concepts related to Deep Learning, technique used both for characterizing maneuvers and for driver recognition.

- Chapter 3: Definitions and databases. Brief summary of the most used sensors in smartphones, more specifically the motion sensors, and in particular, the tri-axial accelerometers that will be the signals employed in the characterization tasks. Introduction to some of the usual terms used in the Thesis, as well as an explanation of some recurrent processes for the development of the experiments. Finally, the databases used and the specifications of the main hardware and software employed are presented.

- Chapter 4: Driving maneuver characterization. In this chapter, the most relevant works on maneuver characterization are reviewed and two approaches are presented to face the event characterization. The first one performs a more general detection and classification of the maneuvers. While the second approach allows a more precise distinction of the type of maneuvers. A real application to characterize events is also presented, as well as a comparison of our solutions with the state-of-the-art.

- Chapter 5: Driver recognition. This chapter addresses driver recognition, which is made up of two main tasks, driver identification and driver verification. For each of them, the most relevant works in the literature are reviewed. In the identification part, the process developed for the identification is presented, which combines encoding methods of 1-D temporal signals to 2-D images with Transfer Learning.
DEEP NEURAL NETWORKS FOR VEHICLE DRIVING CHARACTERIZATION
BY MEANS OF SMARTPHONE SENSORS

techniques. A state-of-the-art database is also adapted to compare results. Regarding the verification part, different strategies are studied.

- Chapter 6: Conclusions and future work. It summarizes the conclusions obtained in the Dissertation, as well as the main contributions of the work. Finally, some open lines of research are mentioned, which would require further study and analysis, and also new research lines are listed.

Figure 1.1: Thesis structure. The solid red arrows indicate the recommended order of chapters reading. Chapters 3, 4 and 5 are related to the data used for the experiments and the methods developed to the tasks. Chapter 2 is optional for readers with Deep Learning knowledge. The rest of the chapters include introductions and conclusions of the work.
Chapter 2

Introduction to Deep Neural Networks

Currently, human activity recognition tasks come into greater focus, for several applications such as medical, security or military. This recognition has been extended to behavior characterization, intelligent assistance or monitoring tasks. Technological evolution has developed sensors, both fixed or static sensors (as cameras, microphones or pressure sensors) and motion sensors (such as accelerometers, gyroscopes or magnetometers); which has greatly facilitated the study and development of these types of activities. Among the methods mostly used in the state-of-the-art in order to address these problems are the Deep Learning techniques. The main motivation of Deep Learning algorithms is to have machines that can simulate the brain function. Although these algorithms have existed for a long time, due to the development of graphic cards and "Big data" outbreak, they have given on greater importance nowadays. Some of the current leading applications that use Deep Learning are automatic translation, object classification in photographs, automatic writing generation or games automation, among others.

In this chapter, we will review the basic concepts related to Deep Learning. Section 2.1 contains a brief introduction to the Machine Learning. Section 2.2 presents the Neural Networks. The successive sections, Section 2.3 and 2.4, show the most common Neural Network architectures, the Convolutional and Recurrent Networks respectively.

2.1. Basic concepts of Machine Learning

As defined in (Burkov, 2019), Machine Learning (ML) is a process aiming to solve practical problems, gathering a dataset or a collection of examples and doing a statistical model based on that dataset. Machine Learning is usually considered a subfield of Artificial Intelligence (AI) (Figure 2.1), understanding this as systems that try to solve tasks, that are easy for humans but hard for computers. Figure 2.1 also present Deep Learning (DP), which in turn is a subfield of Machine Learning, where a particular set of multilayer models learn representations of data with multiple levels of abstraction. Although there is no clear definition, some authors and works consider that not all Machine Learning is Artificial Intelligence. Since, they consider that Artificial Intelligence must learn from past behaviors and apply them to future behaviors, in order to adapt to new circumstances. In addition,
Machine Learning encodes learning and applies that learning to obtain conclusions. Therefore, based on this definition of Artificial intelligence, some Machine Learning algorithms would not be considered in the context of Artificial Intelligence, such as those that use random forest decision, while others would be considered, such as adaptive ones.

There are three types of learning: the supervised learning, unsupervised learning and the reinforcement learning. We can also consider a fourth type, which would be semi-supervised. In the supervised learning, there is a labeled dataset \(\{(x_i, y_i)\}_{i=1}^{N} \), where each example \(x_i \) is a feature vector with its label \(y_i \). The aim is to build a model from that dataset, so with a new feature vector \(x \) of input we can deduce the output label \(y \). In the unsupervised learning, the dataset does not have labels; it is a set of unlabeled examples \(\{x_i\}_{i=1}^{N} \). The purpose in this case is to build a model from that feature vector of input \(x \), transform it into another vector or a value that can be useful for solving the problem proposed. For the reinforcement learning (Sutton & Barto, 2018), we must try to map a set of situations into actions in order to maximize a numerical reward signal. That is to say, we must find out which actions produce the greatest reward by testing them, and these actions may affect or not, not only to the immediate reward but also the next reward. The last type of learning is semi-supervised learning and receives this name because the dataset has both labeled and unlabeled examples. The objective is the same as the case of supervised learning.

Typical tasks in supervised learning are classification and regression, oriented respectively to predict a label or to predict a value. Among the most important supervised learning algorithms (Géron, 2017) are k-Nearest Neighbors, Linear Regression, Support Vector Machines (SVMs), Decision Trees, Random Forests and Neural Networks (NNs). And in the unsupervised learning underscore the algorithms of clustering (such as k-Means, Hierarchical Cluster Analysis (HCA) or Expectation Maximization), visualization and dimensionality reduction (as Principal Component Analysis (PCA), Kernel PCA, Locally-Linear Embedding (LLE) or t-distributed Stochastic Neighbor Embedding (t-SNE)), and association rule learning (like Apriori or Eclat).

The Linear Regression (Burkov, 2019) is a very popular algorithm, where there are a set of labeled examples \(\{(x_i, y_i)\}_{i=1}^{N} \); where \(N \) is the set size, \(x_i \) is the D-dimensional feature vector of example \(i = 1, ..., N \), and \(y_i \) is the label or class. The aim is to build a model:

\[
f_{w,b}(x) = wx + b
\]
which is a linear combination of features, with \(w \) like a \(D \)-dimensional vector of parameters and \(b \) a real number. In order to predict the label \(y \), we have to find the optimal values of \((w^*, b^*)\), when the hyperplane is as close as possible to the training examples.

For instance, in the Figure 2.2 it is shown an example with one-dimensional cases with green dots and regression line in red. This line fits as close as possible to the training examples, so it can be used to predict a new value. In the case that the examples were vectors with a dimension greater than 1, instead of a line it would be a plane for \(D = 2 \), or a hyperplane for \(D > 2 \).

![Figure 2.2: Example of Linear Regression. Image obtained from the book “The Hundred-Page Machine Learning Book” (Burkov, 2019).](image)

In order to evaluate how good or bad the model is, it is necessary to use a performance measure. If you want to evaluate how good the model is, you usually use a utility function, or if you want to evaluate how bad it is, a cost function. If we use a cost function we must therefore minimize it. Usually in Linear Regression, the average loss is used as a cost function, which is the average of all penalties when the model is applied to training data. To calculate the penalties it is normally used as loss function the squared error loss (also known as mean squared error), \((f_{w,b}(x_i) - y_i)^2 \). Getting the following expression to minimize:

\[
\frac{1}{N} \sum_{i=1}^{N} (f_{w,b}(x_i) - y_i)^2
\]

If \(y_i \) is a binary, we would be in the case of a Logistic Regression, which despite its name is a problem of classification and not regression. To get those outputs of 0 and 1, a continuous function with domain \((0, 1)\) is used, so if the value is close to 0, the negative label is assigned and if the positive label is close to 1. A function that follows that requirement is the sigmoid function \(f(x) = \frac{1}{1 + e^{-x}} \) obtaining the model to build as

\[
f_{w,b}(x) = \frac{1}{1 + e^{-(wx+b)}}
\]
Another difference with Linear Regression, is that now instead of minimizing the cost function, we try to maximize the likelihood. Therefore the optimization criterion is the maximum likelihood:

\[
L_{w,b} = \prod_{i=1}^{N} f_{w,b}(x_i)^{y_i} \left(1 - f_{w,b}(x_i)\right)^{(1-y_i)}
\]

In order to avoid the numerical overflow, normally it is used the log-likelihood:

\[
\log L_{w,b} = \ln(L_{w,b}(x)) = \sum_{i=1}^{N} \left[y_i \ln f_{w,b}(x) + (1 - y_i) \ln(1 - f_{w,b}(x))\right]
\]

Among the most used optimization algorithms are the gradient descent or stochastic gradient descent. The gradient descent (Géron, 2017) is an optimization algorithm used for finding a minimum of a function. This algorithm tries to tweak parameters iteratively for minimizing the cost function. It measures the local gradient of the error function with regards to the parameters \(w\) and \(b\), and it goes in the direction of descending gradient. We start at a random values of the parameters and we take proportional steps, trying each step to decrease the cost function until it converges to the minimum (see Figure 2.3 a). The size of the steps is called learning rate hyperparameter. If this hyperparameter is too small, convergence may take a long time (Figure 2.3 b), if it is very high, we would jump across the valley and end up on the other side (Figure 2.3 c) and maybe algorithm diverges. Another type of common problem is to converge to a local minimum, which is not the global minimum.

This optimization algorithm has many variants. For instance, the Minibatch stochastic gradient descent (Burkov, 2019) that speeds up the computation because uses smaller batches of the training data. Or the Adagrad, which scales the learning rate for each
parameter. Also the Momentum, which orients the gradient in the relevant direction and reduces the oscillations. Either RMSprop (Root Mean Square Propagation) or Adam (Adaptive Moment Optimization) very used with the Neural Networks.

2.2. Introduction to Neural Networks

Neural Networks is an old idea, which came to be very widely used throughout the 1980’s and 1990’s, but had fallen out of favor for a while (Ng, Coursera, Machine learning course, 2019). But thanks to the advance of graphics cards and the availability of large datasets, nowadays, it is the state of the art technique for many different Machine Learning problems. Neural Networks are algorithms that were originally motivated by the goal of having machines that can mimic the brain. These were developed as simulating neurons or networks of neurons in the brain. The neuron has a cell body (Figure 2.4) and a number of input wires, called dendrites. These are like input wires, which receive inputs from other locations. Neuron also has an output wire called axon, and this output wire is what it uses to send signals to other neurons, that is to say, to send messages to other neurons. So, at a simplistic level what a neuron is, is a computational unit that gets a number of inputs, through it input wires, and does some computation and then, the outputs communicate via its axon, to other nodes or to other neurons in the brain. The way that neurons communicate with each other is with little pulses of electricity, they are also called spikes but that just means pulses of electricity.

In artificial networks, every simple neuron is like a computational unit that behaves as a logistic regression classifier. That it is to say, if we have the scheme shown in Figure 2.5 consisting of a neuron \(a \), and we feed it with three inputs, the neuron will make a calculation

\[\text{Figure 2.4: Neuron scheme}^1. \]

1 Image obtained from https://eversmarterworld.wordpress.com/2012/09/24/preserving-the-self-for-later-emulation-what-brain-features-do-we-need/
and draw an output value. Mathematically, the neuron's output is given by a function hypothesis:

$$f(x) = \sigma(Wx + b)$$ \hspace{1cm} (2.6)

In this example, \(x = [x_1 \ x_2 \ x_3]\) is the input nodes; \(b\) is the called bias unit or bias neuron \((b = x_0)\), because \(x_0\) is equal to 1; \(\sigma\) is the activation function and \(W = [W_1 \ W_2 \ W_3]\) represents the parameters or weights associated to the model.

The bias neurons have the effect of increasing or lowering the input of the activation function, depending on whether it is positive or negative, applying an affine transformation to the output. The first layer is also called the input and the final layer the output layer. Anything that isn’t an input layer and isn’t an output layer is known a hidden layer. Figure 2.6 shows the general scheme for a multilayer network; where \(a^l_i\) is a neuron or activation of unit \(i\) in layer \(l\).

The particularity of the mathematical functions of Neural Networks is that they are nested function (Burkov, 2019). In the case of a Neural Network of three layers, the function
of the Neural Network will be as follows: \(f_{NN}(x) = f_3\left(f_2(f_1(x))\right) \); with \(f_1 \) and \(f_2 \) as the functions with the form seen above \(f_i(z) = \sigma_l(W_l z + b_l) \), and \(f_3 \) that can be a scalar function for the regression task or also a vector function depending on the problem. \(l \) is the layer index, \(\sigma \) the activation function, \(W \) the matrix of weights and \(b \) the bias vector for each layer. \(W \) and \(b \) are parameters learned during the gradient descent in the optimization; and \(\sigma \) is normally a nonlinear function. There are many types of activation functions (Graves, 2012); some examples are shown below in Figure 2.7. One of most used is the sigmoid function mentioned above \(\sigma(x) = \frac{1}{1+e^{-x}} \) and the hyperbolic tangent function \(\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \).

![Activation functions](image)

Figure 2.7: Activation functions.

How the neurons of a Neural Networks are connected is related to the learning algorithm used for the network training. In general, there are three different classes of network architectures (Haykin, 2009): single layer feedforward networks, multilayer feedforward networks and recurrent networks. In the single layer feedforward networks, there is an input layer of source nodes that projects directly onto an output layer of neurons, but not vice versa; this net is strictly of a feedforward type; and there is a single layer, referring to the output layer.
In the multilayer feedforward networks, there are one or more hidden layers, whose computation nodes are correspondingly called hidden neurons or hidden units. Adding one or more hidden layers, the network is enabled to extract higher order statistics from its input. The source nodes in the input layer supply respective elements of the activation pattern, which constitute the input signals applied to the neurons in the second layer. The output signals of the second layer are used as inputs to the third layer, and so on for the rest of the network. These networks are said to be fully connected because every node in each layer of the network is connected to every other node in the adjacent forward layer. A multilayer perceptron (MLP) (see example Figure 2.8 a) is a multilayer feedforward networks, that includes nonlinear activation functions that are differentiable, one or more layers that are hidden and a high degree of connectivity. The output vector \(y \) of MLP or a feedforward Neural Network is given by the activation of the units in the output layer. If we have a binary problem of classification, normally the output layer is composed by a single unit. Moreover, if we use an activation sigmoid function, we have an interval of output from 0 to 1; and therefore the output unit activation can be interpreted as the probability that the input vector belongs to the class or not. For multi class problems, with more than 2 classes \((K > 2)\), the convention is to have \(K \) output units, and normalize the output activations with the softmax function to obtain the class probabilities:

\[
softmax\ function = S(y_i) = \frac{e^{y_i}}{\sum y_i}
\]

(2.7)

The presence of a distrusted form of nonlinearity and the high connectivity of the network make the theoretical analysis of a multilayer perceptron difficult to undertake. Moreover, the use of hidden neurons makes the learning process harder to visualize. A limitation of this kind of architecture (Ordóñez & Roggen, 2016) is that it assumes that all inputs and outputs are independent of each other. For model a time series, like a sensor signal, it is necessary to include some temporal information in the input data. The main difference between a Recurrent Neural Network (RNN) and a feedforward Neural Network is that a RNN (Figure 2.8 b) has at least one feedback loop. The structure can be self-feedback loops (the output of a neuron is fed back into its own input) in the networks or not. For instance, considering a multilayer perceptron with a single hidden layer, if we want apply feedback, we have many forms. We may apply feedback from the outputs of the hidden layer of the multilayer perceptron to the input layer. Also, we may apply the feedback from the output layer to the input of the hidden layer or combining both. The feedback loops involve the use of particular branches composed of unit-time delay elements, \(z^{-1} \). The recurrent networks can take many different forms; an architecture widely used is the recurrent multilayer perceptron (RMLP). This network has one or more hidden layers, each layer has feedback around it.

The advantage of recurrent neural networks from the conventional networks is that these networks do not assume that the inputs and outputs are independent of each other; that is to say, these networks have memory and capture information about what has been calculated previously.
CHAPTER 2. INTRODUCTION TO DEEP NEURAL NETWORKS

2.3. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) or CovNets are a type of Neural Network that share their parameters across space, and are often used to process data with a known grid-like topology (Goodfellow, Bengio, & Courville, 2016). For instance, it can be applied to time series where the grid would be 1-D, or to images with 2-D pixel grids. The Figure 2.9 shows an original image with a particular height and width, and its representation in the red, green and blue channels, giving the image a depth, in this case 3.

Convolutional networks (Burkov, 2019) receive this name because they perform the mathematical operation called convolution, in at least one of their layer, instead of matrix multiplication. Each of the layers of the convolutional networks are made up of several
convolution filters (also called kernels or patches), and each one also has the term bias that must be added. For example, if we work with a 2-D image and a convolutional network of one layer, each filter in the first layer will slide or convolve through the corresponding input image, from left to right and top to bottom, and performing the convolution. In the Figure 2.10, there is an example of how the convolution would be performed on an image of 3x4, with a filter of 2x2 and the associated bias. If we have \(N_f \) filters in a given layer \(l \), the output of the convolutional layer \(l \) will be a set of \(N_f \) matrices. The size of the set of \(N_f \) matrices is called depth. In the case that the network has more convolutional layers, each layer will consider the output of the previous layer as a collection or volume of image matrices.

![Figure 2.10: Example of 2-D convolution.](image)

The convolution of a volume of images with depth \(D \) with a given filter, it will simply be the sum of each of the convolutions. In the Figure 2.11 the result of a convolution applied to a volume with depth 3 is shown.

![Figure 2.11: Example of convolution with an input volume of depth 3.](image)
With the convolutional networks we form a kind of pyramid (Google course, 2019), see Figure 2.12, where at the beginning we have an initial image size with some depth (in the case of an RGB image, the depth will be 3). And after applying the convolutions, it will go to progressively squeeze the spatial dimensions while increasing the depth, which corresponds to the semantic complexity of the representation.

![Figure 2.12: Spatial change of the dimensions of an image when applying 3 convolutional layers.](image)

Both the filter matrices (one matrix for each filter in each layer) and the bias will be parameters that will be optimized throughout the training process. In addition, after carrying out the convolution and then adding the term bias, normally it is applied a nonlinearity, such as the activation rectified linear unit (ReLU). ReLU is a nonlinear activation function determined as \(f(x) = \max(x, 0) \), which keeps a positive section and reduces the negative section to zero (see Figure 2.13). Among the advantages of the ReLU (Campesato, 2019) is that does not saturate in the positive region and models with ReLU typically converge faster than those with other activation function.

![Figure 2.13: ReLU activation function.](image)

Therefore, hyperparameters that control the output volume in a convolutional network are depth, stride and padding (Burkov, 2019). As we have commented, the depth
is associated with the number of filters in the layer. The stride is the step size used for the filter. That is, a stride of 1 in a 2-D image would involve moving only one pixel at a time. And another hyperparameter is the padding. Padding is the width of the square of additional cells with which we surround the image, normally the additional cells are about zeros. If for example the padding is 1, we will add a square of zeros around the border. Among the reasons for using padding is that it allows controlling the spatial size of the output volumes and doing a better scan of the boundaries of the image. Also, the output size will depend on if we use a valid padding or a same padding. In the valid padding, the filter that moves through the image, it does not go pass the edge of the image. In contrast to same padding, where the filter can go off the edge of the image and pad with zeros in such a way that the output map size is exactly the same size as the input map size.

A technique widely utilized after the convolutional layer is to apply a pooling layer, which also employs a filter with a moving window. The most common pooling layers are max pooling and average pooling. To perform the pooling, we also have to choose the filter size and the stride.

2.4. Recurrent Neural Networks

While convolutional networks share parameters across space in order to extract patterns, Recurrent Neural Networks (RNNs) do it over time. They are normally used when the attributes of the data are more dependent on each other; such as in text or speech processing.

For instance, if we have a sequence of events over time (Google course, 2019), if the sequence was stationary, the same classifier could be used at each instant of time. But if data in each moment are related to each other, the past values must also be taken into account. Recurrent networks will summarize the past and to provide that information to the classifier. For that purpose, the classifiers will be connected to the input at every moment of time and also at every moment of time we will have recurrent connections to the past.

In recurrent networks (Burkov, 2019) each unit u of a given recurrent layer l, it has a state h_{lu}. This state can be understood as the memory of the unit. Each unit u will receive the state vector from the previous layer $l - 1$ and the vector of states from this same layer l from the previous time step. For example if training data is about text sentences, the input matrix X will be formed by rows of feature vectors, $X = \begin{bmatrix} x^1 \\ x^2 \\ \vdots \\ x^L \end{bmatrix}$, with x^t the feature vector in the instant t and L the length of the sequence. In this case, each feature vector of input x^t will be a word. Feature vectors will be read by the neural network sequentially in the order of the time steps. In the Figure 2.14, the input sequence would consist of 4 feature vectors, which in the case of text sentences correspond to 4 words. In order to update each status h_{lu}^t (at each time step t in each unit u of each layer l) we have to calculate a linear combination of the input vector with the status from the previous time step h_{lu}^{t-1}. To calculate this linear combination, we use the parameters W (in the Figure 2.14 would be the weight
matrices W_{xh}, W_{hh} and W_{hy}), and the final value $h_{l,t}^f$ is obtained by applying an activation function after the linear combination. The output y_{l}^{f} is normally a vector calculated for the whole layer l at once.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{recurrent_neural_network.png}
\caption{Example of a Recurrent Neural Network. Bias weights are omitted.}
\end{figure}

In the Figure 2.14, each time-stamp has an input, an output and hidden units (Aggarwal, 2018). But according to the chosen application, it is possible missing inputs or outputs at any particular time-stamp. For instance, the Figure 2.15 shows different configuration examples (Karpathy, 2015). In the case of \textit{one to one}, we go from fixed input size to fixed output size, such as in image classification. In \textit{one to many}, each input vector can produce several outputs, such as when an image is translated into text. In \textit{many to one}, the process is the opposite, such as when a phrase is translated into a positive or negative rating. Finally, in \textit{many to many} (where the inputs and outputs can be synchronized or not), is employed for example in translation or in video classification where we wish to label each frame of the video.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{different_configurations.png}
\caption{Different configurations of recurring networks.}
\end{figure}
In order to calculate the parameters of the recurrent network, we use the gradient descent with backpropagation, specifically its use a special version of backpropagation called backpropagation through time (BPTT).

2.4.1. Bidirectional Networks

For particular tasks, such as in applications of handwriting recognition, it is necessary to access both past and future information (Graves, 2012). The Bidirectional Recurrent Neural Networks (BRNN) offer a solution to this problem, since each training sequence goes through two separate recurrent hidden layers, one forward and other backward connected both to the same output layer (see Figure 2.16). Therefore, there are two separate states $h_t^{(f)}$ and $h_t^{(b)}$, for the forward and backward directions respectively (Aggarwal, 2018). Both states receive input from the same vector and interact with the same output vector, nevertheless $h_t^{(f)}$ interact in the forwards direction, while $h_t^{(b)}$ interact in the backwards direction. In the same way, there are matrices of separate parameters for the forward and backward. With $W_x^{(f)}$, $W_h^{(f)}$ and $W_y^{(f)}$ for the input-hidden, hidden-hidden and hidden-output forward matrices; and $W_x^{(b)}$, $W_h^{(b)}$ and $W_y^{(b)}$ for the backward matrices. The bidirectional equations are as follows:

$$
\begin{align*}
 h_t^{(f)} &= \tanh \left(W_x^{(f)} x_t + W_h^{(f)} h_{t-1}^{(f)} \right) \\
 h_t^{(b)} &= \tanh \left(W_x^{(b)} x_t + W_h^{(b)} h_{t+1}^{(b)} \right) \\
 y_t &= W_y^{(f)} h_t^{(f)} + W_y^{(b)} h_t^{(b)}
\end{align*}
$$

(2.8)

Figure 2.16: Example of bidirectional network.
2.4.2. Long Short-Term Memory

There are variations of the RNN which have turned out to be very effective models, such as Gated Recurrent Neural Networks. These architectures include the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU).

Among the advantages of LSTM (Gers, Schraudolph, & Schmidhuber, Learning precise timing with LSTM Recurrent Networks, 2002) versus the traditional RNNs are that the LSTM works better on problems involving long time lags.

The traditional scheme of an LSTM is shown in the Figure 2.17. The basic unit in a LSTM network is the memory block. The memory block can have one or more memory cells and three adaptive, multiplicative gating units shared by all cells in the block. Moreover, each memory cell has at its core a recurrently self-connected linear unit called Constant Error Carousel (CEC), whose activations are called cell states. The input, forget and output gate can be trained to learn respectively, what information to store in the memory, how long to store it and when to read it out. When gates are closed (Gers, Schmidhuber, & Cummins, Learning to forget: continual prediction with LSTM, 1999), the activations are around zero, so irrelevant inputs and noise do not pass to the cell, and therefore the cell state does not disturb the remainder of the network.

![Figure 2.17: Traditional LSTM memory block with one cell. Image adapted from (Greff, Srivastava, Jan Koutník, Steunebrink, & Schmidhuber, 2015).](image)

As (Gers, Schraudolph, & Schmidhuber, Learning precise timing with LSTM Recurrent Networks, 2002) mention, one of the limitations of the LSTM is that each gate receives connections from the input units and the outputs of all cells, but there is no direct connection from the CEC. The same happens if several cells are present; when the output
Deep Neural Networks for Vehicle Driving Characterization
by means of smartphone sensors

Gate is closed none of the gates has access to the CECs they control. For these reasons a variant was introduced, the LSTM with Peephole Connections (see Figure 2.18), which consists of adding weighted peephole connections from the CEC to the gates of the same memory block. So when the output gates are closed, all gates can continue consulting the current state.

![LSTM Memory Block](image)

Legend
- unweighted connection
- weighted connection
- connection with time-lag
- branching point
- multiplication
- sum over all inputs
- gate activation function (always sigmoid)
- input activation function (usually tanh)
- output activation function (usually tanh)

Figure 2.18: LSTM memory block with one cell and with peephole connections. Image obtained from (Greff, Srivastava, Jan Koutník, Steunebrink, & Schmidhuber, 2015).

The vector formulas for a LSTM layer forward pass are the following (Greff, Srivastava, Jan Koutník, Steunebrink, & Schmidhuber, 2015):

\[
\begin{align*}
 z^t &= \tanh(W_z x^t + R_z y^{t-1} + b_z) \quad \text{block input} \\
 i^t &= \sigma(W_i x^t + R_i y^{t-1} + p_i \circ c^{t-1} + b_i) \quad \text{input gate} \\
 f^t &= \sigma(W_f x^t + R_f y^{t-1} + p_f \circ c^{t-1} + b_f) \quad \text{forget gate} \\
 c^t &= z^t \circ i^t + c^{t-1} \circ f^t \quad \text{cell state} \\
 o^t &= \sigma(W_o x^t + R_o y^{t-1} + p_o \circ c^t + b_o) \quad \text{output gate} \\
 y^t &= \tanh(c^t) \circ o^t \quad \text{block output}
\end{align*}
\]

With \(x^t\) like the input vector at time \(t\). And \(W_z, W_i, W_f\) and \(W_o\) as the input weights; \(R_z, R_i, R_f\) and \(R_o\) as the recurrent weights; \(p_i, p_f\) and \(p_o\) as the peephole weight; and, \(b_z, b_i, b_f\) and \(b_o\) as the bias weights. The non-linear activation functions are usually the hyperbolic tangent (tanh) and the logistic sigmoid, \(\sigma(x)\). The symbol \(\circ\) indicates the element-wise vector product.
2.4.3. Gated Recurrent Unit

The Gated Recurrent Units (GRUs) are simplifications of the LSTM, which do not use explicit cell states (Aggarwal, 2018). The GRUs were proposed by (Cho, et al., 2014). The formulas are shown below (Boža, Brejová, & Vinař, 2017). Given input x^t and previous hidden state h^{t-1}, a GRU first calculates values for updated and reset gates and then it computes a potential new value n^t. The overall output is the linear combination of n^t and h^{t-1}, weighted by the update gate vector u^t.

\[
\begin{align*}
 r^t &= \sigma(W_r x^t + R_r h^{t-1} + b_r) \quad \text{reset gate} \quad (2.15) \\
 u^t &= \sigma(W_u x^t + R_u h^{t-1} + b_u) \quad \text{update gate} \quad (2.16) \\
 n^t &= \tanh(W x^t + r^t \odot R h^{t-1}) \quad \text{new value} \quad (2.17) \\
 h^t &= u^t \odot h^{t-1} + (1 - u^t) \odot n^t \quad \text{output} \quad (2.18)
\end{align*}
\]

The matrices W_r, W_u, W, R_r, R_u and R; and the bias vectors b_r and b_u are parameters of the training model.

When the reset gate is close to 0, the hidden state is forced to ignore the previous hidden state and reset with the current input only, allowing to drop any information which can be irrelevant in the future. The update gate controls how much information from the previous hidden state will carry over to the current hidden state (Cho, et al., 2014).

2.5. Chapter summary

In this chapter, we have reviewed the basic concepts related to Machine Learning. We research Deep Learning techniques which have already demonstrated to achieve excellent results in complex fields as computer vision, spoken language applications or automatic translation. Therefore, in the final part of the chapter, basic concepts of Deep Learning and the most common Neural Network architectures have been reviewed.
Chapter 3

Definitions and databases

As we mentioned in Chapter 1, the objective of the Thesis is the driving characterization through the use of low-energy sensors on the smartphones, specifically accelerometers. To perform this task, we believe it is important to clarify some concepts, which we have reviewed in this chapter. First of all, we will present a brief introduction to the most common motion sensors in these devices, Section 3.1. Then, we will explain terminology employed and frequent procedures used throughout the Thesis, Section 3.2, as well as specifications on the database and the software and hardware used, Section 3.3.

3.1. Introduction to smartphone motion sensors for driving characterization

Motion sensors, also known as motion detectors, allow to detect and to capture physical and kinetic movements. Current smartphones have commonly a wide range of sensors (Figure 2.19), both motion sensors and location sensors. Accelerometers, gyroscopes or magnetometers are among the most common motion sensors, while Global Positioning System (GPS) is the most representative location sensor.

Accelerometers were introduced for the first time into smartphones on Apple iPhone in 2007 to improve the user experience, rotating automatically the screen to match device orientation. As (Vargha & Maia, 2010) explains, accelerometers measure the linear acceleration, produced by gravity or by translation (movement), and the tilt angle. Normally, typical consumer devices include 3-axis accelerometers (X, Y and Z axes) with measurement ranges from $\pm 1 g$ ($\pm 9.8 m/s^2$) to $\pm 8g$. One of the main limitations of accelerometers is that they do not distinguish gravity from other specific accelerations and translations; and also that the orientation works well when the axes of the accelerometers are aligned with the gravity vector. However, if the axes are perpendicular to gravity vector, it is necessary another sensor, like the gyroscope, to determine orientation changes.
Gyroscopes measures angular speeds and appeared on smartphones with the iPhone 4 in 2010, which included a 3-axis gyroscope that allowed measuring pitch, roll, yaw and rotation on gravity. As commented in the presentation of the iPhone 4, the gyroscope together with the accelerometer provide 6-axis motion sensing, resolving some situations in which accelerometers are more limited, such as rotation around gravity. Therefore, gyroscopes (Vargha & Maia, 2010) measure the angular rate of velocity (rotation). An important difference with accelerometers is that they are not affected by gravity, for this reason gyroscopes are combined with accelerometers in order to separate gravity, linear motion and rotational motion.

Also there are other common sensors in smartphones, such as the magnetic compass. Magnetometers quantify magnetic fields and can be used to obtain heading (yaw orientation) using magnetic north as reference. The main limitation of compass is that they do not only respond to the earth's magnetic field, but also to external noisy interferences, like radio frequency signals or magnetic fields produced by magnets. Moreover, the earth's magnetic field can be often distorted indoors by building materials with iron.

As mentioned above, current smartphones have location sensors such as GPS, which help to obtain the position and the heading. The summarized idea of GPS operation is as follows. The GPS receiver gets signals from satellites in orbit. By means of the time difference between the satellites transmitting the signal with the receivers obtaining it, it is possible to establish how far they are from the satellites. The position of the satellites is known; therefore with this and with the elapsed time, we can determine the receiver GPS position in the three dimensions: east, north and altitude. To obtain this information, we need at least the communication with three satellites, but for an accurate time calculation and therefore an accurate position calculation, it is necessary the signals of a fourth satellite (with the signals of four satellites the necessary equations of time can be solved without the help of atomic clocks).

The use of these motion sensors is very demanded for tasks of detection or recognition of activities, for instance for human caring systems or health and fitness.
monitoring. In works like (Hong, Kim, Ahn, & Kim, 2008), they already tried to recognize daily living activities carried out by a person with wearable sensors, using in particular accelerometers and RFID sensors. By means of accelerometers placed in the thigh, waist and wrist of the users, they tried to classify 5 human body states (standing, lying, sitting, walking and running). They also performed an RFID tagged of some objects to obtain additional information about hand-motion (like reading, brushing hair, taking photos, etc).

With the coming and development of smartphones, they gradually have been used for the capture of different signals through the sensors that they have incorporated, included for the monitoring of activities. Because of the fact that current smartphones have grown in computing, networking and sensing-power. Table 2.1 shows a list with some of the most common sensors that appear on smartphones (Ali, Khusro, Rauf, & Mahfooz, 2014).

Table 2.1: Common sensors in mobile phone systems.

<table>
<thead>
<tr>
<th>Category</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactile sensors</td>
<td>Proximity sensor</td>
</tr>
<tr>
<td>Acceleration sensors</td>
<td>Accelerometer, gyroscope</td>
</tr>
<tr>
<td>Thermal sensors</td>
<td>Temperature sensor</td>
</tr>
<tr>
<td>Image sensors</td>
<td>CMOS Camera sensor</td>
</tr>
<tr>
<td>Light sensors</td>
<td>Ambient light sensor, back-illuminated sensor</td>
</tr>
<tr>
<td>Water sensors</td>
<td>Moisture sensor, humidity sensor</td>
</tr>
<tr>
<td>Location sensors</td>
<td>Compass, GPS</td>
</tr>
<tr>
<td>Height sensors</td>
<td>Altimeter, barometer</td>
</tr>
<tr>
<td>Medical sensors</td>
<td>Heart rate monitor sensor, biosensor</td>
</tr>
<tr>
<td>Acoustic sensors</td>
<td>Microphone</td>
</tr>
<tr>
<td>Radio sensors</td>
<td>Bluetooth, RFID</td>
</tr>
<tr>
<td>Time sensors</td>
<td>Clock sensor</td>
</tr>
</tbody>
</table>

Beyond smartphones sensors are also commonly found in other wearable devices such as smartwatches and bands. For instance, in (Zhang, et al., 2019) a tri-axial accelerometer worn in a wrist smartwatch was used to collect a dataset, called Sanitation, directed to identify between a set of seven types of daily work activity of sanitation workers (walking, running, broom sweeping, sweeping, cleaning, dumping and daily activities like sitting and smoking).

The fields in which sensors can be used are very large. At present, one notable area is the characterization of driving, assistance systems or the world of self-driving or autonomous cars. Driving characterization is frequently used in studies of driver behavior and in analysis of external factors that may influence in this behavior, both for energy efficiency and safety goals. Driver assistance systems are already a reality, incorporated into most vehicles to increase road safety, provide frontal collision warning systems, lane change assistants or cooperative adaptive cruise control (de Ponte Müller, Martín Navajas, & Strang, 2013). The concept of self-driving or autonomous car is based on cars that can operate without the control and continuous supervision of a person. There are several autonomous driving classifications adopted by the International Society of Automotive Engineers (SAE,
DEEP NEURAL NETWORKS FOR VEHICLE DRIVING CHARACTERIZATION
BY MEANS OF SMARTPHONE SENSORS

Society of Automotive Engineers) and in Europe by the Federal Highway Research Institute (Rudolph & Voelzke, 2017). The range goes from level zero (no automation), where the human driver can control everything independently. Level one (driver assistance), with assistance system that helps to the operation of the vehicle. Level two (partial automation), with partial automation where the driver must supervise the system. Level three (conditional automation), with conditional automation where the driver supervises the system and can intervene if necessary. Level four (high automation), with high automation where driver supervision is not required, but the functions do not cover all driving scenarios and are limited to the vehicle’s operational design. Up to level five (full automation), with complete automation without driver handling.

3.2. Definitions and procedures

One of the tasks that we are going to perform for the driver characterization is to detect and to classify the maneuvers done by the driver. Driving is a complex activity that requires the driver to make correct decisions quickly. Some works like (Torkkola, et al., 2003) define the concept of maneuver based on the effort required by the driver, using the idea of “easy” or “difficult” driving task. Therefore, “difficult” driving tasks, called maneuvers, would include activities such as joining from the acceleration lane, exiting of motorways, making a turn in a corning, changing lanes or parking. Whereas “easy” driving tasks would include activities such as driving on a straight road without traffic, maintaining a cruising speed or stopping at a light. According to this definition of maneuver, detecting and characterizing driving situations that require a lot of attention, can be very useful. Not only to assist the driver and to improve the reliability of the security system (Xie, Hilal, & Kulić, 2018), but also to decrease the number of traffic accidents or to monitor driver behavior for issues of car insurance, fleet management or optimization of fuel consumption.

We are defined two great types of maneuvers, which in turn can be subdivided into more types:

- **Turn events/maneuvers.**

When a vehicle is taking a camber curve there are three different forces acting on it:

1. One produced by the vehicle weight, \(P = mg \) (\(m \): mass of the vehicle, \(g \): gravity), which is a vertical force generated as consequence of the gravitational field.
2. The friction force, produced by the contact between tire and pavement.
3. And the centrifugal force, \(F_c = \frac{(m \cdot v^2)}{R} \), caused by the variation of the direction of the vehicle within a curve. For a same vehicle, this centrifugal force will vary depending on the speed at which it travels, \(v \), and the radius of the curve, \(R \).

In this Thesis, when these circumstances occur and the vehicle is subjected to a centrifugal force, it will be qualified as a turn event or maneuver.
• And accelerations events/maneuvers.

The vehicle is not subjected to a centrifugal force, only forces in the same direction as the movement, which may appear in the opposite direction or in the same direction (i.e. acceleration/positive or braking/decelerations/negative accelerations, respectively).

In Chapter 4, Section 4.4, we will define a new concept called vehicle movement direction (VMD), which will allow the mapping from the smartphone coordinates system to the vehicle coordinates system, without using the gyroscope sensor as in the classic reorientation techniques. The details of the VMD will be seen in the next chapter, but the general definition is shown below. Among the applications of the VMD is to obtain the longitudinal and transversal signals from the accelerometers, in addition to classifying a maneuver more precisely in accelerations, braking (or decelerations) or left and right turns.

• Vehicle movement direction (VMD): a vector in the smartphone coordinates system pointing at the vehicle reference system (Figure 3.1). We refer this as VMD vector, as it will allow us to know the vehicle’s motion direction.

![Figure 3.1: The smartphone can be in any position inside the vehicle.](image)

Other terminology mentioned in the Thesis are journey and manipulation.

• Driving journey (or driving trip): it refers to a typical driving route, from vehicle starts movement to it stops.
• Manipulations: when the driver picks up the smartphone inside the vehicle while driving or due to uncontrolled movements of the mobile (for example when it falls). These types of actions usually cause very noisy signals within the recorded signals, which we will normally try to eliminate, since they do not help characterization. Manipulations if they are very long (in time) could cut the journey, without the driver finish the trip. If they are short, it will not be necessary to cut it, but if it can
cause the division of the journey into two subjourneys if the mobile changes its position, since the VMD will change for each one of them.

For some procedures, the angle between two vectors will be calculated, as well as the most representative vector within a set of vectors.

- Angle between two vectors: calculation of the angle is done through scalar product between two vectors (see example of Figure 3.2).

\[
\text{angle between two vectors} = \cos^{-1} \left(\frac{\bar{u} \cdot \bar{v}}{|\bar{u}| \cdot |\bar{v}|} \right)
\]

Figure 3.2: 3D vectors and formula to calculate angle between two vectors.

- Representative vector within a set of vectors: For the calculation of this final direction vector, which represents the average addresses of a cluster, we have developed the method described below. The aim of the algorithm is to look for vector clusters separated less than a maximum angle, to obtain a final direction vector, which represents the average addresses of the clusters. And it is mainly based on two ideas; the separation angle among the vectors and the number of vectors. The process is the following:

1. We choose the vector (blue vector Figure 3.3 a)) that has the largest angle of separation with any of the other vectors. In order to calculate the angle of separation between vectors we create a matrix of angles, applying the above mentioned formula. This vector will be the starting point (orange point Figure 3.3 a)) for creating the sphere of minimum values (magenta circle Figure 3.3 a)).

2. From this vector, we form a 3D sphere of minimum angles by looking for the closest vector (magenta circle Figure 3.3 a)). This generates a path that will go over through all the vectors (purple circle Figure 3.3 a)).

3. Taking into account the route of minimum angles, we group the vectors to form clusters of vectors separated less than a maximum angle (green clusters Figure 3.3 b)).
4. For each cluster, we count the number of vectors. The cluster with the biggest number will be taken as the final cluster and the definitive vector direction (red vector Figure 3.3 c)) will be calculated as mean of all vectors inside that cluster.

The purpose of the algorithm may vary depending on the application, in some cases it may interest not to calculate a single direction for a set of vectors, but a direction for each of the clusters.

![Figure 3.3: Steps for creation of the minimum sphere. a) Minimum angles; b) Clusters with vectors separated less than a maximum angle; c) Good cluster and final direction.](image)

The importance of driver recognition has reached many areas. Navigation companies like TomTom already offer driver identification services. As they indicate, when the vehicle is shared, the identification of the driver allows knowing who has the car or how much time they spend on the road or in some place (Telematics, 2018). Companies that are dedicated to fleet management, where it is important to know who is driving the vehicle to provide personalized information, usually use methods that require physical devices in the vehicle, such as card readers. Due to this interest, another task that will be carried out in the
Thesis will be the recognition of the driver, both from the point of view of driver identification and driver verification.

- Driver identification: the driver classification within a close-set of drivers.
- Driver verification: to check that a driver is really who she/he claims to be.

3.3. Database and hardware/software specifications

The use of sensors in the field of driving is growing in recent years due to the many applications and benefits they can offer. From tasks oriented to safety, such as studying the driver behavior for reducing the number of accidents, to autonomous driving, in order to ensure that the vehicle can function correctly in all possible circumstances on a road. For all these possible fields, the sensors are combined with sophisticated algorithms.

Among the possible set of sensors present in smartphones, we have decided to use accelerometers to the driver characterization. Both the database used in the Chapter 4 for the maneuvers characterization, *TIDrivies_Maneuvers*, and the database used in the Chapter 5 for the driver recognition, *TIDrivies_IdenVer*, have been provided by Telefónica R&D and the spin-off of Telefónica R&D, Drivies, in a collaboration project with the Signal Processing Applications Group (GAPS), of the Department of Signals, Systems and Radiocommunications, “E.T.S.I. de Telecomunicación”, “Universidad Politécnica de Madrid”.

1. Database for the characterization of maneuvers, which we have called *TIDrivies_Maneuvers*. More than 60000 real driving journeys have been collected through the sensors present in smartphones, from more than 3000 different drivers. The journeys have been recorded by both terminals with iOS and Android operating systems. The main signals captured by these terminals have been accelerometers, gyroscope (in the terminals that present this sensor) and GPS (only a few samples, to limit excessive battery consumption during capture). Both the accelerometer and gyroscope signals have been recorded at a frequency of 5 Hz. The set of journeys is heterogeneous, with both urban, non-urban and mixed trips. Although the objective is to perform these tasks with the exclusive use of the tri-axial accelerometer signals, other sensors have been collected in order to verify that our results are consistent.

2. Database for driver identification and verification, named *TIDrivies_IdenVer*. It is a specific database for these tasks. For each journey by car, there are the signals captured by the smartphone sensors plus the signals recorded by OBD (On Board Diagnostics) devices, specifically installed in the corresponding vehicles. It consists of more than 23000 journeys of 83 drivers. The number of journeys per driver is variable; around 50 drivers have more than 100 trips, more than 36 drivers have more than 200 trips, of which 20 of them have more than 500 trips. Like in the previous database, the analysis will be carried out exclusively with the accelerometer signals, but the OBD information is needed, both for the labeling and verification process.
This Thesis focuses on the use of accelerometer sensors to perform driving characterization tasks, as well as using Deep Learning instead of more traditional techniques. The reason for using Deep Networks is that these allow reducing feature engineering and to adapt more easily than many classic processing techniques. This fact has caused that these are frequently implemented in tasks such as image classification, speaker recognition or language translation. To implement Deep Learning models/architectures, the main hardware and software used in the Thesis are specified below:

- Nvidia Tesla K80 graphic card (dual GPU card, with 24 GB of GDDR5 memory, 480 GB/s of memory bandwidth and 4992 CUDA cores).
- Development language: Python.

3.4. Chapter summary

In this chapter, a review of some of the most employed motion sensors in mobile devices has been presented. Although current smartphones have both physical and virtual sensors; in our case we want to emphasize the importance of physical sensors, which are hardware-based sensors embedded directly into mobiles, and, more specifically, the motion sensors used to obtain data directly measuring a kinetic characteristic. These sensors are being widely used for many movement detection or recognition activities. In this work we will contribute to the study of the use of the accelerometers in the area of the driving characterization.

We have also defined in this chapter the most frequent concepts and habitual procedures used throughout the Thesis, as well as we have presented the databases created for the characterization and the specifications of the hardware and software employed.
Chapter 4

Driving maneuvers characterization

Driving style influences many important factors such as safety, fuel or battery consumption, gas emissions or traffic state, among others. Driving characterization is deeply related to how drivers perform specific maneuvers or driving events. The objective of this chapter is to propose several methods for driving maneuvers characterization based on the processing of accelerometer signals recorded from drivers’ smartphones. As it is a main objective in this Thesis, the reason for relying only on smartphones accelerometers is to promote the development of mobile phone applications requiring low battery consumption.

The maneuvers of a vehicle are mainly concerned with the longitudinal and transversal forces to the driving direction, and these forces are relatively easy to measure with a smartphone, if the device is located in a fixed position inside the vehicle. As in our case the mobile can be in any arbitrary position, we address the characterization of the maneuvers through two different approaches. The first one makes a more general classification of driving events, simply relating the maneuvers to two types, longitudinal and transversal classes. This approach can be interesting to classify drivers based on aggressiveness (risky and safe drivers), for car insurances or for battery consumption in electric vehicles, among others. The second one performs a more precise classification, distinguishing between positive and negative accelerations (i.e. acceleration and braking), and between right and left turns. These types of solutions can be interesting, for instance, for connecting the road with driving or for route reconstruction applications. Both approaches are based on the use of the 3-axial accelerometer signals from a smartphone with Neural Networks, proposing different Deep Learning models to face these tasks.

4.1. Related works in driving maneuver characterization

Driving characterization methods are usually based on maneuvers identification. In these cases, the identification of maneuvers or events is a preliminary step, which leads to a further driver behavior classification according to different criteria such as aggressiveness (aggressive maneuvers or not). For instance, in (Eren, Makinist, Akin, & Yilmaz, 2012) smartphone sensors as accelerometers, gyroscopes and magnetometers, are used to
differentiate between risky and safe drivers. To do this, after an endpoint detection algorithm, they estimate the amplitude range of sensor signals for detecting the most important events using Dynamic Time Warping (DTW) and finally a Bayesian classifier for maneuvers classification. In this work, authors mention the advantages of using smartphones instead of external or vehicles sensors: “This choice provides us with a portable setup, such that changing vehicles will not affect the portability of the system.” A major limitation of this work is that templates for the events must be manually selected and labeled, and due to the maneuvers have different durations, they need to employ the DTW. Another limitation is that the phone must be placed in a fixed position inside the vehicle, so they have the same reference system for all terminals.

Another work which uses the DTW for driving style recognition is (Johnson & Trivedi, 2011). This work presents a platform called MIROAD (A Mobile Sensor-Platform for Intelligent Recognition of Aggressive Driving), in order to determine the driver style, to discriminate between non-aggressive and aggressive based on the recognition of different types of events. Although they do not use extra equipment, only the smartphone with an App installed, they employ several sensors: accelerometer, gyroscope, magnetometer, GPS and camera. To detect the maneuvers they utilize endpoint detection algorithms with thresholds that mark the beginning and end of events. For the classification, they compare the maneuvers with templates using the DTW, and the template with the lowest warping path cost is the closest match.

Current works like (Al-Din, 2018) also employ techniques such as the endpoint detection algorithm followed by DTW for the identification and classification of events. They identify 10 different types of maneuvers: acceleration straight road segment, acceleration curved road segment, braking straight road segment, braking curved road segment, left lane change straight road segment, left lane change curved road segment, right lane change straight road segment, right lane change curved road segment, merging into highway and exit from highway. To evaluate the abnormality level of an event (in hard, normal and light maneuvers), they employ a specific feed-forward neural network (FFNN) classifier. The signals used are the accelerometer, the gyroscope and the magnetometer of drivers’ smartphones. They also perform a transformation of the sensors data from the smartphone coordinate system to the vehicle coordinate system.

The work presented by (Ferreira Júnior, et al., 2017) evaluates the performance of multiple combinations of machine-learning algorithms, such as support vector machines (SVM) or random forest (RF), applied in the motion sensors of Android smartphones to detect aggressive driving events. Data used were recorded only by a smartphone, Motorola XT1058, in a fixed position inside the same car. In total, they had 4 car trips of 13 min each, done by two different drivers. Because they work with a small database, traditional machine learning algorithms are a good solution for driving events detection. However, with larger databases, it can be expected that Deep Learning techniques offer higher recognition results. In fact, in a more recent work by the same authors (Carvalho, et al., 2017) they use the same database to apply Deep Learning and to compare the benefits with different RNN schemes. In their empirical evaluation, the Gated Recurrent Unit (GRU) was the most reliable RNN to be deployed with the accelerometer data; the long short-term memory (LSTM) and the simple RNN have a greater difference depending on the numbers of neurons.
Another research of driving style characterization for Android smartphones is (Meseguer, Calafate, Cano, & Manzoni, 2013). They employed a Neural Network in order to classify driving styles, by characterizing the type of road and the degree of aggressiveness of drivers. They present a platform called DrivingStyles, which allows access to different statistics relating to driving. An OBD-II connector is necessary for sending and updating the information to a remote data center where a Neural Network classifier is integrated.

Some research as (Castignani, Derrmann, Frank, & Engel, 2015) combines different smartphone sensors (accelerometers and magnetometers) with GPS information to detect driving maneuvers and classify them into acceleration, braking and cornering. From this maneuver classification process they define several driver profiles by means of the driving scores obtained from the events. In this work they also use contextual information, as the weather information, to adjust the driver score. Using accelerometer signals they get the standard deviation of the jerk, and the angular velocity is obtained from the magnetometer. Through GPS they get the remaining three signals, of the five used in the classification model, which are the speed, the speed variation and the bearing variation. Among the reasons mentioned in their work to use the jerk, or more specifically the standard deviation of the jerk, it is because according to them this variable can offer a better fit to aggressive driving maneuvers than the raw acceleration.

Another relevant work based on the combination of multiple sensors is the Nericell framework proposed in (Mohan, Padmanabhan, & Ramjee, 2008). This system uses accelerometers to detect potholes/bumps and braking events, the microphone to detect honking, the Global System for Mobile communications (GSM) radio and/or GPS sensors to obtain the localization and the GPS for the speed. One of the main characteristics of this work is that it faces the problem of monitoring road and traffic conditions in a city, but in developing regions, with a priori more complex and varied patterns. The experiments that they performed running only in smartphones with Windows Mobile 5.0, and they used the same car model, driven by various drivers. To address the problem of the heterogeneity of mobile devices and vehicles some authors propose device-dependent models. In (Castignani, Derrmann, Frank, & Engel, 2015) a Multivariate Normal (MVN) model is trained for different models of mobile devices. They justify the use of MVN for handling the heterogeneity of mobile devices and vehicles.

Having access to specific data provided by the vehicle opens another line of research studies. For instance, (Ly, Martin, & Trivedi, 2013) use inertial sensors from the Controller Area Network (CAN) bus of the vehicle in order to segment and classify driving events in braking, acceleration and turning. According to their results, the braking maneuver is the one with the best classification values, greater than acceleration and turn.

Another field closely related to driving characterization is Human Activity Recognition (HAR). This is a broad and complex field where highly demanded solutions based on ML or DL algorithms are being proposed. For example (Dong, et al., 2016) emphasize the advantages of using Deep Learning instead of using more traditional ML methods based on handcrafted features (i.e., feature engineering). Works like (Lu, Nguyen, Nguyen, & Nguyen, 2018) present a system for detecting the vehicle mode and the driving activity of travelers, called Vehicle mode-driving Activity Detection System (VADS). For the vehicle mode detection, they use only the accelerometers and the system must recognize...
when driving a car, a bus or a motorbike, as well as when the person is not driving and is walking or cycling. For the driving activities like stopping, going straight and turning left or right, in addition to the accelerometers they use the gyroscope and the magnetometer. In (Vaizman, Ellis, & Lanckriet, 2017) authors try to automatically recognize the behavior and environmental context of a person, using smartphone and smartwatch sensors. They classify work and leisure activities, body movement and modes of transportation, among others. Every minute recorded has multisensor measurements, and, among the main contributions that they mention is that people use the devices naturally and in a free position.

To provide a summary of these reference works, Table 4.1 presents a brief description of every research, the signals and information that are used, the proposed method or model, and the results and/or conclusions that can be drawn from it.

Table 4.1: Outstanding works related to maneuver characterization in the state of the art. The table has been sorted alphabetically according to the reference.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Signals</th>
<th>Method</th>
<th>Results and/or conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Al-Din, 2018)</td>
<td>Identification and classification of highway driving events in hard, normal and light.</td>
<td>Accelerometer, gyroscope and magnetometer from smartphones.</td>
<td>Endpoint detection algorithm, DTW and FFNN.</td>
<td>Good results in the classification of events, but few examples. Set of 10 drivers doing the same route.</td>
</tr>
<tr>
<td>(Carvalho, et al., 2017)</td>
<td>To detect aggressive driving events.</td>
<td>Accelerometers.</td>
<td>RNN architectures: LSTM, GRU and SimpleRNN.</td>
<td>The GRU architecture presented the best results using the accelerometer data.</td>
</tr>
<tr>
<td>(Castignani, Derrmann, Frank, & Engel, 2015)</td>
<td>Maneuvers classification in order to create a driving score.</td>
<td>Accelerometers, magnetometer and GPS.</td>
<td>MVN.</td>
<td>The scores obtained for the driving profile are highly correlated with metrics based on speed time-series.</td>
</tr>
<tr>
<td>(Eren, Makinist, Akın, & Yilmaz, 2012)</td>
<td>To differentiate between risky and safe drivers.</td>
<td>Accelerometer, gyroscope and magnetometer.</td>
<td>Endpoint detection algorithm, DTW and Bayesian classifier.</td>
<td>93.3% correctly classified between risky and safe drivers among a set of 15 drivers.</td>
</tr>
<tr>
<td>(Ferreira Júnior, et al., 2017)</td>
<td>To detect aggressive driving events.</td>
<td>Accelerometer, linear acceleration, magnetometer, and gyroscope.</td>
<td>Machine Learning algorithms: ANN, SVM, RF and BN.</td>
<td>The gyroscope and the accelerometer are the most suitable sensors to detect the driving events. The ML algorithm that works best for them is RF, and the second one is ANN.</td>
</tr>
<tr>
<td>(Johnson & Trivedi, 2011)</td>
<td>To determine the driver style (non-aggressive and aggressive) and to recognize driving maneuvers.</td>
<td>Accelerometer, gyroscope, magnetometer, GPS and video.</td>
<td>Endpoint detection algorithm, DTW.</td>
<td>The smartphones sensors can detect movement with similar quality to a vehicle CAN bus.</td>
</tr>
</tbody>
</table>
4.2. Obtaining acceleration forces in the vehicle reference system

As we have seen in the previous section, most of state-of-the-art research on driving characterization using smartphones requires that the mobile phone is located in a fixed location inside the vehicle. Given a fixed smartphone position, it is relatively easy to identify which smartphone tri-axial accelerometer is oriented in the driving direction, thus measures acceleration forces (i.e. accelerations and braking), and which one is transversal to the driving direction, and thus measures transversal (i.e. left/right turns) vehicle forces. Therefore, in fixed smartphone situations, it is relatively less complex to identify specific driving maneuvers (e.g. harsh braking, cornering, etc.), required for developing a driving characterization systems.

However, in scenarios in which the mobile can be freely located inside the vehicle, as it is the case studied in this Thesis, the derivation of longitudinal and transversal accelerometer forces from the smartphone, it is an important and challenging process,
which must be addressed before driving maneuvers detection to develop driving characterization.

To solve this issue some works as (Lu, Nguyen, Nguyen, & Nguyen, 2018) rely on the analysis of several smartphone sensors (accelerometers, gyroscopes and magnetometers) on a set of specific maneuvers as stopping, going straight, turning left and turning right. As illustrated in Figure 4.1, the tri-axial accelerometers forces \((X_1, Y_1, Z_1)\) in the smartphone coordinates systems can be transformed to the vehicle coordinates system \((X_2, Y_2, Z_2)\) through some classical approaches as is the use of a rotation matrix \(R\), equation (4.1):

\[
\begin{pmatrix}
X_2 \\
Y_2 \\
Z_2
\end{pmatrix} = \mathcal{R} \cdot
\begin{pmatrix}
X_1 \\
Y_1 \\
Z_1
\end{pmatrix}
\]

(4.1)

Where \((X_1, Y_1, Z_1)\) in the smartphone usually corresponds to: \(x\)-axis, left to right axis over the width of the screen, \(y\)-axis bottom to top axis over the length of the screen, and \(z\)-axis, back to front axis over the depth of the phone.

The rotation matrix \(R = R_x \times R_y \times R_z\) is given by the following formulas:

\[
R_x =
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{pmatrix}
\]

(4.2)

\[
R_y =
\begin{pmatrix}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{pmatrix}
\]

(4.3)

\[
R_z =
\begin{pmatrix}
\cos \varphi & \sin \varphi & 0 \\
-\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

(4.4)

where \(\beta, \alpha\) and \(\varphi\), are the Euler angles, referred to as pitch, roll and yaw, respectively. Pitch is the rotation around the \(x\)-axis, roll the rotation around the \(y\)-axis and yaw the rotation around the \(z\)-axis.

As proposed in several works as (Lu, Nguyen, Nguyen, & Nguyen, 2018), (Ferreira Júnior, et al., 2017) or (Kanarchos, Christopoulos, & Chroneos, 2018), the rotation matrix
can be estimated from the behavior of accelerometers plus gyroscopes or magnetometers while the car is performing some specific maneuvers. The main problem with these solutions is that the magnetometer information may be affected by the metal frame of a vehicle, giving us in some circumstances unreliable readings.

In our case, as we exclusively rely on accelerometers and the smartphone may be located in any arbitrary position inside the vehicle, the estimation of this mapping from smartphone to vehicle coordinates system is much more challenging. Consequently two different approaches have been proposed:

- In the first one (Section 4.3 Broad driving maneuver characterization), instead of a precise coordinate system mapping, we are going to make an estimation of the positions of the maneuvers through a simple projection from the smartphone accelerometers \((X, Y, Z)\) to a 2D horizontal plane \((X_h, Y_h)\), based on the estimation of the gravity vector (that should correspond to the projected \(Z_h\) axis). The assumption is that in this 2D horizontal plane both the longitudinal and transversal forces of the vehicle are represented. However, in this horizontal plane we do not know the vehicle driving direction so we can only estimate broad driving maneuvers as turning (without differentiating left and right turns) and non-turning (i.e. acceleration or braking, without distinguishing them). Then, through three different segmentation strategies of the events, we will address the classification of the maneuvers with the raw original signals of the accelerometers.

- In the second one (Section 4.4 Improved driving maneuver characterization), we propose solving the mapping from the smartphone coordinates system to the vehicle coordinates system through the estimation of what we referred to as vehicle movement direction (VMD). In this case (as we will see in Section 4.4) a richer set of driving maneuvers can be characterized.

4.3. Broad driving maneuver characterization

As commented before, in this section we address a broad driving maneuvers characterization. In general, maneuvers characterization requires to address three complementary process:

1) Detection, that is to identify a time segment where a maneuver is.
2) Segmentation, that is to divide the signal through the use of windowing across the accelerometers (we will study fixed-length, variable-length and sliding window segmentation)
3) And classification or identification of the particular type of maneuver (turn, non-turn, etc.).

Next sections present three different methods for maneuver classification using different windowing strategies (see Figure 4.2). The first step (Section 4.3.1 Energy-based maneuvers time detection) describes the detection process, using a threshold on successive measurements of the accelerometer horizontal projection energy (where the maneuvers
space lies). This step will be common to the three methods developed. The three segmentation methods employ Deep Learning techniques to the maneuver characterization: using fixed-length windows (4.3.2 Maneuvers segmentation using fixed-length windows for Deep Learning models), variable-length windows (4.3.3 Maneuvers segmentation using variable-length windows for Deep Learning models), and sliding windows (4.3.4 Maneuvers segmentation using sliding windows for Deep Learning models). For each of the three segmentation strategies, the results obtained will be presented.

![Diagram of broad driving maneuver characterization process.](image)

4.3.1. Energy-based maneuvers time detection

We address the driving maneuvers detection using a projection of the smartphone tri-axial accelerometer measurements on the horizontal plane, which we assume contains the longitudinal and transversal driving forces. The module of the horizontal projection is used to remove the effect of gravity on accelerometer signals and to obtain a plane where longitudinal and transversal forces mainly related to driving maneuvers are represented. To obtain it, we have followed the recommendations of works such as (Yang, 2009), based on an estimation of the gravity vector in the smartphone coordinates system.

Below, we describe the process for calculating the horizontal projection vector, \mathbf{p}_{hi}, for an acceleration sample $\mathbf{a}_i = (a_{x_i}, a_{y_i}, a_{z_i})$; with $i = 1, 2, ..., 10$. This process is repeated in each new window of 10 samples (2 seconds), until go through the complete signal.

1) First of all, we estimate the vertical acceleration vector, \mathbf{g}, that is the gravity. Works as (Mizell, 2003) claim that a good estimation can be obtained using an average of the signal over a reasonable time period. In our case, to estimate gravity, we have use a sampling period of 250 samples (50 seconds) around the first sample window. The reason for using this length, is that if we used smaller windows, we could estimate the slow accelerations of the vehicle as gravity. Therefore, we calculate the
means of the respective axes for the sampling period, obtaining the gravity vector, \(\vec{g} \), to later normalize it, \(\vec{g}_{norm} \).

\[
\vec{g} = (m_x, m_y, m_z)
\]
\[
\vec{g}_{norm} = \frac{(m_x, m_y, m_z)}{\sqrt{m_x^2 + m_y^2 + m_z^2}}
\]

Once the gravity, \(\vec{g} \), vector has been obtained, first it is necessary to calculate the vertical projection, to finally acquire the horizontal projection for each one of the samples of said window. That is to say, each sample in the 10-sample window (2 seconds) shares the same gravity estimation. And this is updated for the next window.

2) The vertical magnitude for the sample \(i \), \(p_{v_i} \), will be the dot product of the acceleration vector in the sample \(i \), \(\vec{a}_i \), and the normalized gravity vector.

\[
p_{v_i} = (\vec{a}_i, \vec{g}_{norm})
\]

And the projection of the acceleration onto the vertical component will be the product of this magnitude with the normalized gravity vector.

\[
\vec{p}_{v_i} = p_{v_i} \cdot \vec{g}_{norm}
\]

3) Finally the horizontal projection, \(\vec{p}_{h_i} \), of the acceleration vector \(\vec{a}_i \) will be the subtraction:

\[
\vec{p}_{h_i} = \vec{a}_i - \vec{p}_{v_i}
\]

This vector \(\vec{p}_{h_i} \) is a horizontal plane that is orthogonal to the estimated gravity vector \(\vec{g} \).

After obtaining the horizontal projection, as commented before, this vector should contain the longitudinal and transversal vehicle forces and therefore its energy could be used to detect time segments where driving maneuvers occur. To illustrate this, Figure 4.3 and Figure 4.4 show different situations.

The Figure 4.3 a) shows an example of a driver with an Android smartphone located in landscape position. The Figure 4.3 b), c) and d) shows respectively the raw accelerometers signals, the horizontal projection module and the vertical projection module captured. The module of the vertical projection, as can be seen, many corresponds to the gravity force (it could also contains driving information related to the road type, bumps, potholes, etc.). Figure 4.4 shows the same information as before, but obtained from a smartphone with iOS operating system located in another position (another common position in many real cases). In this example, most of the gravity is contained by the -Z axis.
Figure 4.3: Signals obtained from an Android smartphone. a) Position of the mobile while the journey was recorded. b) Raw accelerometers. c) Horizontal projection module. d) Vertical projection module.

Figure 4.4: Signals obtained from an iOS smartphone. a) Position of the mobile while the journey was recorded. b) Raw accelerometers. c) Horizontal projection module. d) Vertical projection module.
Once we have the horizontal projection vector available we can perform a simple process to identify possible maneuvers segments through the measurement of its energy or $L1$ norm through a journey. We must point out that before energy detection, low-pass filtering of the signals is carried out in order to eliminate high-pass frequencies that are not related to driving. For more details about this process, consult the reference (Patent No. US20160016590A1, 2014).

To identify those time segments where maneuvers can be located, we use a strategy that compares the acceleration energy of consecutive windows of 10 samples with an energy threshold. In order to consider whether or not every window can belong to a segment susceptible to being a maneuver. Events with excessive energy values, above a specific threshold, will be excluded since they generally correspond to smartphone manipulations by the driver. To decide these thresholds, a study was made on a preliminary database different to the database used in the tests of the present work. We validate the results with the use of the gyroscope and the accelerometers, modifying different experimental thresholds over the horizontal projections of the accelerations, most of the significant driving maneuvers were detected.

After making an initial gross estimation of possible maneuvers time-segments, we developed a post-processing step directed to delimit its start and end points more precisely. This post-processing step will try to identify a segment centered on the main point of energy in the maneuver and delimited by using a background noise. The cutting points of the maneuvers will thus identified using a background noise threshold estimated at journey level. The post-processing also includes a final step where maneuvers that are very close in time may are fused together as part of a single larger maneuver.

The Figure 4.5 shows an example. The areas of maneuvers that would be detected in a real journey with a first approximated or gross method have been marked in red dotted. Then, we calculate the background noise threshold at journal level, represented by the orange line. If we zoom in a part of the journey, the background noise zones will be the areas below the threshold (Figure 4.5 a)). Small areas of background noise may come out; therefore, if two maneuvering areas are close, they are joined together in one, marked with a green box, see Figure 4.5 b).

To label the maneuvers, we have used both the accelerometer and gyroscope information. For the tests in this Section 4.3 we only distinguish between two classes, acceleration/deceleration maneuvers and turn/mixed maneuvers. Consequently, if the event presents transversal forces, where the gyroscope module exceeds a particular energy threshold, we will consider it to be a maneuver of the second class, otherwise we will label it in the first class.
4.3.2. Maneuvers segmentation using fixed-length windows for Deep Learning models

In (Lu, Nguyen, Nguyen, & Nguyen, 2018), authors study a signal segmentation method that computes an optimum data window size and hop-size for vehicle mode recognition (car, bike, motorbike, bus and walking). As stated in that article, window size is important and can influence the results: "In fact, the duration of sliding windows influences on the prediction accuracy. If the sliding window size is too small, some periodic characteristics can be lost; the system performance of classifiers is thus degraded. By contrast, if the window size is too large, the noise interference from other vehicle modes can be increased." To get the optimal values,
they use the prediction accuracies obtained with different classifiers. They initialize the window size to 1 second and then, they increase iteratively the size. Also, they tested with several overlapping values such of 75%, 50% and 25%. According to the reported results, a general conclusion was that accuracy increasing, when increasing the window size up to a certain saturation value that was 6 seconds. And the best overlapping ratio was 75%. For this particular task, when the longer window size was, they captured more information of vehicle mode.

In our work, since we have detected and delimited the maneuvers, we have decided to study their different durations and to select a fixed window size, as representative as possible for the complete dataset. This length must store enough useful information to carry out the desired task, as well as not to be too large to do not increase the processing time and to be able to apply such segmentation in shorter journeys. For the experimental framework we used the maneuvers of a set of 40000 real driving journeys. And we have tested three different Deep Learning models:

- The first one is a two-layer Neural Network classifier using Feed Forward or Fully Connected (FC) layers. The input for this model is a super vector where all the window samples of the three-axis accelerometers are concatenated one after the other (Figure 4.6). In the first layer, we applied the weights and the biases to X and go through the ReLUs. The second layer has the weights and the biases, followed by the softmax layer (to obtain the probabilities for each class).

![Figure 4.6: Two-layer classifier applied for fixed-length window segmentation strategy, broad driving maneuvers characterization.](image)

- The second one is a two-layer Convolutional Neural Network (CNN) with 128 kernels. Each 1D kernel is used as a filter applied on each sensor, as a feature extractor, followed by the previous classifier (Figure 4.7). In the CNN, every input does not connect to every hidden neuron, instead of this, the connections are made in small localized regions of the input.
To improve the previous results, we also tested Recurrent Neural Networks (RNN). In particular, a Long Short-Term Memory (LSTM) network of two stacked layers. Because normal CNN in order to extract patterns share parameters across space, probably these types of networks are not the most suitable for our data. Perhaps, it is better to use networks that take into account temporal dependencies. LSTM networks are RNN that has into account the past. These perform a summary of what happened before recursively and consist of repetitions of simple units as the shown in Figure 4.8. These units take as input the past and new inputs and produces a new prediction and a connection to the future (for more details about this type of networks see Section 2.4.2 Long Short-Term Memory). In this architecture, we must introduce at each step an instant of time for all the sensors, and the same time for all training batch. Unlike the normal RNN that overwrite their content at each instant of time, if the LSTM networks detect an important feature, they maintain it in the memory, being able to take that feature a long distance and capturing possible temporal dependencies. There are three types of LSTM cells:

- Basic LSTM cells: these cells in relation to the normal recurrent neural cells add the forget gate.

- Full LSTM cells: in relation to the basic LSTM cells add the peepholes (so that the cells control the gates).

- GRU cells: in relation to full LSTM cells, always show all content remains in memory to other units.
As we have mentioned, we have simplified the problem to only two classes, one formed by accelerations and decelerations/brakings, and another one including both turns and mixed events (turns together with accelerations and/or decelerations). The input signals to the network will be the areas of maneuvers, and we are going to use the raw accelerometers, without any type of processing.

In order to choose a first window size, we have studied the different durations of the driving maneuver set (40000 journeys), obtaining the histogram shown in the Figure 4.9. As we can observe, a good initial value can be set to 100 samples that equals 20 seconds (sampling rate of 5 Hz).
There are maneuvers with lengths shorter and longer than that selected duration, so we will perform the following data preparation. We exclusively use for the training, events with 100 samples or less. When the event has a shorter duration, we seek the center and move 50 samples right and left, if it is possible. In the Figure 4.10 an example is shown, where the red dotted box shows a turning event, the blue dotted box one of acceleration and the green dotted box the result of the process of improvement of the delimitation of the maneuvers, after applying background noise thresholds, orange line (see process in Section 4.3.1 Energy-based maneuvers time detection).

Figure 4.10: Preparation of the windows of the network, for maneuvers of less than 100 samples of duration. a) Module of the horizontal projection of accelerations. b) Module of the filtered gyroscopes.

For the experiments the number of maneuvers is balanced, that is to say, the same amount has been chosen for each of the classes, 208436; using 80% for training, 10% for validation and the remaining 10% for testing. The summary of the results obtained with the configurations mentioned above are shown in the Table 4.2.

The Table 4.2 shows that the classifier has offered slightly better results than convolutional networks, with an overall accuracy of 72.5%. The first test for the recurrent LSTM networks has been to apply to the same data set of 40000 journeys, like the used with the classifier and the convolutional networks, a two-layer network with basic cells and 64 neurons per layer. The results obtained have been of an accuracy of 77.41%. If we added the gyroscope information, the overall accuracy would grow up to 95.07%. As noted, although using only the accelerometers makes the task more difficult, it achieves reasonable values.

Recurrent networks seem to improve the results compared to the values obtained with the classifier and the convolutional network. To increase the accuracies obtained, we
have augmented the dataset from 40000 journeys to 70000 journeys. We have tested for the same basic cells with 64 neurons per layer, and almost 82% of accuracy is achieved. For the same configuration, using only the accelerometers and increasing the data will suppose an increase from 77.41% to 81.86%. In the case of using 6 channels, with the gyroscope information, the increase would be from 95.07% to 96.92%.

Cross-validation is not frequently used in deep learning because it is computationally expensive with a large dataset, this becomes useful when the dataset is tiny. Normally, in this case, with a train/valid/test split is ok. Even so, we have decided to do a test incorporating cross validation to ensure that the results are independent of the partition between training data and test data. But, in order to not increase the training time too much, we have reduced the neurons to 32. Although the results decrease slightly by reducing the number of neurons per layer, these remain similar with a 79.56% of accuracy in the test (see Table 4.2).

In order to compare the results with other type of LSTM cells, we have also used for the same set of 70000 journeys, the full and GRU cells, for the two-layer network with 64 neurons per layer. The accuracies values are respectively 84.34% and 85.02%. It seems that the configuration that offers the best performance is the LSTM network with GRU cells. Training times are not excessively high for 64 neurons, around 4 hours.

Table 4.2: Results in maneuver classification experiments using fixed-length windows.

<table>
<thead>
<tr>
<th>Network</th>
<th>Window network</th>
<th>Signals</th>
<th>No. journeys</th>
<th>No. Classes</th>
<th>Classes</th>
<th>Test accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier (2 layers)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>40000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>72.5%</td>
</tr>
<tr>
<td>CNN (2 layers, 128 kernels) + classifier (2 layers)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>40000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>72.2%</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, basic cell)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>40000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>77.41%</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, basic cell)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers, gyroscope signals (6 channels)</td>
<td>40000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>95.07%</td>
</tr>
<tr>
<td>LSTM (2 layers, 32 neurons, basic cell)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>70000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>79.56%</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, basic cell)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>70000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>81.86%</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, basic cell)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers and gyroscope signals (6 channels)</td>
<td>70000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>96.92%</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, full cell)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>70000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>84.38%</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Fixed, 100 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>70000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>85.02%</td>
</tr>
</tbody>
</table>
4.3.3. Maneuvers segmentation using variable-length windows for Deep Learning models

The next step looking for improved results has been to use the real length of the maneuver, instead of a fixed window of 100 samples. The main difficulty in this case is that the input to the Neural Network will be sequences of variable lengths.

To implement RNN models on variable-length sequences using the TensorFlow Deep Learning library, we have followed the proposal in (Hafner, 2016). The main idea behind this is that the network must learn the information contained in the real duration of each input signal, and not in more samples. If we use TensorFlow to implement the recurrent networks, the batch used in training must be a fixed-sized tensor of:

$$\text{Training batch} = [\text{batch size} \times \text{max length} \times \text{features}]$$

That is, we need to define that maximum length of the channels. As each maneuver has a different length, it is difficult to reach a compromise. Therefore even we use this technique of variable length sequences, we must define a maximum value of length, however the network will only take into account the samples indicated for each signal. For that purpose, the steps are the following:

1. We define the maximum length. Minor maneuvers are filled with zeros.
2. We create a binary mask, with ones for valid samples and zero for invalid samples (it will be enough to add the ones in order to know the real length of a maneuver).
3. We use a dynamic network. This function allows unfolding our network, by means of the parameter sequence_length, where we specify the calculated real lengths.
4. During the model training, TensorFlow will return zero vectors for states and outputs after these sequence lengths specified above.
5. For the cost function, we mask out the unused frames and compute the mean error over the sequence length by dividing by the actual length (in the blog of (Hafner, 2016) specifies that it is not really necessary to mask the cost and error functions, because both prediction and target are zero vectors for the padding frames).
6. Finally for the classification, we must to feed the last output of the recurrent network into a predictor (like a softmax layer). So we do not take the last frame, but we take the last relevant frame (this last relevant output will be the one that feeds on the next layer). Returning as output:

$$\text{output}_{\text{new}} = \text{output}[\cdot, \text{length} - 1]$$

Following this process, we have repeated the tests, selecting a window with a maximum size of 100 samples as before. In addition, taking into account the histogram of the Figure 4.9, we have also performed tests with a maximum window of 200 samples (40 seconds), because this value seems a reasonable window size, covering most of the available maneuvers.
The results for 100 samples, taking into account in the network the variable length of the maneuvers, increase the accuracy to 87.38%. If we increase the maximum window length to 200 samples, accuracy goes up even more until 88.82%. The results have improved at high rates; however training time has also risen to approximately 10 hours.

Table 4.3: Results in maneuver classification experiments using variable length windows.

<table>
<thead>
<tr>
<th>Network</th>
<th>Window network</th>
<th>Signals</th>
<th>No. journeys</th>
<th>No. Classes</th>
<th>Classes</th>
<th>Test accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM (2 layers, 128 neurons, GRU cell)</td>
<td>Variable length, 100 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>70000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>87.38%</td>
</tr>
<tr>
<td>LSTM (2 layers, 128 neurons, GRU cell)</td>
<td>Variable length, 200 samples</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>70000</td>
<td>2</td>
<td>Accelerations/decelerations; turns/mixed</td>
<td>88.82%</td>
</tr>
</tbody>
</table>

4.3.4. Maneuvers segmentation using sliding windows for Deep Learning models

We have also decided to apply neural networks for decision making along a journey. That is, to use sliding windows in order to evaluate to which class it belongs. As decisions are made along the journey, there are no longer only two labels referring to the maneuvers, but four categories in total: acceleration events, turn events, manipulations and zones of background noise level. For these tests the training and testing set used has been reduced, with 5000 journeys for the training and 300 different journeys for the testing. The reason for reducing these sets is to ensure that the classes are balanced and there is the same number of each of them in training. An example of the sliding window process is shown in Figure 4.11 (in this case, the window size is 10 seconds and the overlapping rate is 50%).

The tests have been carried out varying the window size (6, 10 and 15.2 seconds), the overlapping between windows (50%, 80%), the type of network (LSTM and Bidirectional Recurrent Neural Networks) and the labelled way (whole window and last 2 second window). The results are shown in the Table 4.4.

For the test of 10 seconds and overlap of the 50%, with the previous LSTM network and labeling considering the whole window, the results in general have been unbalanced. Although for the acceleration, turn and manipulation classes, we have accuracies higher than 75%. For the last class of background noise zones hardly reaches 50%, mainly confusing this class with acceleration events. With this same configuration and overlap, we have reduced the window size to 6 seconds and we have also increased it to 15.2 seconds. But the results are very similar and the class of background noise zones is not correctly predicted.

Then, we have repeated the experiment with a window size of 10 second, which seems to offer slightly better results than the others, but decreasing the shift to 20% (80% overlap). The results have improved slightly to 72%, but the class of background noise zones hardly exceeds 52%.
If we use another network, for windows size of 10 seconds and 50% overlap, we can compare the results with the LSTM configuration. The selected network has been the Bidirectional LSTM network, of one and two layers formed by GRU cells. But it does not seem that the network change helps to improve the imbalance in the accuracies. We have also tried a different labeling, considering the last 2 second window instead whole window. But this also does not introduce improvements over previous tests.

Once all these changes have been made, we have performed several tests to find the best configuration. For the moment is the Bidirectional LSTM network with one layer formed by GRU cells, a window size of 10 seconds, shift 20% (2 seconds) and labelled way with the last 2 second of the window. Nevertheless, the results remain unbalanced according to the classes, with a general accuracy of 74%.

Table 4.4: Results in maneuver classification experiments using sliding window.

<table>
<thead>
<tr>
<th>Network</th>
<th>Window network</th>
<th>Labeled</th>
<th>Signals</th>
<th>No. journeys</th>
<th>No. classes</th>
<th>Classes</th>
<th>Test accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Fixed, 10 second, shift 50%</td>
<td>Whole window</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accel/decel modifications; turns/mixed; manipulation; background noise zones</td>
<td>71% (but unbalanced results in the classes prediction)</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Fixed, 6 second, shift 50%</td>
<td>Whole window</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accel/decel modifications; turns/mixed; manipulation; background noise zones</td>
<td>70% (but unbalanced results in the classes prediction)</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Fixed, 15.2 second, shift 50%</td>
<td>Whole window</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accel/decel modifications; turns/mixed; manipulation; background noise zones</td>
<td>70.75% (but unbalanced results in the classes prediction)</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Fixed, 10 second, shift 20%</td>
<td>Whole window</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accel/decel modifications; turns/mixed; manipulation; background noise zones</td>
<td>72% (but unbalanced results in the classes prediction)</td>
</tr>
<tr>
<td>Bidirectional LSTM (1 layer, 64 neurons, GRU cell)</td>
<td>Fixed, 10 second, shift 50%</td>
<td>Whole window</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accel/decel modifications; turns/mixed; manipulation; background noise zones</td>
<td>73.5% (but unbalanced results in the classes prediction)</td>
</tr>
<tr>
<td>Bidirectional LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Fixed, 10 second, shift 50%</td>
<td>Whole window</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accel/decel modifications; turns/mixed; manipulation; background noise zones</td>
<td>71.5% (but unbalanced results in the classes prediction)</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Fixed, 10 second, shift 50%</td>
<td>Last 2 second window</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accel/decel modifications; turns/mixed; manipulation; background noise zones</td>
<td>72.75% (but unbalanced results in the classes prediction)</td>
</tr>
<tr>
<td>Bidirectional LSTM (1 layer, 64 neurons, GRU cell)</td>
<td>Fixed, 10 second, shift 20%</td>
<td>Last 2 second window</td>
<td>Tri-axial accelerometers (3 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accel/decel modifications; turns/mixed; manipulation; background noise zones</td>
<td>74% (but unbalanced results in the classes prediction)</td>
</tr>
</tbody>
</table>
Figure 4.11: Application example about sliding window on a real journey, with a window of 10 seconds shifted to 50%. The probabilities obtained for each class is shown to the right of each image.
The Figure 4.12 shows one of the examples obtained in the test, for the configuration mentioned in the previous paragraph. It seems that the behavior along the journey is not bad and the network errors could be corrected. Maybe we should use the projection of the accelerometers instead of the raw signals to avoid these errors. We also tested adding the horizontal projection, but the overall results remained very similar, slightly improving the class of background noise zones, but slightly worsening the turn (the other two classes remained similar).

Figure 4.12: Real example on driving journey, using for the maneuver classification a Bidirectional LSTM network of one layer (GRU cells), size windows of 10 seconds, shift 20% and labeling the last 2 second of the window. The first subplot presents the module of the horizontal acceleration projections, the second subplot the module of the filtered gyroscope and finally, the third subplot presents the final probabilities obtained (adding the results in each moment of time).

Between the advantages of using sliding window it is found that, if it works properly, it is not necessary to do any type of previous processing of the journeys (since it classifies all the windows). Therefore to improve the results, we have maintained the classification in four classes of the sliding window procedure, but we have trained and tested with segmented windows, that is, indicating to the network the actual size according to the class of each window.

The manipulations can have a long duration, so we have decided to slightly increase the maximum segmented window size up to 260 samples. If we apply a LSTM network with two stacked layers formed by GRU cells (64 neurons), the results are shown in the Table 4.5. The final accuracy has increased to 77.25%. In addition, the results for each class are more
balanced, as we can see in the Figure 4.13 a). If we also increase both the training set and the number of neurons to 128, the overall accuracy grows up to 80.5% (see Table 4.5). The Figure 4.13 b) shows that from the acceleration events, 81% are correctly predicted as accelerations and 16% are predicted as turn events, this class has improved by 9%. From the turn events, 61% are correctly classified, this class has gotten worse by 3% (similar results). The manipulations maintain the good percentage obtained previously. And from the background noise zone class, 86% are correctly predicted, this class has improved by 7%.

Table 4.5: Results in maneuver classification experiments using sliding window and sequence variable length.

<table>
<thead>
<tr>
<th>Network</th>
<th>Window network</th>
<th>Signals</th>
<th>No. journeys</th>
<th>No. Classes</th>
<th>Classes</th>
<th>Test accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Variable length, 260 samples</td>
<td>Tri-axial accelerometers and horizontal acceleration projections (6 channels)</td>
<td>5300</td>
<td>4</td>
<td>Accelerations/decelerations; turns/mixed; manipulation; background noise zones</td>
<td>77.25%</td>
</tr>
<tr>
<td>LSTM (2 layers, 128 neurons, GRU cell)</td>
<td>Variable length, 260 samples</td>
<td>Tri-axial accelerometers and horizontal acceleration projections (6 channels)</td>
<td>12000</td>
<td>4</td>
<td>Accelerations/decelerations; turns/mixed; manipulation; background noise zones</td>
<td>80.5%</td>
</tr>
</tbody>
</table>

Figure 4.13: Confusion matrix obtained for the maneuver classification experiments using sliding window and sequence variable length. a) LSTM network with two stacked layers, GRU cells and 64 neurons. b) LSTM network with two stacked layers, GRU cells and 128 neurons.

4.3.5. Windowing strategies comparison

In this section we have addressed a broad driving maneuver characterization. For this purpose, we have developed three different methods depending on the windowing strategy used. The first common step to each of the methods is the detection of the maneuver, that
is, to locate the beginning and the end, using the projection of the smartphone tri-axial accelerometer measurements on the horizontal plane, which we assume contains the longitudinal and transversal driving forces. To locate the position of events, we compare the acceleration energy with a threshold, which will mark an approximate location. To determine the beginning and the end, we use the specific background noise level of each journey. Once the maneuvers have been located, we have applied three different segmentation methods: fixed-length windows, variable-length windows and sliding window. And we have used Deep Learning models, to classify the maneuvers into two types: accelerations/decelerations and turns/mixed events.

The first method uses fixed-length windows for all maneuvers. Studying the duration of the maneuvers that we have detected, we have selected a window length of 100 samples (20 seconds). The problem with this method is that although 100 samples is a size that covers most durations (see Figure 4.9), there are shorter and longer events. Longer maneuvers have been excluded from testing and for shorter maneuvers it is necessary to center on the maneuver and take part of the environment to complete this length. The best results have been obtained with a two-layer LSTM architecture, with GRU cells and 64 neurons by layer, obtaining an accuracy of 85.02%.

As we have commented, the main limitation of the previous method is that for smaller maneuvers of 100 samples, it is necessary to collect information from the environment, incorporating signals not directly related to the maneuver itself. To solve it, the second method instead of using fixed windows employs windows of variable size, which allows expanding the set of maneuvers to classify. Since Neural Networks need a fixed input size for their tensors, we extend the 100 samples to 200 samples. Minor maneuvers of this size are filled with zeros; however the network, both training and testing, will only take into account the length indicated for each signal. The best results have been obtained again for the two-layer LSTM network, with GRU cells, expanding the number of neurons to 128 per layer and using a dynamic network. The accuracy for this method has increased to 88.82%.

Finally, we have used sliding windows along the journey. Now there are not only two classes as in the previous methods, but as many classes as the type of information are present in the journeys. We have grouped it into four types: windows with information about acceleration/deceleration maneuvers, windows with information about turn/ mixed maneuvers, manipulation windows and background noise windows. The first two correspond to the classification of the events that we have carried out in the first methods. The manipulations correspond to areas where there are high acceleration values, caused for example by the driver taking the mobile phone with her hand. And the last class, background noise zones are calm areas of the journey, where neither maneuvers related to driving nor manipulations occur. Different window, overlap and label values have been tested. As this kind of method allows us to use bidirectional neural networks, we have used it and the best results have been obtained with this architecture, using an LSTM layer with 64 GRU neurons, using windows of 10 seconds, 20% shift and labeling with the last two seconds of the window. The results show an overall accuracy of 74%. These values are lower than those obtained with the other methods and they are also unbalanced between the classes; as the number of classes increases, the complexity also increases.
The method that has offered the best results has been the one that uses windows of variable length. However, if we applied sliding window directly, we would not have to carry out any kind of processing on the journeys, since it classifies the signals into the desired types directly. So we have decided to carry out a last test, which combines both: sliding window along the journey, but for each window the actual length is indicated according to the class. For these tests, the bidirectional network makes no sense, so the best results have been obtained with the two-layer LSTM network, GRU cells and 128 neurons per layer. The overall accuracy for the 4 classes has risen to 80.5%. Although the general results are much better than for the fixed sliding window case, the accuracy obtained for the acceleration/deceleration and turn/mixed events maneuvers is lower than for the second method.

4.4. Improved driving maneuver characterization

In this section we propose an improved method for driving maneuvers characterization that addresses the mapping from the smartphone coordinates system to the vehicle coordinates system, through the estimation of what we referred to as Vehicle Movement Direction (VMD). Once the VMD is obtained, it can be used to estimate the longitudinal and transversal acceleration forces of the vehicle and thus, to identify more precise maneuvers than those with methods in Section 4.3 (as acceleration, braking, turn left and right).

We define the Vehicle Movement Direction (VMD) as a movement directional vector in the smartphone reference system associated to the longitudinal forward movement of the vehicle. Thus, we assume that VMD is a vector in \mathbb{R}^3, constant along a whole journey, assuming that mobile does not change its position inside the car. We must point out that the estimation of this VMD principal direction of vehicle movement can be considered equivalent to the previous calibration process, where it is necessary a reorientation of the axes in order to map phone coordinates into vehicle reference coordinates.

According to works like (Chaudhary, Bajaj, Shah, & Mankar, 2013), they claim that if we could detect when the vehicle starts moving forward, we could obtain the VMD. But the problem with these approaches is that the vehicle does not have to travel in a straight direction when the march starts. To solve these problems we propose and evaluate three different methods for VMD estimation from 3-axial accelerometer signals. The first strategy called "stop detection" (Section 4.4.1), uses accelerations and decelerations near a stop. The second one, which we have named "acceleration forces classification" (Section 4.4.2), is based on using a Deep Learning architecture in order to classify the most significant acceleration forces according to four maneuvers classes (braking/deceleration, acceleration, turn and mixed of them). Based on those maneuvers detected with a high confidence level, we calculate the VMD with a post-processing algorithm. The third approach called "longitudinal and transversal acceleration assignment" (Section 0), tries again to use Deep Learning but, in this method, instead of classifying the maneuvers directly, we train a network to derive the longitudinal and transversal accelerations (so no VMD is specifically obtained).
The summary of the three methods is shown in the Figure 4.14.

Figure 4.14: Overall scheme of the three developed methods for obtaining the vehicle movement direction (VMD).

All the methods have a common previous step, the detection of maneuvers. This detection is the same as the one made in the Section 4.3.1 *Energy-based maneuvers time detection*, which uses the projection of the smartphone tri-axial accelerometers on the horizontal plane, by means of energy and background noise thresholds, in order to delimit the initial and final positions of the events. The method 1 also includes a previous step, the input signals for the stop detector (detection of possible stop zones). As before we started from the maneuvers, since we need areas with enough energy level to capture significant acceleration forces. Accelerometers collect significant variations of forces in the vehicle, but the problem is that when these forces stop, the signals captured by them, remain more or less constant, which are not useful for classifications. Unlike the strategies developed previously, it is necessary to look for specific characteristics that allow a more precise classification.
4.4.1. Method 1: stop detection

The first method we have developed to obtain the VMD, we have called stop detection. The process summary is shown in the Figure 4.15. The main idea is to use deep neural networks to classify two different tasks, and later to combine the results offered by the classifiers through an algorithm that calculates the final VMD. One of the networks will classify the maneuvers into two classes: accelerations/decelerations and turns/mixed. In particular, we are going to use the LSTM network with GRU cells for a segmentation of the maneuvers with variable-length windows (maximum window size of 200 samples), due to the good results shown in the tests of Section 4.3 Broad driving maneuver characterization. We will also increase the number of neurons per layer to 128. The second network will be the stop detector. The stop detector will indicate in which areas of the journey take place a stop. In order to develop this method, we must detect both acceleration/deceleration maneuvers and stops with the networks. If these conditions happen, the post-processing algorithm will calculate the VMD by means of the accelerations and decelerations that occur near the stops, based on the hypothesis that the acceleration event after a stop is an acceleration maneuver per se, while the acceleration event previous to the stop will be a deceleration or braking. Below we are going to detail the two strategies carried out for the stop detector, as well as the algorithm developed to calculate the final VMD with the information of the maneuvers and the stops.

![Figure 4.15: Scheme method 1 of stop detection.](image)

The two strategies in order to implement the stop detector are based on the type of inputs that we are going to use, to classify them like stop or non-stop. For the first experiment, we have trained a neural network that distinguishes between stop and no stop considered as no stop any other signal (i.e. constant speed zones, maneuvers, etc.). For the
second strategy, instead of passing the whole journey and instead of considering the no stop areas how everything that is not a stop, we consider like no stop zones the areas of “nothing” (areas where there is not neither event nor manipulation). To label the stops we had to use a different database, in which we had OBD information. This can affect the detection of the stops, since we train with a different database than the used in the test. Another factor that can affect performance is that the stop database is not very large, no many stop examples for training.

Therefore, as we have mentioned, for the first approach of the stop detector, we consider as stop, any signal that is not a stop (speed of zero m/s), independently of the type of information. For the train part we have used windows of 200 samples with a shift of the 20%, in a Bidirectional LSTM network with one layer formed by GRU cells. In addition to the raw accelerometers, we have added the information of horizontal projections. In the Figure 4.16, we show the confusion matrices obtained based on the percentage of stops windows that have been correctly classified, Figure 4.16 a), and the accuracy for each true class, Figure 4.16 b). The rows are the true class and the columns are the predicted class. The overall accuracy obtained is shown in the Table 4.6, with a value of 75.9% (sum of the main diagonal of the matrix of Figure 4.16 a)). From the no stop windows, 74.4% are correctly predicted as no stops and 25.6% are predicted as stop windows. From the stop windows 90.6% are correctly classified and 9.4% are classified as no stop (Figure 4.16 b)). As the images show, despite obtaining a general accuracy of almost 76%, the results are not good since too many stops are detected that are not.

The second test has consisted of using as stops the areas of “nothing”, areas without maneuvers and manipulations. Also, we have selected a more appropriate stop window size, introducing the real size of those zones. For it, we have represented the lengths of both, stop zones according to the OBD and non-stop zones, Figure 4.17, and based on them we have selected a maximum sequence length of 500 samples.
As in this case we have used the real length of the windows (windows padded), it does not make much sense to use bidirectional networks. For this reason, for this strategy we have employed a LSTM network with two stacked layers. The confusion matrices are shown in the Figure 4.18. If we add the main diagonal of the matrix of the Figure 4.18. a), we obtain that the overall accuracy is 74.2% (Table 4.6). Although the accuracy has decreased slightly from 75.9% to 74.2%, these last results are positive since in this case the network is distinguishing between windows that look alike (there are no maneuvers or manipulations).

![Histogram of the stop and non-stop zones durations.](image)

Figure 4.17: Histogram of the stop and non-stop zones durations.

![Confusion matrix for the stop detector, strategy 2: a) according to the number of windows of each class, b) according to the type of force.](image)

Figure 4.18: Confusion matrix for the stop detector, strategy 2: a) according to the number of windows of each class, b) according to the type of force.

Table 4.6: Results in stop classification.

<table>
<thead>
<tr>
<th>Network</th>
<th>Window network</th>
<th>Signals</th>
<th>No. journeys</th>
<th>No. classes</th>
<th>Classes</th>
<th>Test accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidirectional LSTM (1 layer, 64 neurons, GRU cell)</td>
<td>Fixed, 200 samples, shift 20%</td>
<td>Tri-axial accelerometers and horizontal acceleration projections (6 channels)</td>
<td>12000</td>
<td>2</td>
<td>Stop/no stop</td>
<td>75.9%</td>
</tr>
<tr>
<td>LSTM (2 layers, 64 neurons, GRU cell)</td>
<td>Variable length, 500 samples</td>
<td>Tri-axial accelerometers and horizontal acceleration projections (6 channels)</td>
<td>12000</td>
<td>2</td>
<td>Stop/no stop</td>
<td>74.2%</td>
</tr>
</tbody>
</table>
With the information of the events plus the information of the stops, an algorithm can be developed to calculate the VMD, all without gyroscope. The algorithm developed is based on the hypothesis that the acceleration event immediately before a stop is likely to be a braking (deceleration), while the acceleration event immediately after will be an acceleration (no deceleration). Therefore, we must look for stops with acceleration events on one or both sides. If an event is between two stops, we consider it like an acceleration for one stop and such as a braking for the next stop, it is mixed for the algorithm (do not confuse with mixed maneuver).

The algorithm for obtaining the VMD is defined below. In addition to the conditions described, we have demanded a quality requirement for the results in the classification of events, with a probability threshold greater than 80%. The steps are the following:

1. We take all the events that the network has classified such as accelerations (with high probability). With all those directions of the events, we get the orientation directions (they can be 3, 2 or 1): directions where most of the vectors point; and therefore it is probable that the final travel direction coincides with one of these orientation directions (see Figure 4.19 a)).

2. We look for the acceleration and the braking events from the stops. Accelerations and brakings must fit to some of the orientation directions, and these must have opposite directions (see Figure 4.19 b)). Also, we require that at least 60% of stop samples are below to the noise threshold to consider it valid. For the mixed events located between two stops, we will have samples pointing to one direction and others pointing to another, so we divide the samples. The resulting mixed directions must be fitted to orientation directions and to the braking and accelerations directions (of the stops) already categorized.

3. If the event samples from the stops have not passed the conditions, we calculate orientation directions for turns. The turn orientation directions are obtained by taking, from each turn maneuver, the 3 samples with maximum value in the module of the horizontal projection. And then we use turn orientation directions to discard invalid acceleration orientation directions.

In the Figure 4.19 a real example is shown, in which we have proceeded to calculate the VMD of a journey. In general, to verify that the algorithm calculates a correct VMD, we have compared the resulting direction with that obtained if we use both accelerometer and gyroscope information. For the example of the image, the VMD obtained seems quite reliable, with only 16° of difference with the direction using the gyroscope and the accelerometers.
In order to obtain the VMD used like truth, we have to find a vector relative to the turns, and two other vectors related to accelerations and decelerations. For the vector relative to the turns, we have used the accelerometer samples of the maneuvers, where the gyroscope module has a value higher than an empirical threshold. The vectors related to the accelerations and decelerations have been obtained with the accelerometer samples of the maneuvers, which do not exceed said threshold.

To illustrate this process, Figure 4.20 shows two real driving maneuvers detected. In the upper part of the plot, the raw signals of the accelerometers and gyroscopes are shown. As the segmentation is made without the help of the gyroscope, exclusively with the accelerometers through the horizontal projection, the delimitation that we obtain for the events are shown with the green boxes in Figure 4.20 c)-d). In this example, the samples of the first maneuver will be used to obtain the vectors relative to the accelerations and decelerations (there is not high values of gyroscope); while the samples of the second maneuver will be used for the vector relative to the turns (with high values of the gyroscope).
Deep Neural Networks for Vehicle Driving Characterization by Means of Smartphone Sensors

Figure 4.20: Signals corresponding to two maneuvers detected during a driving journey. a) Raw accelerometers. b) Raw gyroscope. c) Horizontal projection module. d) Module of filtered gyroscope.

In order to distinguish if a turn is left or right or if we accelerate or decelerate, we have to calculate the gravity vector estimation in the journey. The vector of the turns must be perpendicular to the vectors of the acceleration and braking, and these vectors must be in a plane perpendicular to the gravity. This allows assigning the corresponding sign and therefore obtaining the VMD. See Figure 4.21, where a solid black vector indicates the VMD, which is the same direction as decelerations and opposite to accelerations. This vector and turn direction vectors (divided in right turns, solid red vector, and left sensors turns, dotted red vector) are in a perpendicular plane to the gravity vector, the green vector.

Figure 4.21: Distribution vectors related to the mobile.
According to the experiments developed, the previous image is true for the case of smartphones with Android operating system. In the case of iOS terminals, the gravity vector calculated with the accelerometers would take the opposite direction. So the right turn would correspond to the dotted red vector arrow, while the left turn would be the solid red vector arrow.

One of the problems of the stop method developed is that it is not possible to calculate it in all journeys, since the previous conditions must be passed. In addition, although the classification of events has high success rates, the results for the stop detector are not so good. In order to improve errors in the network classification process, we have introduced the following changes to the previous algorithm:

- We have added the Principal Component Analysis (PCA) before calculating the final VMD, instead of orientation directions. In order to avoid that if a turn has been classified as an acceleration, we adjust to wrong directions. For it:
 - We take all the predicted events of the network (the horizontal projection of acceleration and turn events) and we calculate the main components.
 - Then, we individually pick up the acceleration and turn events and we observe if the acceleration events fit to the first or to the second main component, and we take this component as our new “orientation directions”.
 - Also, we verify that there are no inconsistencies such as both accelerations and turns coincide in the same global main component.

There are numerous works that define and explain what it is the Principal Component Analysis (PCA), for example (Jolliffe, 1986). PCA is an unsupervised learning method, similar to clustering, which reduces data by geometrically projecting them onto lower dimensions (Lever, Krzywinski, & Altman, 2017). That it is to say, PCA is a statistical procedure in order to reduce the dimensionality of some input data, consisting of a set of variables interrelated, maintaining as much as possible the variation present in the data. To do this, the input variables must be transformed into a new set of variables uncorrelated, called principal components. The order of these principal components is important, since they will mark the variation they collect with respect to all the original variables. Thus, the first principal component will be the one with the greatest variation and so on. For more information about the calculation or the mathematical and statistical properties of PCA, check references like the mentioned (Jolliffe, 1986), or works such as (Härdle & Simar, 2007) and (Sanguansat, 2012).

The Figure 4.22 shows a set of data, in which we want to project the 40 initial observations on the variables X_1 and X_2, Figure 4.22 a), in their principal components Y_1 and Y_2, Figure 4.22 b). As we can observe in the image, the variable X_2 picks up more variation than the variable X_1. By transforming it to their principal components, the new variable that will pick up that greater variability will be the Y_1.

The Figure 4.22 shows a set of data, in which we want to project the 40 initial observations on the variables X_1 and X_2, Figure 4.22 a), in their principal components Y_1 and Y_2, Figure 4.22 b). As we can observe in the image, the variable X_2 picks up more variation than the variable X_1. By transforming it to their principal components, the new variable that will pick up that greater variability will be the Y_1.

There are numerous works that define and explain what it is the Principal Component Analysis (PCA), for example (Jolliffe, 1986). PCA is an unsupervised learning method, similar to clustering, which reduces data by geometrically projecting them onto lower dimensions (Lever, Krzywinski, & Altman, 2017). That it is to say, PCA is a statistical procedure in order to reduce the dimensionality of some input data, consisting of a set of variables interrelated, maintaining as much as possible the variation present in the data. To do this, the input variables must be transformed into a new set of variables uncorrelated, called principal components. The order of these principal components is important, since they will mark the variation they collect with respect to all the original variables. Thus, the first principal component will be the one with the greatest variation and so on. For more information about the calculation or the mathematical and statistical properties of PCA, check references like the mentioned (Jolliffe, 1986), or works such as (Härdle & Simar, 2007) and (Sanguansat, 2012).
To evaluate the results, we have employed as "truth", the directions obtained using gyroscope. And we have obtained the level of coincidence in the VMD (we have considered that the VMD match, when there is a difference less than or equal to 30° between them), the percentage of journeys where we know the direction but not the sense and the percentage of journeys where we know the direction and the sense. These case of direction and no sense occur when the stops have not pass the conditions of the new orientation directions, because the PCA help us to know the direction but not the sense. If this happens, we can only classify events between acceleration and turn, but not between acceleration and braking.

The results with this new condition of the PCAs are shown in Table 4.7. On the total number of journeys where we have been able to compare the directions, we have obtained that in 63.86% of the times the VMD is correct. The percentages of journeys where we know the direction but not the sense represents 63% of the test set, and both direction and sense the 20%. Although the results are not bad, the number of journeys where it can be calculated is very low. This is probably due to the stop detector, since the data used for training was very limited and also it was a totally different database than the used in the test or in the maneuvers. Improving the database of the stop detector, probably we would improve the overall results (always limited to the existence of stops in the journeys).

<table>
<thead>
<tr>
<th>Method</th>
<th>Level of coincidence</th>
<th>% of journeys with direction information (but no sense)</th>
<th>% of journeys with direction and sense information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event classification + stop detector</td>
<td>63.86%</td>
<td>63%</td>
<td>20%</td>
</tr>
</tbody>
</table>
4.4.2. Method 2: acceleration forces classification

The first step of the method 2, based on the classification of acceleration forces in order to obtain the VMD, is to detect the maneuvers as the image Figure 4.23 shows. But now the classification of the events will be divided into 4 different types:

- Maneuvers of braking (decelerations) without turn. For example, when a driver decelerates but stays in the same driving lane.
- Maneuvers of acceleration without turn. The same as in the previous class, but accelerating, with forces in the opposite direction to the movement.
- Pure turn. With transversal forces to the movement.
- Mixed. All possible combinations of the three above maneuvers. For example, a roundabout (braking + turn + acceleration)

Figure 4.23: Scheme method 2 of acceleration forces classification.

Once the maneuvers are obtained, and before the pre-processing prior to the classification, we must get the ground truth of the data used in the training, now in four classes. In order to obtain our ground truth, we are going to use accelerometer and gyroscope sensors from mobile phones. But when these are tagged, we do not use again the gyroscopes to classify the maneuvers. The segmentation of the maneuvers is necessary after detection, since the labeling is done on that segmentation instead of on the complete maneuver. For labeling, we are going to evaluate two criteria. The first one is if the window maneuver has transversal forces to the movement (i.e., turns); and the second one, if there are longitudinal forces of acceleration or deceleration.

To evaluate if the maneuver has transversal and longitudinal forces of acceleration or deceleration, first it is necessary to find out the truth direction of the VMD (explained in the previous method, 4.4.1 Method 1: stop detection), in order to be able to compare the maneuvers samples with the driving direction afterwards. Once the VMD has been obtained, the maneuvers can be classified in the four mentioned classes by means of the angle between the maneuver samples and this direction (in the Section 4.4.4 Maneuver
characterization by VMD, we show an example of classifying a maneuver with the VMD); and this process can be performed for each journey.

We are not going to use classes such as the background noise zones or the manipulations, we are only going to classify the maneuvers into 4 classes by means of sliding window segmentation. Therefore, based on the previous results, we have decided to divide the detected maneuvers into shorter windows of 10 s with an overlap of 5 s.

In this method we analyze different types of pre-processing of the input signals, in order to improve the classification performance. The raw accelerometers will be taken as baseline, and we will compare it with the same signals removing the gravity component of the accelerations; with the accelerations projected to a plane perpendicular to the gravity; and, finally, adding speed information, the speed estimation will be performed with the strategy proposed in (Cervantes-Villanueva, Carrillo-Zapata, Terroso-Saenz, Valdes-Vela, & Skarmeta, 2016). Therefore:

- Raw accelerometer signals, the tri-axial components, without any type of pre-processing. These will be used as a baseline.
- Removing the gravity to each component of the accelerometers, to have the force of the driving maneuvers.
- Projecting the accelerations to a perpendicular plane to the gravity.
- Speed estimation, added like a channel to the previous approach.

After several tests with different configurations, we have used for the classification of the maneuvers, the network proposed in the Figure 4.24. The network has a convolutional network of two layers, plus a recurrent network of two stacked layers and GRU cells, and the last part of the classifier, with two fully connected plus a softmax layer.

![Figure 4.24: Deep neural network architecture for maneuver classification.](image)

The most common interpretation of the previous architecture is that convolutional network layers act as feature extractor, providing a time-series of feature vectors as input to recurrent networks, that model dynamic information in maneuvers. (Ordóñez & Roggen, 2016), in the area of activity recognition, use also convolutional networks as a feature extractor. As they explain in their work, in domain 1D each kernel can be understood as a filter that helps us to eliminate outliers, applying them on each sensor or each component.
of the accelerometers in our case. To increase the deeper representation of the data, two convolutional layers have been used. The first layer has 32 filters and the second layer 64 filters; using ReLU as activation function; and performs max pooling, maximum neighborhood, to reduce the dimensionality.

The reason for adding the recurrent networks to the output of the convolutional networks is to be able to learn and model the temporal information, collected in the feature map at the output of the convolutional. The recurrent networks are GRU, because this type offers very good results for time-series modeling. If our input signals will be the accelerometers recorded with the smartphone (or variations of them), this architecture becomes very powerful for learning the sequential features. In addition, the nodes of the network are memory cells, which will allow us to update the states at each time instant, storing the temporal relationships inside the maneuver. In the work of (Dong, et al., 2016) compare different architectures and emphasized the benefits of using recurrent networks, since these act like unfolded network across time steps. The GRU network consists of three stacked layers, and each GRU layer is formed by 128 neurons.

Since our dataset contains a very large number of maneuvers for training, we expect that the use of stacked layers can significantly improve the results. The output of the last GRU layer is used as input to the last three layers of the architecture, consisting of two fully connected layers and finally a Softmax layer, which will provide us the output probabilities from network scores. The model was trained using an Adam optimizer for minimizing the cross-entropy loss function. Trying to prevent overfitting, a dropout technique was added at the output of the recurrent networks layer; we also used weight decay or L2 regularization; and max pooling in the convolutional layers to reduce the computational cost reducing the number of parameters. Several learning rates were tested, selecting a low value of 0.001, since although the optimization took longer, training results were more reliable than with higher rates. Hyperparameter optimization was done through a grid search using 10-fold cross-validation on the training dataset. The resulting hyperparameters were then used to get the results in the test dataset.

To evaluate the model, different steps of the procedure have been taken into account, as we done in the previous method. Since the purpose of the method is to obtain a reliable VMD, the most important aim will be to compare if the direction estimated is close to the true driving direction, measuring the difference in degrees. In addition, the number of journeys in which it has been possible to estimate VMD will be an important metric. For this case, the number of journeys in which VMD can be estimated will depend on the detection or not of maneuvers associated with braking/decelerations or accelerations by the neural networks; that is to say, that neural architecture predicts such classes.

Not only the evaluation of the model been considered, but also the interpretation of the training process in the different layers of the Deep Learning architecture, through techniques that allow visualizing data of high dimensionality, like t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008). This interpretation has been done through the visualization of the projection of the feature vectors obtained in the previous layers to the decision making, that is, in the previous layers to the fully connected layer. In particular, the outputs of the second convolutional network and the output of the recurrent networks GRU of two stacked layers have been analyzed. The objective of
visualizing the feature projections, in a function of different parameters, is to observe the influence of these parameters in the decisions that are taken in each layer. For example, to analyze aspects such as whether or not the output information of a layer is independent of the position of the mobile, or whether it begins to show or not a capacity for discrimination of the different types of acceleration forces. t-SNE technique converts the high-dimensional Euclidean distances between data points into conditional probabilities, the similarities. To find the low-dimensional data representation, t-SNE tries to minimize the error between the conditional probability in the high-dimensional data points and in the low-dimensional map points. For the calculation of the similarity between points in the low dimensional space, it employs a Student-t distribution.

When using t-SNE, it is important to consider different values of the perplexity parameter, which roughly represents the number of effective nearest neighbors to consider. Depending on the density of data, some values are usually recommended; generally larger datasets require higher perplexity values. Although the typical range for perplexity is between 5 and 50, depending on the selected value, we can see it reflected in a greater number of clusters. (Wattenberg, Viégas, & Johnson, 2016) analyzed multiple plots by varying the perplexities. The recommended values by (van der Maaten & Hinton, 2008) are in a range between 5 and 50, but may change for each data set. For instance, (Wattenberg, Viégas, & Johnson, 2016) advise that for the t-SNE algorithm to operate properly, the perplexity should have a value smaller than the number of points, and also that in order to avoid weird shapes, the algorithm must be iterated until a stable configuration is reached, since strange figures may be because the process has stopped very soon.

The total journeys have been divided into several subsets; training, validation and testing. For training and validation, k-fold cross-validation was performed, with a k = 10, using a total of 54403 journeys. Each maneuver is divided into overlapping windows (the best segmentation option when combining a convolutional network and a recurrent network, since windows of variable length do not apply in this case). Therefore, the training/validation set has not been divided according to the number of journeys or maneuvers, but as a function of the number of overlapping windows of each class (to avoid skew problems). As we previously mentioned, for this study there are four classes: braking; acceleration; turn; and, mixed. A total of 149157 maneuvers have been used for the training/validation, corresponding to a total of 944384 overlapping windows already balanced (236096 of each class), see Table 4.8 for the dissection by operating system. Finally, different sets of journeys have been used to test and to visualize the classification process in each part. To evaluate the results of the neural network as well as the success rates in obtaining the VMD, a large set of tests has been used, consisting of a total of 9697 journeys of both operating systems (testing 1 in Table 4.8). Because obtaining the projections of the feature vectors in the different parts of the architecture is very expensive computationally, a smaller test set of 297 examples has been used, with journeys of both operating systems also (testing 2 in Table 4.8). To test, it has not been necessary to balance the data by class, for this reason the number of overlapping windows by label has not been specified in Table 4.8 neither for testing 1 nor for testing 2.
Below, we show the results obtained by following each of the four strategies mentioned: raw accelerometers (no pre-processing), accelerometers removing gravity, horizontal projections of the accelerations, and accelerometers removing gravity and adding speed estimation.

Baseline: Raw accelerometer signals

In this type of test no preprocessing has been performed. We have simply used tri-axial accelerometer signals of the sliding windows corresponding to the maneuvers and we have introduced them in the network shown in the Figure 4.24. To evaluate the results obtained in the network, we have calculated the confusion matrices based on two criteria for the 4 types of strategies. The first criterion represents the percentage of acceleration forces windows that have been correctly classified, while the second criterion represents the accuracy for each true class. For all matrices, the accuracy metric refers to rate of correctly classified acceleration forces windows, the rows are the true class and the columns are the predicted class (output of network).

The confusion matrices for the raw accelerometers are shown in the Figure 4.25.

![Figure 4.25: Confusion matrix on raw accelerometers tests, method 2: a) according to the number of tested acceleration forces, b) according to the type of force.](image)

The total accuracy obtained with the raw accelerometers has been 27.88%, the sum of the main diagonal of the matrix shown in Figure 4.25 a). As mentioned, the test examples have not been balanced, since it is not necessary, and of the 9697 journey, there are some acceleration forces/classes that are more common along the routes. For example, observing the confusion matrix of Figure 4.25 a), the classes more usual are the turn classes (45.81%,...
sum of the third row) and mixed classes (44.13%, sum of the fourth row). For instance, in the case of acceleration, although 1.56% has been correctly classified, it also shows a high error rate with the braking class, 1.11%. If we observe these same results but depending on the accuracy for each true class, Figure 4.25 b), in the case of acceleration the right rate is 47.36% and the error rate with the class of braking is the 33.53%. The classes with the highest rate have been the braking where the 57.99% are correctly predicted as braking.

These preliminary results have revealed that none of the classes worked reliably. In any case, it must be taken into account that these results are predictions at the level of each window, and the results when calculating the VMD along a whole journey with the post-processing algorithm must be higher, since the algorithm performs a consistency with all window decisions. These raw accelerometer results will be used as the baseline.

Later, these outputs of the neural network are used for the post-processing algorithm applied to each journey in order to obtain the VMD. The algorithm, as in the previous stop detection method, also employs conditions related to probability and the analysis of main components. The details are the following:

- Firstly, the probabilities obtained in the corresponding overlapping windows will be added together and the final class will be the one with the greater probability after the addition.

- Only samples that exceed at least 1.5 times the background noise threshold, estimated for the journey, will participate in the calculation of the VMD.

- With the samples associated to the “good” mixed events (exceeding certain probabilities) a principal component analysis (PCA) will be made to get the two main directions of greater variability. As a result, most of the acceleration and braking samples must fit to one of the previous directions, and the turn samples to other perpendicular direction (also using samples with a certain probability).

- The samples of acceleration and braking, which do not shift more than 45 degrees from the direction of the principal component associated previously to the longitudinal direction, will be used for the calculation of the VMD. This is as long as they are in sets of at least three consecutive samples, to avoid possible loose samples that deviate the results.

- Finally, to estimate the final VMD, the average of the resulting acceleration samples without gravity is calculated. To increase the reliability of the results, a higher probability threshold has been required for journeys of less than 5 min, since longer journeys usually have more maneuvers and, therefore, there is more consistency with more decisions along the trip, compensating for possible failures of the network.

Below are the results of the VMD obtained, depending on the number of samples that are used for the estimation, see Table 4.9. A minimum of 15 samples is required, obtaining only a success rate of 50.86% and estimating in 87.79% of the test journeys. When demanding more samples to the algorithm of post-processing, the success rate in the directions increases slightly, but reduces the number of journeys where it can be estimated.
The results are still very low with only 52.33% of correct directions, demanding 60 or more samples for the calculation, and estimating in 67.67% of test journeys.

Table 4.9: VMD results using raw accelerometers, method 2.

<table>
<thead>
<tr>
<th>Samples required to calculate the final VMD</th>
<th>% of journeys with angles between the estimated and true directions ≤ 45°</th>
<th>% of journeys where it has been calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥15</td>
<td>50.86</td>
<td>87.79</td>
</tr>
<tr>
<td>≥30</td>
<td>51.71</td>
<td>80.40</td>
</tr>
<tr>
<td>≥45</td>
<td>52.01</td>
<td>73.74</td>
</tr>
<tr>
<td>≥60</td>
<td>52.33</td>
<td>67.67</td>
</tr>
</tbody>
</table>

Removing Gravity from Accelerometer Signals

In this study a pre-processing step is applied to the raw accelerometer signals, before using it as inputs to our Deep Learning architecture. This pre-processing step consists in removing the gravity force from the accelerometer components. For this aim, an estimation of the gravity force has been done, by means of the average of the 3-axis accelerometers in background zones between maneuvers.

The results at the output of the neural network have been the following: final accuracy obtained for the 4 classes of 59.81%, an increase of 31.93% with respect to baseline. The classes with greater improvement have been (see Figure 4.26 a) both brakings as well as mixed events. Observing the accuracy for each true class (see Figure 4.26 b), all have outperformed the 50% of success.

![Confusion matrix on raw accelerometers tests removing gravity, method 2: a) according to the number of tested acceleration forces, b) according to the type of force.](image)

Although we really have not normalized the inputs, because of the risk of losing the maneuver information in sensor data, by removing the gravity component of the raw signals we have moved the maneuver values to a more appropriate variation range of input to the neural network. Components that do not carry out gravity information could have a mean near to zero, but components with all gravity information could have a mean around ±9.8 m/s². Removing gravity, we did some kind of “normalization” that could be the cause of this improvement in the classification rates.
The results in the VMD have been (see Table 4.10) better than those obtained with raw accelerometers; by obtaining better network classifications, the post-processing algorithm results have increased considerably. Demanding 15 samples, a 71.55% of success rate is obtained, and it is possible to calculate this in the 82.86% of the journeys; 20.69% more than in the baseline. Demanding 60 samples, the results go up to 74.86% success, although the routes where this can be calculated are drastically lowered to 51.93%.

Table 4.10: VMD results using raw accelerometers removing gravity, method 2.

<table>
<thead>
<tr>
<th>Samples required to calculate the final VMD</th>
<th>% of journeys with angles between the estimated and true directions ≤ 45°</th>
<th>% of journeys where it has been calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥15</td>
<td>71.55</td>
<td>82.86</td>
</tr>
<tr>
<td>≥30</td>
<td>73.03</td>
<td>71.08</td>
</tr>
<tr>
<td>≥45</td>
<td>73.95</td>
<td>60.73</td>
</tr>
<tr>
<td>≥60</td>
<td>74.86</td>
<td>51.93</td>
</tr>
</tbody>
</table>

Projecting the accelerations to a perpendicular plane to the gravity

Assuming that the driving maneuvers must be in a plane perpendicular to gravity, if we project the accelerations on this horizontal plane, we could observe only the forces related to driving. So using these horizontal projections could improve the classification rates, with respect to the raw accelerometers or the results obtained by removing the gravity from accelerometers. These projections are the same as those used in order to detect or delimit the maneuvers (Section 4.3.1 Energy-based maneuvers time detection).

With the components of acceleration projected on the horizontal plane, like input signals to the neural architecture, the total accuracy has been 43.37%, in Figure 4.27 a), which is 15.49% more than that obtained with raw accelerometers. The results are similar in the case of raw accelerometers removing gravity, slightly lower for the case of the most useful classes such as braking and acceleration and slightly higher for the turns and mixed classes, Figure 4.27 b).

![Confusion matrix on horizontal projections tests, method 2: a) according to the number of tested acceleration forces, b) according to the type of force.](image-url)
Maybe the fact that the deceleration and acceleration classes are slightly lower makes the results of the VMD go down a bit, see Table 4.11, because the turn class does not help to assign the sign to the VMD properly. Despite the fact that the success rate is lower, the number of journeys where it can be calculated is higher than in the case of raw accelerometers removing gravity, so this solution may be of interest. For example, with 15 samples the rate is 69.76% for the 87.03% of the journeys and in the raw accelerometers removing gravity is 71.55% for the 82.86%. If we increase the samples to 60, the rate is 74.55% for 63.59% of the journeys, while for the other it is 74.86% for the 51.93% of the journeys, that is to say it can be estimated in 11.66% more journeys, failing in 0.31% more.

Table 4.11: VMD results using horizontal projections, method 2.

<table>
<thead>
<tr>
<th>Samples required to calculate the final VMD</th>
<th>% of journeys with angles between the estimated and true directions ≤ 45°</th>
<th>% of journeys where it has been calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥15</td>
<td>69.76</td>
<td>87.03</td>
</tr>
<tr>
<td>≥30</td>
<td>71.37</td>
<td>78.04</td>
</tr>
<tr>
<td>≥45</td>
<td>73.28</td>
<td>71.35</td>
</tr>
<tr>
<td>≥60</td>
<td>74.55</td>
<td>63.59</td>
</tr>
</tbody>
</table>

Removing Gravity from Accelerometer Signals and Adding Speed Estimation

The best results have been obtained using as input the raw accelerometers removing the gravity component. In order to try to improve these rates, we have added, as additional information, the estimation of speed changes analyzing only accelerometer signals.

To approximate the speed, we have based this on a technique proposed in (Cervantes-Villanueva, Carrillo-Zapata, Terroso-Saenz, Valdes-Vela, & Skarmeta, 2016), where speed is estimated in small windows of one second. For each window, the module of the three axes of the accelerometers is calculated at each instant of time and added, multiplying said result by the sum of the time difference between the samples of said window. Once these values have been calculated for each window, the speed at a given time will be the speed at the previous time instant, plus the difference in speeds between the current window and the previous window. Estimating the value of the linear velocity from the three-axis accelerometers is complex and we really only want the information of sudden changes, so we have normalized this value between 0 and 1, and we have introduced this signal as one more channel to the neural network.

Adding this information to the three previous channels, it seems that the classification rates of the network have not improved, see Figure 4.28, only the mixed class has gone up slightly. So the results when calculating the VMD have not been increased either (see Table 4.12).
Comparative study

In this subsection, we will compare both the results obtained from the output of the neural network based on several metrics, as well as the percentage of success in calculating the VMD.

Five different metrics commonly used in the literature have been used: accuracy, which refers to the rate of correctly classified maneuvers; precision, that refers to the proportion of predictions that have been correctly classified; recall, the rate of true labels predicted; F1 score, harmonic mean of precision and recall; and, G mean, geometric mean. The results are shown in the Figure 4.29. The baseline is the classifier with the raw accelerometers as inputs.

As it is a multi-label problem, for each one of the metrics the corresponding formulas have been applied by labels, calculating the metric for each label as if it were a binary classification problem, and then averaging them. To get the mean, two usual forms have been applied: macro-averaged (Figure 4.29 b)) and micro averaged (Figure 4.29 c)). The main difference is that for macro-averaged, initially the formula of the metric is applied for each class and then these are averaged; and for micro-averaged, firstly it is necessary to add the true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) of the six classes and once these four values are obtained, to apply them in the formula of the corresponding metric.
It is possible to observe that the raw accelerometers removing gravity offer the best results compared to other configurations, see Figure 4.29, going over the metric of most other inputs. The results adding the information of the speed are similar; therefore, we are going to take only the accelerometers without gravity as the best, since they require less processing. The percentage of right maneuvers classified is 59.81% (accuracy), see Figure 4.29 a). The ratio of predictions correct are 31.84% and 33.16% for macro and micro precision respectively; and the accuracy for the true labels are 65.76% for macro recall and
59.81% for micro recall. The F1 score and the G mean are, respectively, 35.89% (macro)/42.67% (micro) and 62.67% (macro)/59.81% (micro). The results of classification are acceptable, since as mentioned the task of classifying these four classes is quite complex using only accelerometers. We have improved baseline results, but they are still insufficient for the accurate classification and do not provide excessively good results, probably for several reasons. One reason may be the previous nature of the classes, which categorizing them into a pure single class becomes complicated because the classes can easily present patterns of other categories. For example, it is extremely tricky to find a pure turn event (almost always these events have some longitudinal force). It is also important to highlight that until selecting the Deep Learning model used, we tested with different Deep Learning architectures consisting of several convolutional layers plus dense layers at the output, without including the recurrent networks. However, the results obtained were worse more than 5% with respect to the final selected model in the raw accelerometer tests. Among the different recurrent networks tested were the long short-term memory (LSTM) and gated recurrent unit (GRU) networks, but the LSTMs showed a result of around 3% lower average compared to the GRUs.

In the following Table 4.13 are the results obtained in the estimation of the VMD (percentage of correctly classified journeys) and the number of journeys where it can be calculated, when we require 60 or more samples for each approach. As mentioned, in some cases it may be interesting to obtain the direction in the greatest possible number of journeys or, on the contrary, obtain a higher rate of success despite calculating it in a smaller number of trips. Depending on this criterion, the most appropriate input may vary from projections of accelerations over the horizontal plane or the raw accelerometers without gravity. If we want to increase the reliability, we can demand more samples in the calculation of the VMD, but the percentage of journeys where it is estimated will decrease in all cases.

<table>
<thead>
<tr>
<th>Samples required to calculate the final VMD</th>
<th>% of journeys with angles between the estimated and true directions ≤ 45⁰</th>
<th>% of journeys where it has been calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw accelerometers</td>
<td>52.33</td>
<td>67.67</td>
</tr>
<tr>
<td>Removing gravity</td>
<td>74.86</td>
<td>51.93</td>
</tr>
<tr>
<td>Horizontal projections</td>
<td>74.55</td>
<td>63.59</td>
</tr>
<tr>
<td>Removing gravity & adding speed information</td>
<td>70.39</td>
<td>51.23</td>
</tr>
</tbody>
</table>

Now we are going to try to interpret the training process in the different layers of the Deep Learning architecture. For that, from a smaller set of journeys, the feature vectors obtained in the outputs of the different network layers have been projected, using the t-SNE algorithm. For this purpose, different values of perplexity have been tested, obtaining 50 as the most optimal to visualize the groups. This perplexity value will also be used for the rest of the tests. The first projection corresponds to the feature vector of the test set obtained at the output of the second convolutional layer. The second projection corresponds to the feature vector of the same test set but at the output of the recurrent networks. These feature
vectors have been projected in function on the type of class predicted by the network. And in order to see the influence of how gravity is distributed among the three axes and the noise threshold of the journey, these have also been shown as a function of them.

In Figure 4.30 a), we can see these projections when the raw accelerometers are used as input.

Figure 4.30: Two-dimensional t-distributed stochastic neighbor embedding (t-SNE 2D) projections of feature vectors for raw accelerometers input signals to the output of the convolutional network (CNN) (left representations) and gated recurrent unit (GRU) network (right representations). a), d) Projection depends on type of acceleration force. b), e) According to gravity distribution. c), f) According to noise threshold of the journey (m/s²).
It is possible to observe how the convolutional network by itself is not able to create four unique clusters associated with the four output categories, although it is already capable of grouping classes of different types that are mixed. On the contrary, the output of the GRU recurrent networks, Figure 4.30 d), seems indeed to distinguish four big clusters, in spite of the results being not optimal. In Figure 4.30 b), e), we draw these same projections but as a function of how gravity is distributed between the axis of the accelerometers. Firstly it is worth emphasizing that the most common mobile position for the drivers is when the Z axis receives a great part of gravity, and the mobile is horizontal with respect to the ground. At the output of the convolutional network, Figure 4.30 b) shows that this distribution seems to be very important in network decisions; the X, Y and Z axes appear to be in different groups, except obviously in the case of distributed, when there is no axis that receives most of the gravity. Whereas at the output of the recurrent networks, Figure 4.30 e), although they appear more mixed, it still seems a decisive parameter. Finally, if we represent it as a function of the noise threshold of the journey, something similar to the output of the convolutional network occurs, Figure 4.30 c), but not to the GRU, Figure 4.30 f); it seems that the network is able to discriminate independently of the noise threshold, not perfectly but better than with the gravity distribution.

With the previous results, the importance of the gravity in the decision is highlighted, and this can be one of the reasons why when we eliminate the component of the gravity or we project them to a horizontal plane the rates improve regarding the raw accelerometers. If now we paint these projections of the feature vectors but only at the output of the recurrent networks, for the three remaining strategies: removing gravity (Figure 4.31), projecting in the horizontal plane (Figure 4.32) and removing gravity and adding the information of the speed (Figure 4.33), we can observe the independence with respect to these two parameters, gravity and noise threshold, as well as the input that best groups the clusters into four categories in which we remove the gravity of the raw accelerometers, whether or not we add the speed information.

Figure 4.31: t-SNE 2D projections of feature vectors for raw accelerometers removing gravity input signals to the output of GRU network. a) Projection depends on type of acceleration force. b) According to gravity distribution. c) According to noise threshold of the journey (m/s²).
Summarizing the results, this method has shown its limitations, not being able to estimate the direction in the whole set of routes and obtaining a success rate that does not exceed approximately 75%. Therefore, we propose the following solution, which instead of classifying directly with the acceleration forces, will try to predict the longitudinal and transversal forces.

4.4.3. Method 3: longitudinal and transversal acceleration assignment

For the method 3 of longitudinal and transversal acceleration assignment, whose process is shown in the Figure 4.34, the objective is to obtain the longitudinal and transversal acceleration signals from the accelerometers. Once these signals are obtained, it is easy to obtain the VMD or to classify the maneuvers.
As we did previously, before the training it is necessary to create the ground truth for the network. The process is very similar to the previous two methods, since in order to obtain the longitudinal and transversal signals of the acceleration forces, we also need to estimate previously the VMD vector for each journey. Therefore, we can use the previous driving direction calculated to project the original recorded signals to the longitudinal and transversal directions. To do this, we must multiply the raw accelerometers by the rotation matrices obtained with the longitudinal and transversal vectors directions, obtaining the desired truth signals.

For the input signals we have used windows of the same size and overlap like in the previous method 2, windows of 10 s with an overlapping of 5 s. Besides, we will make a pre-processing of the inputs, since these signals will not be the accelerometers but signals derived from them.

- The first step of this pre-processing will be the filtering of the accelerometers to eliminate spurious signals.
- Then, we will eliminate gravity (when we calculate the PCA, neither the first component nor the second must be the gravity).
- Therefore, once the accelerometers are filtered and with the gravity subtracted, we will calculate the PCA on these maneuver signals with the aim of obtaining the first and second component with greater variability.
- The projection on these two first components should be related to driving longitudinal and transversal forces (not necessarily in this order). The third component might be related to forces in gravity plane (i.e., bumps).
- After calculating the main components, the inputs to the network will be normalized between \([-1, 1]\) to use a similar range of values independent of the component.
The task of the neural network will be to assign each calculated component with the corresponding longitudinal or transversal accelerations. The PCA gives the sign to the components randomly, so the network must assign the correct sign, among the eight possible combinations. The network used for this process is shown in the Figure 4.35. This assignment will be constant along the journey and also, in order to help the network in this process, we will add the estimate of normalized gravity (for each journey) before the final stage of the classifier.

![Deep neural network architecture for longitudinal and transversal prediction, method 3.](image)

The eight possible combinations that can be produced are shown in the Table 4.14, where PC makes reference to principal component, and L and T to longitudinal and transversal respectively. One of the differences of this method with respect to the previous ones is that the balancing of the data will not be performed depending on the type of maneuver, but based on the combinations of the table, since the final objective of the network is different.

<table>
<thead>
<tr>
<th>Combinations</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1: L+; PC2: T+</td>
<td>1</td>
</tr>
<tr>
<td>PC1: L+; PC2: T−</td>
<td>2</td>
</tr>
<tr>
<td>PC1: L−; PC2: T+</td>
<td>3</td>
</tr>
<tr>
<td>PC1: L−; PC2: T−</td>
<td>4</td>
</tr>
<tr>
<td>PC1: T+; PC2: L+</td>
<td>5</td>
</tr>
<tr>
<td>PC1: T+; PC2: L−</td>
<td>6</td>
</tr>
<tr>
<td>PC1: T−; PC2: L+</td>
<td>7</td>
</tr>
<tr>
<td>PC1: T−; PC2: L−</td>
<td>8</td>
</tr>
</tbody>
</table>

The following image, Figure 4.37, shows a real example of driving maneuver. The Figure 4.37 a) shows the signals that are introduced to the network, which correspond to the PCA calculated on the accelerometers. As we can see in the Figure 4.37 c), this particular maneuver corresponds to the route through a roundabout. We have obtained the map through Google Maps and the GPS information that we had on this route. Predictions in this method are made with the probabilities of the output of the network in overlapping sliding
windows, which are being added at each instant of time for the eight possible combinations. The final predictions obtained for this example are shown in the Figure 4.37 b). In this case the true label is 7, where the first principal component represents the transversal component with opposite sign and the second principal component represents the longitudinal component with the same sign. As we appreciate in the results obtained, between the second 36.6 and 37.4, the network architecture has predicted the label 5, and has succeeded in the sign of the longitudinal component, but has failed in the sign of the transversal component. If the decision is taken at the maneuver level, the winning combination is 7.

![Figure 4.36: Roundabout maneuver. a) Principal components of the accelerometers. b) Predicted output of the maneuver method 3. c) Maneuver map.](image)

In order to obtain the final results at journey level, it will simply be necessary to add the probabilities of the overlapping windows at each instant of time for each of the combinations. The combination that gets the most value will be the final decision. We have followed this criterion in all test journeys, obtaining the results shown in the Table 4.15. It seems that the main components have been correctly assigned to the longitudinal and transversal accelerations 93.53% of the time. If we consider not only the assignment, but also the sign of the component, we have correctly assigned both the main component and the sign of the longitudinal acceleration the 90.07% and of the transversal acceleration the 61.62%. A possible explanation for obtaining worse results in the case of transversal accelerations than in longitudinal is that the driving acceleration and deceleration patterns may differ more from each other than right/left turning patterns. But the fact of getting
worse results in this acceleration is not a big problem, since the sign of transversal acceleration can be easily derived, if we know both the sign of the longitudinal component and the direction of the gravity force vector (see Figure 4.21). Consequently, beyond the results in Table 4.15, we can say that the correct assignment of the sign for the transversal component is also 90.07%.

Table 4.15: Results obtained for the longitudinal and transversal component prediction, method 3.

<table>
<thead>
<tr>
<th>Principal Component Assignment</th>
<th>Principal Component and Sign Assignment of the Longitudinal Component</th>
<th>Principal Component and Sign Assignment of the Transversal Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.53%</td>
<td>90.07%</td>
<td>61.62%</td>
</tr>
</tbody>
</table>

4.4.4. Maneuver characterization by VMD

This section shows one of the applications mentioned that has the calculation of the VMD: the maneuver classification. Therefore, when calculating the VMD we have a vector relative to the longitudinal accelerations that follow the direction of the movement (the VMD), and a vector relative to the transversal accelerations, perpendicular to the movement. The fact of knowing these vectors allows you to accurately and reliably classify every moment of maneuver time. We simply have to calculate the angle between the VMD vector and the event raw acceleration samples. We considered that belongs to the category of accelerations (accelerations or decelerations/braking) if the average of the all maneuver sample vectors are parallel to the VMD and to the category of turns (left or right turns) if these are perpendicular.

The Figure 4.37 shows a real example where we have drawn the 3-D vectors of the samples (Figure 4.37 a)) of the maneuver of the Figure 4.37 b).

Figure 4.37: a) Driving maneuver vectors. b) Map maneuver with start at the purple point and end at the red point.

In the Figure 4.37 a) we can see the blue vector, which represents the VMD that we have obtained (with method 3, Section 0); the green vector as the calculated gravity; and in black the specific maneuver vectors corresponding to the accelerations/decelerations and in red the left/right turns. The vectors of the maneuvers are in a plane perpendicular to the gravity, and as it should be, the vectors of the accelerations and decelerations are parallel...
to the VMD, while the turns are perpendicular. The map of the maneuver (Figure 4.37 b)) shows a purple dot that indicates the start of the maneuver, while the red dot indicates the end. The succession of most likely actions will be a braking before going through the roundabout, with a right turn at the input and at the output, followed by another section in a straight line with accelerations, as well as another turn to the right again with a slight braking before being followed by an acceleration. It seems that this reasonable succession of actions coincides with the results obtained. So, it is possible with a VMD calculated correctly, use it to characterize maneuvers reliably.

4.4.5. Comparison with the state of the art

Finally, we have evaluated the three models developed to characterize the driving maneuvers more precisely by means of the VMD, making use of the cybernetic theoretical framework explained in (Simpkins & Simpkins, 2012). The following Table 4.16, with the summary results obtained for our proposals, is presented. According to this model, the driver behavior depends on the iterative execution of a repetitive loop of five elements: sensing, information processing, decision making, feedback and action. As in (Kanarachos, Christopoulos, & Chroneos, 2018)(where they use the cybernetics model to compare, among other things, the transportation mode classification or the aggressive driver behavior), key aspects like the signals, the decision-making framework, the sensor fusion level, the noise rejection, the feedback level and the performance are evaluated. The fusion in the three methods is smartphone-based because the raw data do not update to a server that combines signals centrally. In the column of noise is specified No, indicating that there is no probabilistic formulation for rejecting noise and outliers embedded in the signal. The feedback is evaluated only based on its performance, not comparing it with other performance. The metric used for the performance is the accuracy, with 63.86% in method 1, 74.86% in method 2 and 90.07% in method 3.

<table>
<thead>
<tr>
<th>VMD Estimation Method</th>
<th>Signals</th>
<th>Framework</th>
<th>Fusion</th>
<th>Noise</th>
<th>Feedback</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Accelerometers</td>
<td>Neural Networks</td>
<td>Smartphone based fusion</td>
<td>No</td>
<td>Compared to me</td>
<td>63.86% accuracy</td>
</tr>
<tr>
<td>Method 2</td>
<td>Accelerometers</td>
<td>Neural Networks</td>
<td>Smartphone based fusion</td>
<td>No</td>
<td>Compared to me</td>
<td>74.86% accuracy</td>
</tr>
<tr>
<td>Method 3</td>
<td>Accelerometers</td>
<td>Neural Networks</td>
<td>Smartphone based fusion</td>
<td>No</td>
<td>Compared to me</td>
<td>90.07% accuracy</td>
</tr>
</tbody>
</table>

One key point of our work, with respect to others that are state of the art, is that we do not need a calibration. In addition, the database is very extensive since more than 60000 real driving journeys have been used, recorded in mobile phones with Android or iOS operating systems, more than 100 different smartphones and more than 3000 different drivers; so we consider the results obtained extremely reliable. Also, significant points are that the device can go in any position for a more natural detection, and that we only use the accelerometers. Using Deep Learning techniques for the best of the methods (the third), an
accuracy of 90.07% is obtained in the prediction of the VMD, which ensures the correct classification of the maneuvers in at least that percentage of journeys. Therefore, the results are totally comparable with other studies that use more sensors and thus need more resources.

4.5. Conclusions

In this chapter we have addressed the maneuver characterization, through two different strategies. The first one is based on the classification of the maneuvers, in a more general way, distinguishing between events related to longitudinal and transversal forces to the driving direction. The second of them allows a much more precise classification of the maneuvers, not only distinguishing between accelerations and turns, but between accelerations and brakings or left and right turns.

One of the first steps, common in both strategies, is the detection of maneuvers. For the detection of maneuvers, we use the projection from the smartphone accelerometers to a 2D horizontal plane. In this plane, the beginning and the end of the maneuvers can be determined by means of energy thresholds calculated on said projection. For the first more general strategy, once the positions of the maneuvers have been obtained, we done a classification, using three different segmentation techniques: fixed-length windows, variable-length windows and sliding windows. All applied to different models of Deep Learning. The segmentation techniques that has offered the best results has been with the variable-length windows. Probably because it allows to use the real length of the events. With accuracy values of 88.82%, distinguishing between accelerations/decelerations and turns/mixed maneuvers.

For the second strategy, which addresses classification more precisely, we have developed three methods. The first one called "stop detection", it is based on the hypothesis that the maneuvers immediately performed after a stop will be acceleration maneuvers, while the events immediately before the stop will be a deceleration or braking. With this idea, we have combined the detection and classification of maneuvers along a journey, with the detection of stops, through an algorithm that calculates the final vehicle movement direction. The classification of the stops becomes a complicated task, since the type of signal captured by the accelerometers is very similar when driving at constant speeds than when we stop the vehicle, which results in detecting many stops that actually do not they are. This causes that the conditions defined for the vehicle movement direction calculation algorithm are very strict; therefore, the number of journeys where it can be calculated is very small.

The second method developed, "acceleration forces classification", makes a previous classification of the signals along the journey in order to obtain the vehicle movement direction with that information. Specifically, it uses the maneuvers of the trip and classifies them into 4 types; maneuvers of braking (decelerations) without turn, maneuvers of acceleration without turn, pure turns and mixed events (that is, combinations of the above). If a good characterization of the signals of the journey is achieved, it is possible through a post-processing algorithm to obtain the movement direction of the vehicle. As we have
observed throughout the chapter, the type of signal used in the network causes that the results obtained in the classification vary greatly, offering better accuracy values the accelerometer signals when we subtract gravity. Although the results are better for this method than for the stop detector, they do not exceed those obtained with method 3.

The last method, method 3 of longitudinal and transversal acceleration assignment, focuses the search of the vehicle movement direction in a different way to the previous ones. It is also necessary to detect the maneuvers of the journey, but the objective is not that the network classifies them, but from some pre-processed signals of the accelerometers it learns to associate them with the longitudinal and transversal components of the accelerations. If we can obtain the longitudinal or transversal accelerations, we can automatically know the direction of movement. To prepare the signals at the input of the network we have calculated the main components on the accelerometers, so that the first and the second component collect the variability associated with driving maneuvers and these facilitate the learning to the network for associating the components with accelerations. The results obtained have been quite high, since we can calculate it in any trip and also we have a success rate calculating the vehicle movement direction of 90.07%.

Using the method that has offered the best results, the method of longitudinal and transversal acceleration assignment, we have utilized the vehicle movement direction obtained for classifying a real driving maneuver. The fact of having this direction allows to characterize the maneuver in a precise and reliable way at every moment of time.
Chapter 5

Driver recognition

Biometric systems use physical or behavioral characteristics of a person to authenticate their identity. These recognition systems are also being incorporated into the driving area. Thereby, through physiological signals, such as facial features, or through behavior patterns of a person, such as her/his voice, attempts are made in order to incorporate such biometric systems for improving the vehicle safety. Biometrics associated with driver recognition can be divided into two different tasks: driver identification and driver verification. But not only driver recognition has appeared in applications associated with safety, it is also attracting interest in other areas as fleet management systems, car insurance or in the automobile industry for the improvement of vehicle customization systems. Due to this increasing interest in driving characterization systems, in this chapter we address both driver identification and verification using smartphone signals that capture drivers’ behavior. As it is a global objective in this Thesis, we will focus our research on drivers’ characterization using exclusively smartphone tri-axial accelerometer sensors, as it will guarantee low-battery consumption applications.

The content in this chapter is organized as follows. Section 5.1 reviews the most significant research in driver recognition systems. In Section 5.2 we address the driver identification problem proposing the use of Convolutional and Recurrent Neural Networks and exploring the advantage of relying on pre-trained models through Transfer Learning. We also study several techniques to transform 1-D accelerometer signals into 2-D representations suitable to be used as inputs of Deep Learning models developed for image recognition. Experimental activities in driver identification has been designed for two complementary scenarios. Subsection 5.2.2 considers drivers’ identification working directly on accelerometers signals captured from mobile devices. In Subsection 5.2.3 we study drivers’ identification from acceleration signals derived from GPS positions. The aim of this second study was to contrast our results on a public database where previous research works exist. Finally, Section 5.3 is devoted to drivers’ verification where models based on Siamese Neural Networks, Embeddings and Triplet Loss training are explored.
5.1. State of the art in driver recognition

Smartphones are one of the first devices to incorporate biometric technology into everyday applications. Mobile devices perform users' authentication using different modalities as data from fingerprint sensors, images for facial or iris recognition, or speech. In this Thesis, we try to contribute to the use of smartphones to implement biometric systems that facilitate driver recognition, as another modality for people characterization. In particular, we research on the use of accelerometer signals as sensors to model drivers' behavior. The hypothesis is that driver behavior is different and unique for each person, so it could be used as a fingerprint for drivers' identity. Within the driver recognition, two different tasks are distinguished: identification and verification. Before reviewing specific research for each of them, we will review the most relevant works on drivers' behavior modelling.

As shown in (Figure 5.1), our driver recognition objective is to model the specific driver behavior by using accelerometer signals captured by her/his mobile when she/he is driving along any route. However, since most literature researches use other signals, such as location or pedal signals, we propose also a second scenario. In this scenario, the acceleration signals will be derived through GPS positions (which can influence the way of identifying: will we identify how they drive or where they drive?).

![Figure 5.1: Driver recognition objective: modeling specific driver behavior by using accelerometer signals.](image)

Driver recognition can be applied to many tasks. For instance, in fleet management systems; where it is necessary to know which fleet driver is making the journey. It is also used in some types of secure transport, where vehicles can only be driven by authorized staff. But recognition is relevant not only from the point of view of safety or control, but can also be very useful for customization and comfort. For example, if we can identify who is the driver within a family, the vehicle can automatically adjust some characteristics to that driver, like radio or temperature. Besides, technology evolution has allowed to access and to process a large amount of data, even in real time. Having a lot of driver information has caused that insurance companies show interest in drivers' identification and driving modelling. There are already plans for vehicle insurance in accordance with the driving
behavior, by adjust their prices based on various factors, instead of a fixed premium per year, such as the so-called Pay as you drive (PAYD) or Usage-Based Insurance (UBI). Real examples of these plans are Snapshot of Progressive (Progressive, 2019) or PriPAYD (Troncoso, Danezis, Kosta, Balasch, & Preneel, 2011).

We show below a summary of the most relevant works of the state-of-the-art in driver recognition. For that purpose, we have divided this study according to different areas of interest, presenting a review of some research that addresses the characterization (Subsection 5.1.1), the driver identification (Subsection 0) and the driver verification (Subsection 5.1.3). In driver identification, we have made a special mention to the researches that uses Deep Learning techniques (Subsection 5.1.2.1), as well as the possible applications (Subsection 5.1.2.2). For each of these subsections, the most outstanding works and summary tables are presented.

5.1.1. General driving characterization

The characterization of the driver defines its behavior, for instance if a driver is aggressive or not or what kind of actions she/he performs while driving. This has made that many researches do not pursue a univocal identification of the driver, but to include the driver within a category, such as aggressive or non-aggressive. Works like (Yan, Teng, Smith, & Zhang, 2016) try to recognize driver conduct using Convolutional Networks. Among the reasons they defend to perform the behavior characterization is the importance of improving the road safety, since many of the accidents are caused by human errors. To do this, they propose a system that consists of capturing an image while driving. This image is used to analyze both the driver’s pose and the contextual information by exploring the skin-like region. The skin-like regions are first extracted with a Gaussian Mixture Model (GMM) algorithm of skin images, and then they are sent to a Convolutional Network that will determine the action of the driver (for example if she/he is manipulating the cell phone, eating, with hands on the steering wheel, etc.).

An interesting application of driver identification is privacy violation. Works like (Enev, Takakuwa, Koscher, & Kohno, 2016) propose using driver identification to find out who is driving a vehicle or to extract private information. For their experiments, they selected the CAN\(^2\) bus sensors of the car and they worked with a set of 15 drivers. Participants had to do a series of maneuvers in an isolated parking lot and to drive the vehicle in traffic along a defined ~ 50 mile loop. Driver identification decision was made by a majority voting algorithm from all possible one-vs-one comparisons. With their results, they observed that at least in a small dataset, it was possible to distinguish the driver using only the in-car sensors; and that the more sensors were used the greater the ability to

\(^2\) “CAN protocol defines a generic communication standard for all the vehicle electronic devices. CAN protocol can cooperate with the OBD II diagnostic connector (http://obd2-elm327.com/) that provides a candidate list of vehicle parameters to monitor along with how to encode their data.” (Bernardi, Cimitile, Martinelli, & Mercaldo, 2018)
Deep Neural Networks for Vehicle Driving Characterization
By Means of Smartphone Sensors

distinguish them. This study is also very interesting since it formulates an important question regarding the research in this chapter: is it possible to identify or to create a fingerprint of a driver from the recordings of her/his journeys? And more specifically, what sensors are necessary to carry out this identification? Would it be possible using only the accelerometers of the driver smartphone? Moreover, as this work emphasizes, analyzing the ability of different sensors for driver identification rises and important debate on the privacy implications and potential misuse. Authors advocate to create policies that take into account both the utility of the use of sensors and privacy issues: “Anecdotally, we find that companies have, in the past, already used or know that they could use the data available on vehicles in ways that some might consider privacy-violating. For example, Elon Musk (Tesla Motors CEO) recently used vehicle sensor data to dispute the claims of a New York Times journalist about the limited range of his car’s electric batteries (Musk demonstrated that during a road test the NYT journalist took a detour and did not fully charge the vehicle) (Undercoffler, 2013). Similarly, Ford sales executive Jim Farley was quoted as saying: “We know everyone who breaks the law. We know when you are doing it. We have GPS in your car, so we know what you are doing.” (Trop, 2014).”

CAN (Controller Area Network) bus signals are a rich source for driving characterization as they allow transmitting a lot of vehicle information. An example of driving identification system that uses CAN signals is presented in (Ly, Martin, & Trivedi, 2013). This work addresses a typical family scenario, where there are usually two or three drivers for a single car; so they propose an identification of the driver for a set of 2 drivers and in the same vehicle. It is true that the information provided by the CAN bus is very valuable, but the fact of selecting these inputs means that we need a device for taking the vehicle data, usually by connecting to the OBD connector of the car (commonly found under the steering wheel). This is more invasive than using a mobile phone directly, hence our interest in using only the smartphone.

In order to study behavior during driving, there are also works that use unsupervised algorithms. For example, in (Guo, Liu, Zhang, & Wang, 2018) authors employ an unsupervised model of Deep Learning, Autoencoders and Self-organized Maps (AESOM), to study driving behavior and risk patterns using the Global Positioning System (GPS) data. Using GPS data, they can measure speed changes, accelerations and decelerations or turns. The model consists of an Autoencoder (AE) for feature learning followed by clustering using Self-Organized Maps (SOMs), in order to classify the driver actions. The speed or overspeed patterns are divided into 4 clusters: none, slight, moderate and heavy. Acceleration, braking (deceleration) or turning are grouped in 3 clusters: slight, moderate or heavy.

Others works as the one in (Ferreira Júnior, et al., 2017) use a larger number of sensors, specifically four smartphone sensors: accelerometer, linear acceleration, magnetometer and gyroscope. In their research they emphasize the importance of how driver behavior influences in traffic safety, in fuel energy consumption or in gas emissions. Their objective is to detect aggressive/non-aggressive driving maneuvers, specifically seven types of driving events: aggressive braking (or deceleration), aggressive acceleration, aggressive left turns, aggressive right turns, aggressive left lane changes, aggressive right lane changes and non-aggressive maneuvers. To do this, they compare four Machine Learning algorithms: Artificial Neural Networks (ANN), Support Vector Machines (SVM), Random Forest (RF) and Bayesian Network (BN). A limitation of this work is that it only
consider Android smartphone sensors to detect events, which can cause different results depending on the type of operating system and mobile terminal. Among the conclusions that they obtained are that according to the sensor combination and the method used for classification, the improvement in the performance may differ importantly. So in our case, using a single sensor can be challenging.

As mentioned before, Table 5.1 summarizes the reviewed works.

Table 5.1: State of the art in driving characterization (alphabetically ordered).

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Signals</th>
<th>Method</th>
<th>Results and/or conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Enev, Takakuwa, Koscher, & Kohno, 2016)</td>
<td>Identification of 15 drivers. The same car, during the same time of day, in an isolated parking lot and in a predefined interurban loop spanning roughly 50 miles.</td>
<td>CAN bus sensors of the vehicle: brake pedal, max engine torque, steering wheel, lateral acceleration, fuel, etc.</td>
<td>Machine learning algorithms: SVM, RF, NB and KNN</td>
<td>~87.33% accuracy using brake pedal and 15 min of open-road. 100% using brake pedal and 1.5 h of journey. ~91.33% using all sensors in the parking lot and 8 min. 100% with all the sensors in the open-road.</td>
</tr>
<tr>
<td>(Ferreira Júnior, et al., 2017)</td>
<td>Detection of aggressive driving events.</td>
<td>Smartphone sensors: the accelerometer, the linear acceleration, the magnetometer and the gyroscope.</td>
<td>ANN, SVM, RF and BN.</td>
<td>The gyroscope and the accelerometer are the most suitable sensors to detect the driving events.</td>
</tr>
<tr>
<td>(Guo, Liu, Zhang, & Wang, 2018)</td>
<td>Classification of some driving behaviors as speed changes, accelerations, decelerations, turns or combination of them in none, slight, moderate and heavy.</td>
<td>GPS.</td>
<td>AESOM.</td>
<td>Behavior patterns can be observed, grouping the drivers according to different criteria and speed classes and maneuvers.</td>
</tr>
<tr>
<td>(Ly, Martin, & Trivedi, 2013)</td>
<td>Differentiation between two drivers.</td>
<td>Lateral and longitudinal accelerations, and yaw angular velocity.</td>
<td>k-mean clustering and SVM.</td>
<td>Braking is the most distinguishing feature vector among acceleration, braking and turn maneuver events. And combining turning and braking events helps to differentiate better between two similar drivers.</td>
</tr>
<tr>
<td>(Yan, Teng, Smith, & Zhang, 2016)</td>
<td>Action done by a particular person while driving: in a phone call, eating, braking, with hands in the correct driving position on wheel, playing phone or smoking.</td>
<td>Image captured while driving.</td>
<td>GMM and CNN.</td>
<td>Mean average precision (mAP) of 97.76%.</td>
</tr>
</tbody>
</table>
5.1.2. Driver identification

In (Ezzini, Berrada, & Ghogho, 2018) driver identification is addressed using three different databases. One of them includes data coming from the CAN bus of the car, another use data from smartphones inside the vehicles (through an application), and the last one is a public database that includes drivers’ physiological data. The database of smartphones collects GPS information (speed, latitude, longitude, altitude, course, etc.), plus information from accelerometers and gyroscopes. Moreover, the CAN bus database collects recorded video signals while driving. In the public database physiological data comes from different types of sensors: conductance skin, thermometers and ECG (electrocardiogram). In these databases, driving is done on predefined routes, simulating sequences of different behaviors such as normal, aggressive and drowsy driving. The algorithms used for identification are Decision Trees, Extra Trees, RF, k-Nearest Neighbor (kNN), SVM, Gradient Boosting, AdaBoost based on Decision Tree, and MLP. One of the conclusions they draw is that fuel-related features seem to be the most relevant for driving style categorization. Another important conclusion is that data collected from the brake pedal and the steering wheel are very relevant for driving characterization. Although the performance obtained in this work, in terms of driver identification accuracy, is high, the number of features employed to obtain these results it is also very high, whereas the number of drivers is quite small. For instance, in the CAN bus database they work with a small number of 10 drivers, 4 journeys per driver and predefined routes.

A research similar to ours in terms of the data employed is (Phumphuang, Wuttidittachotti, & Saiprasert, 2015), since it studies the use of accelerometers of the drivers’ smartphones. But unlike us, the smartphones must be in a fixed position inside the car. The fact that smartphones are in fixed position allows them to assign each axis to an action. Specifically, in their case the X axis represents driving actions in side to side direction (such as turn left and turn right); and the Y axis, driving actions in forward and backward direction (such as accelerating and braking). In our case, we have the difficulty that the mobile can go in any position, so gravity may affect each axis differently. Besides, not only the smartphone can change their position in different trips, but it can also change its position during the same journey. So, we need to detect these changes and divide the journeys into several segments.

The work of (Chowdhury, Chakravarty, Ghose, Banerjee, & Balamuralidhar, 2018) is also very relevant in this field. They also try to identify the driver through smartphone data. To do this, they select the GPS and record the data from 38 drivers for two months. Nevertheless, they do not perform the identification of the 38 drivers, they segregate them in groups of 4 to 5 drivers. The GPS data they use are the speed, the location, the course and the horizontal accuracy. From them, they obtain the longitudinal acceleration, the angular speed, the lateral acceleration, the jerk (rate of change of acceleration) and jerk energy; in addition to the first and second derivative with respect to time for speed, acceleration (both longitudinal and lateral), jerk, jerk energy, and angular speed. Driving identification results using RF obtain an average accuracy of 82.3%, when drivers are grouped in groups of 4 or 5 drivers. However, the accuracy when they use the whole set of the 38 drivers falls
significantly. The median accuracy obtained is 46\% with standard deviation of 22\%. Although this work addresses the problem of identification using a single sensor, compared to other works that are multisensor, we could ask again if when using GPS data: Is it the identification due to the characterization of the driving style or to the characterization of the route? Since as they comment: “It is to be noted that the authors of this paper played no role in selecting drivers as well as the driving location. However, the subjects form a peer group based on geography and it is assumed that they went about their normal lifestyles, usually travelling from home to work and back, with one or two additional trips.” Therefore, using signals related to localization could influence on the driving characterization process. On the contrary, in our tests because we do not use location-related GPS data, we have not created any group based on geography location of routes. Moreover, we use routes recorded during all day and the routes can go through any path. Research such as (Ly, Martin, & Trivedi, 2013), explicitly indicate that they decided not to use the GPS signal in order to the results were independent of the route.

Another work that employs ML techniques is (Nishiwaki, et al., 2007). Due to the good results that cepstral coefficients have shown in speech recognition, they decided to perform a cepstral analysis in the signals of gas and brake pedal operations. Subsequently, they use a GMM in order to model the features with cepstral coefficients. In this work, train and test data are defined using different parts of the same route. That is, the first 3 minutes of the journey is used for training and the next three minutes for testing, instead of using different routes for training and testing. Their results show that gas pedal signals give better performance than brake pedal signals, probably because drivers hit the gas pedal more frequently than brake pedal signals. Using cepstral features they achieved an identification rate of 76.8\% for 276 drivers. Also (Martínez, Echanobe, & del Campo, 2016) utilize energies in the frequency domain or cepstral coefficients like features. They use these features in an ML model; specifically, they employ a single hidden-layer feedforward neural network. They justify driver identification as a necessity for Advanced Driver Assistant Systems (ADAS), systems that progress towards autonomous and connected driving. The number of drivers that they study is 11, all of them perform the same route of around 25 km length. They captured a total of 14 signals, including CAN-bus signals, gas pedal and brake pedal sensors, frontal laser scanner, inertial measurement unit (IMU) with XYZ accelerometers and measures of rotation rates (pitch, roll and yaw). From these 14 signals they obtain 42 features: temporal means, energies in the frequency domain and cepstral coefficients. Experimental results were obtained by the whole set of 11 drivers as well as for subgroups of 2, 3, 4 and 5 drivers. Accuracy results for 11 drivers was 84\%, and 90\% for the average of the possible subgroups combinations.

There are also some research works not based on Machine Learning nor Deep Learning techniques, as for example (Wallace, et al., 2016). In this research, they work with a set of 14 drivers, although the identification is done between pairs of drivers (resulting in 91 possible combinations of two drivers), and they use the two-phase acceleration relationship for maximum and mean acceleration. In their experiments, they have seen an important relationship between the mean and the maximum acceleration within the acceleration maneuvers of a driver. There are large variations between these ratios for different drivers, so this could be used to distinguish them.
Deep Neural Networks for Vehicle Driving Characterization by Means of Smartphone Sensors

(Hallac, et al., 2016) mention that due to the improvement in technology, vehicles have more reliable sensors, which help to navigate, to reduce accidents and to provide comfortable rides. For example, cars have sensors to measure the fuel level, to report a breakdown or to warn of a possible collision. In this work, driver characterization is proposed through the characterization of turn maneuvers. They employ different sensor signals from CAN bus of the car: GPS, steering wheel angle, steering velocity, steering acceleration, vehicle velocity, vehicle heading, engine RPM, gas pedal position, brake pedal position, forward acceleration, lateral acceleration, torque and throttle position. One of the disadvantages of the test is that, although they use the 12 most frequent turns made by the test drivers, these turns must be the same. That is to say, all drivers must perform the same turn several times and then select the 12 most frequent, so the same maneuvers are compared for all. The total set of drivers is 64 and 10 cars. For driver identification, they analyze each turn independently and take 2 to 5 drivers for evaluations using Random Forest models and obtaining an average accuracy of 76.9% for two-driver classification, and 50.1% for five drivers. The main conclusion in this work is that turn maneuvers can be very useful in order to differentiate between drivers. This raises the question of: how the route affects driver identification? Generally results on predefined routes reach high identification rates, as they eliminate the route variability.

Table 5.2 shows the mentioned works.

Table 5.2: State of the art in driver identification (alphabetically ordered).

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Signals</th>
<th>Method</th>
<th>Results and/or conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chowdhury, Chakravarty, Ghose, Banerjee, & Balamuralidhar, 2018)</td>
<td>Driver identification in groups of 4 to 5 drivers.</td>
<td>GPS data measurements: speed, location, course and horizontal accuracy.</td>
<td>RF.</td>
<td>They segregate drivers in different groups and analyze trips for each group. Accuracy of 82.3% for driver groups of 4–5.</td>
</tr>
<tr>
<td>(Ezzini, Berrada, & Ghogho, 2018)</td>
<td>Driver Identification From 6 to 10 drivers depending on the database.</td>
<td>CAN bus, smartphone sensors and physiological information.</td>
<td>Decision Tree, Extra Trees, RF, kNN, SVM, Gradient Boosting, AdaBoost based on Decision Tree and MLP.</td>
<td>Fuel-related features seem to be the most relevant to identify the driving style.</td>
</tr>
<tr>
<td>(Hallac, et al., 2016)</td>
<td>Identification of the driver from a same turn maneuver, with a set of 2 to 5 drivers.</td>
<td>BUS can signals: steering wheel angle, steering velocity, steering acceleration, vehicle velocity and heading, engine RPM, gas and brake pedal positions, forward acceleration, lateral acceleration, torque and throttle position.</td>
<td>RF.</td>
<td>Average prediction accuracy of 76.9% for two-driver classification, and 50.1% for five drivers.</td>
</tr>
</tbody>
</table>
5.1.2.1. Deep Learning for driver identification

In (Dong, et al., 2016) driving styles are characterized using GPS data. They define driving style like a signature for each driver, a complex combination of driving behaviors and habits such as the way of accelerating, braking or turning and the combinations given by specific driving contexts as roads, traffic conditions or weather. To realize this characterization they use Deep Learning techniques. They defend to use Deep Learning techniques as a feature extractor instead of handcrafted features due to five main reasons: “However, manually defining the driving style by traditional feature engineering is challenging: (1) It heavily relies on domain knowledge and human experience. (2) The discriminative power of the features is often unknown before feeding into machine learning algorithms; so a common practice is to enumerate as many features as possible and then apply feature selection, which requires considerable efforts. (3) The best descriptors of driving patterns may change given different data and contexts, e.g., drivers in China may have different driving patterns from those in US, thus a generic model is often hard to obtain. (4) The feature designs are usually separated from the learning algorithms, which cannot guarantee a best synergy between features and algorithms. (5) Driving behaviors are typically a sequence of operations, therefore possible combinations of features to define such sequences can be huge. It is hardly to find an optimal driving style representations just by enumerations.” For doing this characterization, they perform a transformation of the raw data to some statistical features and execute the experiments using both convolutional and recurrent networks. Experimental results are reported for the database used in Kaggle 2014 Driver Telematics Analysis competition. This database include GPS data for a set of 2736 drivers, with 200 trips by driver (trips of

<table>
<thead>
<tr>
<th>Source</th>
<th>Method</th>
<th>Sensors and Data Sources</th>
<th>Model</th>
<th>Accuracy/Identification Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Martínez, Echanobe, & del Campo, 2016)</td>
<td>Driver identification in 11 drivers.</td>
<td>CAN-bus signals, gas pedal and brake pedal sensors, frontal laser scanner, accelerometers, pitch, roll and yaw.</td>
<td>A single hidden-layer feedforward neural network</td>
<td>For the identification of 11 drivers, the accuracy is the 84%. And for the average of the possible subgroups combinations is greater than 90%.</td>
</tr>
<tr>
<td>(Nishiwaki, et al., 2007)</td>
<td>Driver identification for 276 drivers.</td>
<td>Gas and brake pedal signals</td>
<td>GMM.</td>
<td>Identification rate of 76.8%.</td>
</tr>
<tr>
<td>(Phumphuang, Wuttidittachotti, & Saiprasert, 2015)</td>
<td>Driver identification by means of acceleration variation.</td>
<td>Accelerations from a fixed smartphone.</td>
<td>Principal Component Analysis (PCA) and comparison with reference pattern components.</td>
<td>They analyze the importance of selecting the right variables to correctly identify the driver. Optimal value between 5 and 6 variables.</td>
</tr>
<tr>
<td>(Wallace, et al., 2016)</td>
<td>Driver identification. 14 drivers, but identification is done between pairs of drivers (91 possible combinations of two drivers).</td>
<td>GPS, engine and dashboard parameters (inertial and accelerator pedal position).</td>
<td>Two-phase acceleration relationship (for the maximum and mean acceleration values within the acceleration events).</td>
<td>They distinguish the 80% of the 91 possible driver pairs.</td>
</tr>
</tbody>
</table>
different length). They divide the journeys into segments on which the statistics are calculated, and perform two experiments on a subset of 50 drivers and on a subset of 1000 drivers, comparing different architectures. The best results at top-1 journey level for the set of 50 drivers is 52.30% of accuracy and for the set of 1000 drivers it is 40.50% of accuracy. As mention before, in order to contrast our results with this research, we used this dataset in our experimental studies in Subsection 5.2.3.

Driver identification allows to know who drives a particular vehicle, and also to know how much time it spends on the road or in a certain place (Telematics). Often, companies dedicated to fleet management use methods that require physical devices in the vehicle, such as card readers. With the evolution of Deep Learning techniques, driver identification or verification can be done modeling the signals recorded during their journeys. Works as (Fontaine, 2017), in addition to identifying the driver, try to distinguish if the captured sensor signals corresponds to the driver or to the passenger device. This work presents great similarities with ours, since they also perform the task of identification (although their final goal is to distinguish between driver and passenger) using smartphone sensors. Unlike our work, they make use of both accelerometers and gyroscopes, while we try to perform the same task using only accelerometers.

Another work that employs Deep Learning techniques for driver identification is (Zhang, et al., 2019). They propose an end-to-end deep learning architecture, formed by Convolutional Neural Networks and Recurrent Neural Networks with attention mechanism. The data used comes from the CAN bus and has 51 features related to the engine, the fuel and the transmission. The dataset has 94401 records from ten drivers that performed two round trips. They obtain similar results with and without attention mechanisms. For the model formed by CNN+GRU+Attention they have an accuracy of 98.36%±0.15% and with CNN+GRU an accuracy of 97.72%±0.62%.

Table 5.3 shows the summary of the works mentioned above, which use Deep Learning as a tool for driver identification.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Signals</th>
<th>Method</th>
<th>Results and/or conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Dong, et al., 2016)</td>
<td>Driver identification.</td>
<td>GPS.</td>
<td>CNN and RNN.</td>
<td>Accuracy at journey level of 52.30% for 50 drivers and 40.50% for 1000 drivers.</td>
</tr>
<tr>
<td>(Zhang, et al., 2019)</td>
<td>Driver identification.</td>
<td>CAN bus signals.</td>
<td>CNN and RNN.</td>
<td>10 drivers and 51 features related to the engine, the fuel and the transmission. Accuracy values around the 98%.</td>
</tr>
</tbody>
</table>
5.1.2.2. **Driven identification applications**

Another area where the driver identification is demanded is for shared car services. These services, such as those offered by Uber or Cabify, work through an application that can be downloaded on smartphones. With this application customers can request transport vehicles with a driver. Most of these applications have a driver assessment system after completing the journey, so that the customer has information about the driver and the vehicle before requesting the trip and he/she can discard or select another request. However, in countries such as China, there are cases of Uber drivers (Horwitz, 2015) registering false trips or using multiple accounts to receive bonuses from the transport company. Also in the United States there have been cases of false drivers of Uber (Petrow, 2016), as well as other types of problems (Who'sDrivingYou?, 2018), in which the identification and verification of the driver is very important.

In (Moreira-Matias & Farah, 2017), driver identification is studied in tasks of sharing scenarios, where several family members share the same vehicle. They have a database of 217 families (although they finally use 196) where, for each journey, different information is available: as weekday, departure time, trip duration or the trip type (as home to home, trips that start and end in the area around home; home to other, etc.), among others. By focusing on the problem that several people share the same car, it is necessary to define a model over each dataset/family. For identification they use a stacked generalization, which is a method that consists of using the output of other ML models as input to another learning algorithm. The base methods used are Learning Vector Quantization (LVQ), Boosted C4.5, RF and SVM. As final algorithm they use Naive Bayes (NB). The 5 predictive methods have an accuracy greater than 80% for every of them. However, theirs stacking approach has a higher accuracy on binary classification problems (only two members in the family) than in multiclass problems (more than two members in the family). Among the advantages of this proposal is that for the data collection they do not use extra equipment installed in the car, but technology In-Vehicle Data Recorder (IVDR). The technology IVDR measure both driver actions and movement performance of the vehicle, making it possible to use for example a smartphone. On the other hand, the driver identification focuses on a very small set of drivers by car, which varies from 2 to 4 drivers. Besides, the place can be a variable too decisive to the driver identification, since normally drivers do the same route. It would be positive to independent the results of this variable.

As we have repeatedly discussed in this chapter, one of the areas of application where identification is most interesting is for fleet management systems. In (Tanprasert, Saiprasert, & Thajchayapong, 2017) use the data of a fleet of 10 school bus drivers. Each bus carries out the smartphone rigidly placed in horizontal above driver console, facing the direction of travel. The signals used are the smartphone accelerometers (the correspondence of the axes with the directions is already known a priori because the smartphone is fixed: the X axis represents the vehicle’s lateral acceleration and the Y axis represents the vehicle’s longitudinal acceleration) and the GPS (latitude, longitude, instantaneous speed, heading, and altitude).
Deep Neural Networks for Vehicle Driving Characterization by Means of Smartphone Sensors

Works like (Corbett, Alexis, & Watkins, 2018) stand for a continuous identification of the driver, instead of relying on one-time account login authentication; to address problems in ridesharing services such as the above mentioned. In their approach, they use vehicle sensors and smartphones signals for identification. For a set of 5 drivers, making the same route 5 times, in two different cars (driver 4 and 5 do not use car two). As classification algorithm they use logistic regression, and their classification rates vary between 76.67% and 100%. An important conclusion of his research is that classification rate when drivers use a single car is always higher than when they use two different vehicles.

Due to the difficulties in interfering on real driving journeys, some researchers use data from driving simulators. For example, (Zhang, Zhao, & Rong, 2014) create different simulated scenarios and conclude that some actions as braking are very difficult to be recreated in a simulator. Also, (Burton, et al., 2016) study continuous driver identification along a journey, for 10 drivers, using simulated signals: vehicle position, speed, steering wheel position, gas pedal position and brake pedal position.

Some of the advantages of driver identification are already commented on works as (Bernardi, Cimitile, Martinelli, & Mercaldo, 2018): "driver identification may improve driver experience allowing (i) a safer driving and an intelligent assistance in case of emergencies, (ii) a more comfortable driving, and (iii) a reduction of the global environment problem". Their system is based on the use of a set of features that allows not only the identification of the driver, but also the identification of the route and the driver's familiarity with the vehicle. They employ a MLP and like input signals, the signals coming from the CAN bus of the car, like the CO2 consumption (average), the instantaneous cost for kilometer, the trip cost for kilometer, the percentage load of the engine, the RPM of the engine, the cost of the consumed fuel for trip, the gyroscope, the speed as measured from GPS unit, the speed difference between GPS chipset and OBD, the instantaneous number of kilometers traveled for fuel liter, the average number of kilometers traveled for fuel liter, the instantaneous liters employed for 100 Km, the average liters employed for 100 Km and the distance traveled (in km)/fuel consumed by the vehicle. In total, they have a group of 10 drivers. They divided the tests into several datasets, depending on the drivers involved, the cars used and the predefined routes taken. As an algorithm employed, like many works of literature, is the MLP.

At the beginning of this section we mentioned that according to the application, it may interest to include the driver within a category, for example aggressive or non-aggressive. Also, within the area of identification, we may want to divide the studies into different subgroups, which may have more similar characteristics to each other, to then identify the drivers belonging to that subgroup. In the work of (Fung, et al., 2017), they focus on older drivers (70 years and more). They try to identify the driver, within a set of 14 stable-health older drivers. They use acceleration and deceleration events, extracting a series of features of these events. For classification, they use linear discriminant analysis (LDA).

The summary of the previous works are listed in the Table 5.4.
Table 5.4: State of the art in driver identification applications (alphabetically ordered).

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Signals</th>
<th>Method</th>
<th>Results and/or conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bernardi, Cimitile, Martinelli, & Mercaldo, 2018)</td>
<td>Identification of the driver, the familiarity of the driver with the vehicle, and the kind of the road.</td>
<td>CAN bus signals.</td>
<td>MLP.</td>
<td>Accuracy in driver identification: >0.92%. A slightly lower accuracy when all cars, drivers, and journeys can change.</td>
</tr>
<tr>
<td>(Burton, et al., 2016)</td>
<td>Identification of 10 drivers using a driving simulator.</td>
<td>Vehicle position, speed, steering wheel position, gas pedal position and brake pedal position.</td>
<td>Decision Trees, SVM, kNN and RF.</td>
<td>For multi-class identification and SVM: AUC of 0.81 and EER of 24.9%.</td>
</tr>
<tr>
<td>(Corbett, Alexis, & Watkins, 2018)</td>
<td>Drive identification. 5 drivers, in 2 cars and doing the same route for all the experiments.</td>
<td>Vehicle sensors (accelerator pedal position, fuel flow, velocity, among others) and smartphones signals (roll, pitch, forward acceleration and lateral acceleration).</td>
<td>Logistic Regression.</td>
<td>Identification rate from 76.67% to 100%. Classification rates when using a single car to test are always higher than when the two cars are used. And combining the information of the car and the smartphone usually elevates the results.</td>
</tr>
<tr>
<td>(Fung, et al., 2017)</td>
<td>Driver identification: 14 stable-health older drivers (70 years and older).</td>
<td>Vehicle location and speed.</td>
<td>LDA.</td>
<td>For 5 drivers using events individually: 30%-34% of accuracy. For 5 drivers using the most voted: 49.1%-60.5%.</td>
</tr>
<tr>
<td>(Moreira-Matias & Farah, 2017)</td>
<td>Identification of the family member who drives a car. Database of 217 families (196 used).</td>
<td>Trip information, vehicle location and events of excessive maneuvers.</td>
<td>LVQ, Boosted C4.5, RF, SVM and NB.</td>
<td>Accuracy of ~88% and Cohen’s Kappa agreement score of ~74%.</td>
</tr>
<tr>
<td>(Zhang, Zhao, & Rong, 2014)</td>
<td>Recognition of driver behavior. 20 drivers in a simulator.</td>
<td>Accelerator and steering wheel angle data.</td>
<td>Hidden Markov Model (HMM).</td>
<td>Accuracy 85%.</td>
</tr>
</tbody>
</table>

5.1.3. Driver verification

Driver verification can be described as the process of accepting or rejecting the identity assumed by a driver, while driving a specific vehicle. It is difficult to find specific research on driver verification, because most works do not implement verification systems itself. Normally, they develop an identification system for a close set of drivers and then perform driver verification (on the same set of drivers), by applying thresholds on the driver identification posterior probabilities.
For instance, (Il Kwak, Woo, & Kang Kim, 2016) create driver profiles from driver identification, and used them to authenticate drivers. A driver is authenticated as a member of a predefined class (10 authorized drivers) using thresholds on similarity scores. Driver profiles are created from 15 features using CAN bus data: long term fuel, intake air pressure, accelerator pedal value, fuel consumption, wheel velocity, etc. Profiles are defined by predetermined journeys through three different road types, with a total of 4 journeys per driver, driving the same car.

(Ezzini, Berrada, & Ghogho, 2018) performs the same strategy as in the previous research, but expanding the study to two new datasets. One of them includes smartphone signals (GPS and accelerometers), for a set of six drivers performing two types of predefined routes. As before, when posterior driver identification probabilities in a journey test fall below a given threshold, it is declared that the driver does not belong to the set of authorized drivers.

The work presented in (Wahab, Quek, Keong Tan, & Takeda, 2009) recommends a method of identification and verification based on a biometric driver recognition system, using driving behavior. They follow a similar approach for accepting or rejecting a driver by means of thresholds or rules. But unlike the previous ones, the verification is carried out for each driver (not for a group). Driving data in this study was accelerator pedal pressure and brake pedal pressure, for 3 groups of 10 drivers each one. First, they perform feature extraction of the input signals using two schemes, Gaussian Mixture Models (GMMs) and wavelet transform. The extracted features are then used in four different driver recognition implementations: GMMs (introducing the original signals directly, without feature extraction), multilayer perceptron (MLP), evolving fuzzy neural network (EFuNN) and adaptive network-based fuzzy inference system (ANFIS). The car recording system needs extra equipment as other signals (speech, image or location signals) were also captured. Driver verification average Equal Error Rates (EER), using N-leave-one-out validation with 10 drivers per group, were from 3.44% to 5.02%.

Below we show Table 5.5, which summarizes the most relevant works in driver verification. In the table, for each work, we present the signals used, the framework proposed to driver verification, the performance and, finally, a short description of main differences with respect to the research in this Thesis and/or some comments to be highlighted.

The main differences between our study and most previous research are that we perform the verification system individually for driver, not in relation to the membership of a driver to an authorized group. We have also study a database of 25 drivers, with more than 800 trips by driver; and our journeys are not pre-defined routes. As a consequence, the complexity of the task will increase due to the number of drivers, the variability in routes per driver, the diversity of mobile terminals and the diversity of car models. In addition, we have limited our study to the exclusive use of tri-axial accelerometers signals, in order to avoid the need for extra equipment in the vehicle, and also to avoid the excessive increase of battery consumption.

Finally, Table 5.5 shows the summary of the works reviewed in driver verification.
Table 5.5: State of the art in driver verification (alphabetically sorted).

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Signals</th>
<th>Framework</th>
<th>Performance</th>
<th>Main difference from us/ Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ezzini, Berrada, & Ghogho, 2018)</td>
<td>Three different databases: with vehicle sensors, smartphone sensors, GPS and other kind of information.</td>
<td>Machine Learning algorithms.</td>
<td>For verification, they test the users in the classification model with a threshold value of similarity, and when similarity exceeds the threshold (0.97), they verify as authorized driver.</td>
<td>The verification is regarding an authorized user group or not, it is not individual. Task more oriented to driver identification. The first database is for 10 drivers using the vehicle sensors from CAN bus. The second database use smartphones sensors (gyroscope, accelerometers and GPS), but only for six drivers and the drivers should performance different behaviors in two pre-designed routes. The third database is more diverse and has information like brightness, physiological data or video rating data.</td>
</tr>
<tr>
<td>(Il Kwak, Woo, & Kang Kim, 2016)</td>
<td>Vehicle sensors from the CAN bus.</td>
<td>Machine Learning algorithms.</td>
<td>For verification, they test the users in the classification model with a threshold value of similarity, and when similarity exceeds the threshold (0.97), they verify as authorized driver.</td>
<td>The verification is regarding an authorized user group or not, it is not individual. 10 drivers using the same car model, with 4 journeys per driver (two round trips) in 3 scenarios: city way, motor way and parking lot. They do not use smartphones.</td>
</tr>
<tr>
<td>(Wahab, Quek, Keong Tan, & Takeda, 2009)</td>
<td>Accelerator pedal pressure and brake pedal pressure.</td>
<td>Gaussian Mixture Models (GMMs), multilayer perceptron (MLP), evolving fuzzy neural network (EFuNN) and adaptive network-based fuzzy inference system (ANFIS).</td>
<td>The average error rate for the experiments varies from 3.44% to 5.02%. The best results are obtained using the combination of pedal accelerator, brake pedal pressure and dynamics of accelerator and brake pedal pressure.</td>
<td>Although they have 30 drivers, the tests were divided in to 3 groups, where each group comprises 10 drivers. The results have been obtained by dividing the drivers into groups of 10 and performing the average. Therefore, there are more different values between validation groups and between drivers within the same validation group.</td>
</tr>
</tbody>
</table>

5.2. Driver identification

The purpose of this section is to contribute to close-set driver identification systems, using Deep Learning techniques to model acceleration signals, recorded from drivers’ smartphone in a free position inside the car.

As in the previous chapter, Chapter 4 Driving maneuvers characterization, our goal is to address driver identification using only the smartphone that the driver carries inside
the vehicle (in a free position), and in particular modeling the tri-axial accelerometer signals. Accelerometers are energy efficient devices, which in addition to minimize energy consumption, they are also low-cost. In a future aimed at Internet of Things (IoT), we think that similar behavioral models, based on low-cost hardware equipped only with accelerometers, can also be very useful in many scenarios such as activity recognition or in the characterization of autonomous systems (such as robots, drones, etc.). Moreover, accelerometers are present in all mobile devices, avoiding the need to install extra equipment in the vehicle or to access to sensors of the vehicle’s Controller Area-Network (CAN).

To address the driver identification, we study two different scenarios. The first one (Subsection 5.2.2) uses raw accelerometer signals captured directly from smartphones, as in the previous chapter. The second scenario (Subsection 5.2.3) uses acceleration signals obtained from GPS data. The aim of this second scenario is to compare our driver identification results with existing research using a public dataset from Kaggle “Driver Telematics Analysis” AXA Competition (Kaggle, 2014).

Next, we will present the main guidelines that have led us to develop the experimental framework for our research on driver identification.

5.2.1. Experimental framework

For the study of the first scenario (driver identification and verification using raw accelerometer signals from smartphones) we used the TIDrivies_IdenVer database, described in Chapter 3 Definitions and databases. This database has been provided by Telefónica R&D and the spin-off of Telefónica R&D, Drives. It is formed by 25 drivers with 801 real journeys per driver, giving a total of 20025 trips, and the drivers did not follow any predefined route (they perform their usual daily driving journeys). The signals were recorded at sampling frequency of 5 Hz, using the smartphones that the drivers carried inside the vehicle.

For the second scenario we use the dataset presented in the Kaggle AXA Competition, called “Driver Telematics Analysis”, in which they proposed to use telematics data to identify a driver signature (Kaggle, 2014). In this competition, AXA provided a dataset of anonymized driver journeys. In total, they had a set of 2736 drivers and 200 trips by driver. The goal of the competition was to create a telematics fingerprint capable of distinguishing when a trip was driven by a given driver. The data offered for each journey were the \{(x,y)\} GPS positions, with their corresponding time, and a data sampling rate of 1 Hz. In order to protect the privacy of the drivers, the journeys where centered to start at the origin (0,0), and then they were randomly rotated. Short-length trips were removed. The design of AXA dataset includes a small number of false journeys among the 200 trips per driver (these journeys not belonging to the corresponding driver are unknown).

It is important to point out that, though from different sources, both scenarios use only accelerometers signals. In the first scenario these signals were directly obtained from...
tri-axial smartphone accelerometers, while for the second scenario, a procedure to obtain acceleration signals from \(\{x, y\} \) GPS positions was employed.

For the experimental studies in both scenarios, we developed Deep Learning models that combines pre-trained Convolutional Neural Networks (CNNs), through Transfer Learning, with Recurrent Neural Networks (RNNs).

It is worth mentioning that we searched for other publicly available databases for contrasting our driver identification and verification results. Unfortunately we found very difficult to find public databases with the characteristics of our working scenarios. Most of public databases are very small or do not contain accelerometer signals. Next, we describe some of the most similar ones we found.

- (Uppoor, Naboulsi, & Fiore, 2016) describes a dataset of simulated driving journeys. This database was created for the project TAPASCologne, by the Institute of Transportation Systems of the German Aerospace Center (ITS-DLR). The goal was to reproduce, with the highest level of realism, car traffic in the largest urban area of Cologne, in Germany. Journey simulation took into account the street layout, the traffic demand, the vehicle mobility and the traffic assignment. The street layout was obtained from OpenStreetMap database. The traffic demand was derived from an activity pattern simulator, using real data on the population of the area, points of interest, time use patterns, etc. The microscopic mobility of the vehicles was simulated with a software called SUMO (Simulation of Urban Movility), which was based on two models, one of them was a car tracking model, to regulate driver accelerations, and the other one was a model for overtaking decisions; taking into account things like distance between vehicles, speed and acceleration/deceleration profiles. The traffic assignment module assigns a route to each vehicle according to the calculated demand (the fastest route according traffic intensity). The problem with this database is that the use of simulated routes (not real) makes it difficult to know to what extent they could help to characterize a driver.

- There are also databases related to fleet management applications. For instance, data from the bus fleet in Seattle, US, is offered by the transport department (King Country, 2019). However, although the database is public, there is no data related neither to bus position nor bus speed.

- (Zhao, Ma, Liu, & Zhao, 2013) presents a database collecting data from a fleet of taxis from Beijing and Shanghai. They collected the GPS coordinates, time and identifier of each one of the taxis participating in the experiment. However, the database is not public and although we tried to contact with the authors, we did not receive response.

- (Sede, et al., 2008) presents a database of bus trips, called BUSNET, with a set of 30 bus lines and more than 700 buses, in the city of Shanghai. From each bus they kept the information of longitude, latitude, bus identifier, emission time, current direction, instant speed and gasoline left in the tank. But as with the previous database, we could not access it.
The work presented in the Master Thesis of (Barreto, 2018) used a vehicle database obtained from OBD, with the objective of identifying possible profiles of automotive (low, mid and high). Data is accessible through the link https://www.kaggle.com/cephasax/obdii-ds3. The problem with this database is that it is a small dataset of 14 drivers using the same vehicle, and without accelerometers data. For instance, they keep the engine power, the barometric pressure, the fuel level, the speed or the throttle position, among others. And we do not employ these type of data in our research on driver identification and characterization.

One of the public databases we found that employed accelerometers like us was "LEVIN Vehicle Telematics Data", generated by the start-up Yuñ Solutions, (Yuñ Solutions, 2018). In their case, OBD data were captured at 1 Hz, except accelerometers that were at 25 Hz. The data were encoded, so we had to follow the process described to obtain the signals, which consisted in extracting the components \([x, y, z]\) for each journey of the data in hexadecimal and to pass it to magnitudes g's. Then, we calculated the rotation matrix of the vehicle, when the car was static, in order to multiply that matrix with the values we had, before obtaining the final accelerometer samples. In the Figure 5.2, there is an example of a journey of the database. We obtained a total of 8 drivers, with a variable number of journeys by driver, and 2073 routes for all the drivers. However, the number of routes for each one was very different; whereas one of the drivers had 667 routes, another was only 32. Furthermore, many of the routes presented zones with incorrect measures, as repeated identical samples, and sometimes the accelerometer values were incorrect, with zero values for all samples. Finally, for our purpose, it was not possible to use this database.

![Figure 5.2: Journey example of the “LEVIN Vehicle Telematics Data” database. a) Accelerometers signals. b) Velocity data.](image-url)
5.2.2. Driver identification from accelerometer signals

Following the research line of this Thesis, the first scenario addresses driver identification using exclusively the accelerometer signals captured from drivers’ smartphones. Firstly, we describe the process proposed for driver identification with tri-axial acceleration signals collected during a driving journey. This process is based on the use of Deep Learning techniques to model acceleration signals through a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). We also propose the use of pre-trained CNNs (ResNet-50) from image classification, and we study and evaluate several ways to map 1-D temporal acceleration signals into 2-D images.

The main difficulty encountered in driver identification is the multiple sources of variability contained in accelerometer signals. One important source of variability is the capturing device, i.e. the smartphone. Different operating systems or even different mobile models, within the same operating system, could affect the features of accelerometer signals (as their sensibility, dynamic ranges, sampling precision, etc.). In addition, accelerometers are often noisier signals than other data such as GPS. In some works as in (Ferreira Júnior, et al., 2017) smartphone variability is reduced by considering only Android devices. Another important factor is the route variability. Accelerometer signals are obviously not only affected by the driving style of the driver, but also by the specific routes she/he follows, including their characteristics as urban trips, highway trips, frequent roads, etc. To avoid route variability, some works as (Ezzini, Berrada, & Ghogho, 2018) consider predefined routes, or use different parts of the same journey for training and testing as in (Nishiwaki, et al., 2007). The vehicle may be another important variability factor; many researches use the same car for all drivers. For instance, (Corbett, Alexis, & Watkins, 2018) employ two cars and compare the results using both cars and each one separately. When they perform the tests using a single vehicle, they obtain better identification results than when they use both vehicles. Even different results are obtained for different vehicles for the same set of drivers. Another factor to highlight is the position of the mobile inside the vehicle. Works like (Phumphuang, Wuttidittachotti, & Saiprasert, 2015) or (Tanprasert, Saiprasert, & Thajchayapong, 2017) place the smartphone in a fixed position, being able to assign each action to each axis unequivocally.

In our case, for TIDrivies_IdenVer database used both in identification and verification sections, there are several sources of variability as there are a diversity of smartphones, type of roads, vehicles, and mobile phone positions inside the car. Figure 5.3 shows a summary of different factors in the dataset trips. In terms of smartphone variability, a 56% correspond to Android operating system and 44% to iOS. For the type of road, 46% corresponds to urban routes, 17% to non-urban routes and 37% to mixed routes. The criteria we use for defining a route as urban is that during the journey the speed of 80 km/h is not exceeded, and more than 70% of the samples have a speed lower than 65 km/h. To define a non-urban route, the criteria was that more than 55% of samples with speed (greater than zero) must exceed 65 km/h. Other cases were define as mixed. Related to vehicle variability, each driver used his own vehicle. And finally, as in the scenario of maneuvers characterization (Chapter 4), the mobile can be located in a free position inside
the car. Figure 5.3 c) shows the percentage of journeys where more than 75% of gravity is measure by X, Y or Z axis; with the X axis over the width of the screen from left to right, the Y axis over the length of the screen from bottom to top, and the Z axis over the depth of the phone from back to front. The pie shows that in 55% of the journeys, the Z axis takes most of the gravity force; so it seems to indicate that a common position for mobiles is lying flat inside the vehicle (horizontal to the ground, face up or down).

![Figure 5.3: Information about the database TIDrives_IdenVer used for driver identification and verification according to: a) the type of smartphone operating system, b) the type of route, and c) gravity force measured by axis.](image)

5.2.2.1. **Driver identification procedure**

The driver identification process is summarized in Figure 5.4. As explained above, the identification of the driver consists in assigning a specific journey to the corresponding driver, within a given set (i.e. close-set driver identification). To do this, we are going to use only the tri-axial accelerometer signals, captured from the driver smartphones. But we are not going to employ directly the raw accelerometers for the classification. Instead, we are going to transform the raw accelerometers to their corresponding longitudinal and transversal accelerations and angular velocity signals (as we did in Chapter 4, for the Vehicle Movement Direction, VMD), due to the beneficial results that they have shown in the characterization of maneuvers.

![Figure 5.4: Driver identification process.](image)
Once these temporal signals are obtained, they will be transformed to images (see Figure 5.5), in order to take advantage of the power of deeper and pre-trained Convolutional Neural Networks (CNNs).

![Figure 5.5: 1D time series transformations to 2D images for driver identification.](image)

The final architecture proposed for this driver identification is shown in Figure 5.6. 2D images are inputs (in our case three channels: for longitudinal and transversal accelerations and angular velocity) to a Deep Learning model. The Deep Learning model is composed by a sequence of three different Neural Networks. The first network is a pre-trained CNN, in particular ResNet-50, that is followed by a Recurrent Neural Network (RNN), and finally, Dense Layers with softmax to get output posterior probabilities per driver. We choose three channels 224x224 2D images, since it is the input required by ResNet-50. For the RNN, we use Gated Recurrent Units (GRUs), because this type of networks offers accurate and efficient results for time series modeling. Finally, there is the classifier with a Dense or Fully Connected layer followed by a softmax layer. After testing several configurations, we used two GRU stacked layers of 128 neurons for the recurrent block. In the last part of the model (Figure 5.6) a dense layer with 64 neurons and ReLU activation, is followed with another dense layer with 25 units (for 25 drivers identification) and softmax activation function. For training we used Adam optimizer minimizing the categorical cross-entropy loss function. We also employed weight decay or L2 regularization. Several learning rates were tested, selecting a low value of 0.001 (we found it more reliable than higher rates).

Due to the important impact and success of Deep Learning in computer vision, we decided to use CNN models trained for image classification and apply Transfer Learning for our driver identification problem. Among the different CNN used in computer vision (VGG, Inception, LeNet, AlexNet, ResNet, etc.) we decided to use ResNet-50 (ResNet-152 won the
first place on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2015 (He, Zhang, Ren, & Sun, 2016)).

Figure 5.6: Deep Neural Network architecture for driver identification.

ResNet architectures come up to solve the difficulty to train Deep Neural Networks; because adding more layers to an already deep model causes higher training errors. The name of ResNet comes from the Deep Residual Network and in particular Resnet-50 refers to the architecture with 50 residual layers. Deep Residual Networks were presented by Microsoft Research in the ImageNet and COCO 2015 competitions, for image classification, object detection and semantic segmentation (Dietz, 2017). These networks come up to solve the difficulty to train Deep Neural Networks; because adding more layers to an already deep model causes higher training errors. The ResNet (He, Zhang, Ren, & Sun, 2016) allows training and optimizing networks in a simpler way; introducing residual deep learning frameworks with shortcut connections. These connections perform a mapping, and their outputs are added to the outputs of the stacked layers, which may omit one or more layers. The advantage is that these shortcuts do not add extra parameters or computational complexity. Each block is responsible for adjusting the output of the previous blocks, instead of having to do it from scratch. The basic block presents variants such as the block “Residual Bottleneck”, which use sets of three layers stacked instead of two as the basic ones, which reduce and increase the dimensions.

Therefore, ResNets are architectures that stack building blocks, called Residual Blocks. The scheme of the basic residual block of two layers is shown in Figure 5.7. The block presents a shortcut connection that performs identity mapping, so at the output of the block the propagated information plus the output of the stacked layers is added, $F(x) + x$.
In the ResNet-50 model, the residual bottleneck of two layers (Figure 5.7) is replaced with a three layer bottleneck block, with 1x1 convolutions and 3x3 convolutions. The general scheme of the Resnet-50 is shown in Figure 5.8, where blocks of two-layer residual block have been colored in different colors, each color indicating a series of convolutions of the same dimension.
Training ResNet architectures from scratch, depending on the task to be performed, can be computationally expensive and it also usually needs a large amount of data to obtain high accuracy. A possible solution to this problem is the Transfer Learning approach. As defined in (Bailey Luttrell IV, Zhou, Zhang, Gong, & Zhang, 2017), Transfer Learning consists in: "taking a model that was trained to recognize features in one domain and transferring its knowledge and general feature extraction capabilities to another model which will learn more specific features that apply to another domain". Consequently when training our Deep Learning model (Figure 5.6) fine-tuning was applied on a pre-trained ResNet-50 model. That is ResNet parameters were initialized on a pre-trained model and while GRU and Dense Layer parameters are randomly initialized.

5.2.2.2. Transformation methods from 1-D to 2-D

In order to adapt our input accelerometer signals to the Deep Neural Network architecture presented in Figure 5.6, it is necessary to carry out transformations of the temporal 1-D signals to 2-D images. We have tested different methods to perform this 1D to 2D transformations: Recurrence Plots (RP) (Schulz, Mentges, & Zielinski, 2016), Gramian Angular Summation Field (GASF) (Tsai, Chen, & Wang, 2019), Gramian Angular Difference Field (GADF) (Mitiche, et al., 2018), Markov Transition Field (MTF) (Wang & Oates, 2015), spectrograms (Ruffini, et al., 2019) and the use of CNN to obtain a feature map from one of its layers. Next, we describe each one of these 1D to 2D transformations.

Recurrence Plots (RPs)

The recurrence plot was described in (Eckmann, Kamphorst, & Ruelle, 1987). The RP is a graphical tool, which through the transformation to images, allows exploring the d-dimensional phase space trajectory of time series through a 2D representation of its recurrences. In the work mentioned, they presented this visualization tool for measuring the time constancy of dynamical systems. As they define: "Let \(x(i) \) be the \(i \)-th point on the orbit describing a dynamical system in \(d \)-dimensional space, for \(i = 1, ..., N \). The recurrence plot is an array of dots in a \(N \times N \) square, where a dot is placed at \((i, j)\) whenever \(x(j) \) is sufficiently close to \(x(i) \)." With \(i \) and \(j \) like times, so a recurrence plot describes time correlation information. These are usually very symmetric with respect to the diagonal \(i = j \), since if \(x(i) \) is close to \(x(j) \) then \(x(j) \) is close to \(x(i) \); but it does not imply that they have to be completely symmetrical. As an example of work that uses these transformations, is the one of (Hatami, Gavet, & Debayle, 2018). They employ the conversion of time series to 2-D images, to use them in a CNN for Time-Series Classification (TSC).

As (Eckmann, Kamphorst, & Ruelle, 1987) describes, in order to obtain the RP of a time series \(\{u_i\} \), the following process must be followed:

- To construct the \(d \)-dimensional orbit of \(x(i) \), an embedding of dimension \(d \), by the method of time delays (for example, if \(u_i \) are scalar, then \(x(i) = (u_i, u_{i+1}, ..., u_{i+d-1}) \)).
• To choose \(r(i) \) such that the ball of radius \(r(i) \) centered at \(x(i) \) in \(R^d \) contains a reasonable number of other points \(x(j) \) of the orbit.

• To plot a dot at each point \((i, j)\) for which \(x(j) \) is in the ball of radius \(r(i) \) centered at \(x(i) \).

Images from Figure 5.9 to Figure 5.14 show the transformations obtained for each of the six methods employed, conversion methods from 1-D to 2-D, for the same maneuver with a window length of 224 samples. Figure 5.9 shows the resulting images for each one of the input channels with the RP method. It is possible to observe in the figure that, for the three channels, the resulting images are not homogeneous, probably because these images are more typical in stationary systems such as random time series. Instead, the abrupt changes cause paler areas in the RP, coinciding with areas where accelerations or angular velocity suffer variations, due to the maneuver itself. Vertical and horizontal lines indicate that some states do not change or change slowly for some time.

Gramian Angular Summation Field (GASF) & Gramian Angular Difference Field (GADF)

Both the frameworks for encoding time series like images called GASF and GADF and the one presented below, called Markov Transition Field (MTF), were described in (Wang & Oates, 2015).

In order to calculate GASF and GADF images, the temporal signals have to be represented in polar coordinates and then each element of the matrix will be the cosine of the sum of the angles for the GASF, or the sine of the difference between each point for the GADF. If we represent the time series as: \(X = \{x_1, x_2, ..., x_n\} \) with \(n \) as the number of points, and \(\tilde{X} \) as the time series in polar coordinates; the resulting formulas for each method are as follows (it is necessary to perform a rescale of \(X \), between intervals \([-1,1]\) or \([0,1]\) before the transition to polar coordinates):

\[
GASF = \cos(\phi_i + \phi_j) \tag{5.1}
\]

\[
GADF = \sin(\phi_i - \phi_j) \tag{5.2}
\]

\[
\phi = \arccos(\tilde{x}_i), \quad \tilde{x}_i \in \tilde{X} \tag{5.3}
\]

Figure 5.10 shows the results for the GASF method, and Figure 5.11 for the GADF. These figures correspond to the same maneuver presented for RP in Figure 5.9. For the three cases, similar patterns can be observed in the resulting images, with the presence of lines and clusters of different tones.

Markov Transition Field (MTF)

For Markov Transition Field, the transition probabilities of multiple intervals of the time series are coded, creating the matrix of Markov transitions. To do this, the data is divided into quantiles, and each element of the matrix indicates the probability of transition from
one to another. Although the framework is obtained from the work of (Wang & Oates, 2015), the process we followed is based on the work of (Campanharo, Sirer, Malmgren, Ramos, & Amaral, 2011). The work of (Campanharo, Sirer, Malmgren, Ramos, & Amaral, 2011) creates the Markov transition matrix as follows:

- With X like a time series and Q such as its quantile bins, it is assigned each x_i to the corresponding bins q_j, with $j \in [1, Q]$.
- Then, counting transitions among quantile bins in the manner of a first order Markov chain along the time axis, constructing the matrix W of $Q \times Q$.
- w_{ij} will be the frequency with which a point in quantile q_j is followed by a point in quantile q_i.
- And finally, to do a normalization: $\sum_j w_{ij} = 1$.

(Wang & Oates, 2015) creates the Markov Transition Field matrix, from the above, by spreading out the Markov transition matrix W, which contains the transition probability on the magnitude axis, into the Markov transition field matrix, by considering the temporal positions. The MTF formula is as follows:

$$M = \begin{bmatrix}
 w_{ij} | x_1 \in q_i, x_2 \in q_j & \cdots & w_{ij} | x_1 \in q_i, x_n \in q_j \\
 \vdots & \ddots & \vdots \\
 w_{ij} | x_n \in q_i, x_1 \in q_j & \cdots & w_{ij} | x_n \in q_i, x_n \in q_j
\end{bmatrix} \quad (5.4)$$

with M_{ij} like transition probability of $q_i \rightarrow q_j$.

As with the previous methods, the images resulting from applying it, on the chosen maneuver, are shown in the Figure 5.12.

Spectrograms

Another common method to represent 1-D signals as 2-D images is the use of spectrograms. For each input channel, we have applied the Short-time Fourier transform (STFT), using a DFT with 448 (224*2) bins, on a sliding Hanning window of 10 samples, with a hop size of 50%. Then, we converted STFT magnitude to log scale, as it has been shown that log-scale feature achieved faster convergence than the raw spectrogram (Zhang, Yu, & Hansen, 2017).

$$Spectrogram(t, w) = |STFT(t, w)|^2 \quad (5.5)$$

$$Spectrogram(t, w)|_{db} = 20 \log_{10} \left(\frac{|STFT(t, w)|}{2 \cdot 10^{-5}} \right) \quad (5.6)$$

For spectrograms it has been decided to use a window that corresponds to the actual length of the maneuver, locating the beginning and the end of the event. As the network inputs must be of fixed length and each maneuver has a different duration, we have taken the solution proposed by (Zhang, Yu, & Hansen, 2017). In their work, they use Deep...
Learning techniques, combining Convolutional networks with recurrent networks, for spoofing detection in speaker verification. Each utterance can present a variable duration, in order to solve it they perform either data repeating or cropping. So, they concatenate spectrograms for a given utterance when the duration is shorter than the chosen length or cutting it if it is greater. Like in speech signals, each maneuver may have a different duration, so we cannot guarantee that we have 224 DFT windows to produce the required 224x224 image. Based on this, it has been decided also to use spectrograms, either repeating or cropping DFT windows to get the 224x224 representation.

Figure 5.13 shows the spectrograms for the same accelerometer signals used in the previous transformations. But in order to compare them, a length of 224 samples has been taken, instead of the actual length of the maneuver. The final size after applying the STFT is a matrix of 224x43; 224 because we calculate the number of unique FFT points, and 43 because it is the number of signal frames, for a signal of 224 samples using a Hanning window with 10 samples length and an overlap of 50%. Note that for this transformation method, in order to adapt the image to the network (with inputs of 224x224), we should perform a repetition of the spectrogram.

Convolutional Neural Networks

The last method used to perform 1D to 2D transformations is the use of the output of a layer in Convolutional network as a feature mapping. The CNNs can be used for it, because its layers may be understood as a filter bank (similar to spectrograms) that transforms a 1-D input into an image highlighting specific patterns, i.e., extracting some relevant features from the input.

For this mapping of 1-D signals to 2-D images, a specific CNN model was trained to perform a driver identification task using as input each 1-D signal of each specific channel. The result obtained for the reference example is shown in the Figure 5.14. In addition, the architecture used, which consists of two Convolutional layers, a Fully Connected Dense layer and a Softmax layer, it is shown in the Figure 5.15.
Figure 5.9: Example of driving maneuver. a,b,c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d,e,f) Recurrence plot of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.
Figure 5.10: Example of driving maneuver. a,b,c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d,e,f) Gramian Angular Summation Field of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.
Figure 5.11: Example of driving maneuver. a,b,c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d,e,f) Gramian Angular Difference Field of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.
Figure 5.12: Example of driving maneuver. a,b,c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d,e,f) Markov Transition Field of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.
Figure 5.13: Example of driving maneuver. a,b,c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d,e,f) Spectrogram of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.
Figure 5.14: Example of driving maneuver. a,b,c) Longitudinal acceleration, transversal acceleration and angular velocity of the original signals, respectively. d,e,f) Features layers (from CNN) of the longitudinal acceleration, transversal acceleration and angular velocity, respectively.
Therefore, in order to obtain the feature maps from the CNN, we should train a specific network like the one in Figure 5.15, for each one of the input channels, in this case three. The network used for this is formed by two 1D convolutional layers with: \(\text{patch size} = 10, \text{kernels} = 224, \text{stride} = 1, \text{padding} = \text{same}, \text{activation} = \text{ReLU} \). Then, the classifier has a fully connected layer of 64 neurons with ReLU activation, and a softmax layer of 25 units (25 drivers to identify). The optimizer selected is the Adam. Once these three networks have been trained, we extract the intermediate 2D feature maps that will be used as inputs for the pre-trained ResNet-50 network.

![Figure 5.15: Deep Neural Network architecture for getting the feature vectors used as images.](image)

5.2.2.3. Experiments and Results

In order to perform driver identification, for all 1D to 2D transformation methods, except for spectrograms, two different strategies have been defined (see Figure 5.16) to select the time-segment of accelerometer signals to be used.

As recommended in (Fontaine, 2017), the first strategy has been to use the first 4 minutes of the journey, using overlapping windows. Although in this work they employ 4 minutes, in our case due to the sampling frequency and the size of each window, the final length is somewhat less than 4 minutes. Our window size has been of 224 samples, 44.8 seconds, shifted by 25%. The second strategy use windows of same size and overlap, but only on segments with maneuvers (acceleration, braking, right-turn, left-turn or a mixture of all them). In this approach a fixed number of sliding windows are used along several maneuvers of the journey.

For spectrograms, we apply this second strategy, but without overlapping windows, we directly select the actual length of the maneuver. One window per maneuver (the real size of the event, from its beginning to its end). Therefore, the windows will not be of a fixed size of 224 samples as in the previous cases. In order to adjust the spectrogram size to these number of samples, we perform the repetition or cropping, as necessary.

For all the indicated strategies, the number of windows per journey is 15, except in the case of spectrograms, which is reduced to 10. These windows (after the transformation
to images) are used as input to the DNN driver identification model, producing at its output the different probabilities (per driver ID) depending on the number of windows (Figure 5.16). To obtain a driver identification result at journey level, we simply averaged the output posterior probabilities of the DNN model, which will give us the probabilities assigned to each driver (the highest probability will be the driver assigned to the journey).

As indicated before, there are two main differences between 1-D to 2-D using spectrograms and other transformation methods. The first difference is that for all transformation methods but spectrograms, we do not map the whole maneuver, but use overlapping windows along the signals. The second difference is that spectrograms use 10 windows per journey, while 15 overlapped windows are used for the rest of the methods. The main reason for making these changes in the spectrograms with respect to the other methods, is because, in the case of spectrograms it does not make sense applied it in signals that hardly contain maneuver information. In the other methods, we do not know in advance if these could be useful, so we are going to do them. Furthermore, when using only maneuver windows, it is sensible to reduce the number of windows from 15 to 10. Since first of all, it is not always easy to detect 10 or more significant maneuvers in a journey, especially in relatively short routes (urban routes generally present more maneuvers). And in second place, 15 overlapped windows shifted a 25% is that they span over a comparable amount of time than spectrograms.

The steps for the driver identification process were summarized in the Figure 5.4. First, we derive the longitudinal and the transversal accelerations and the angular velocity signals, from the raw signals captured by the tri-axial accelerometers of the smartphone. Then, these signals are transformed into images, by any of the methods described before, and used as inputs to the driver identification Deep Neural Network presented in Figure 5.6. The driver identification model consists of a ResNet-50 network, followed by a Recurrent Network composed of two GRU stacked layers, a Dense layer and a last Softmax layer. For training, we perform fine-tuning on the ResNet-50 part as it was described before.

To have additional insights on the functionality and performance of our model, we also tested a another Deep Neural Network model that instead of 1D to 2D transformation
followed by ResNet50, uses the 1-D accelerometers time signals directly as input to a CNN model with 1D convolutions. The architecture is shown in the Figure 5.17, it has two convolutional layers followed each of them by max pooling layers. The convolutional layers have \(\text{patch size} = 10, \text{kernels} = 128, \text{stride} = 1, \text{padding}=\text{same}, \text{activation}=\text{ReLU}, \text{pool stride}=5\). Then, as with the pre-trained network, it follows two GRU stacked layers of 128 neurons, a dense layer with 64 neurons (and ReLU activation) and the last dense layer with 25 units (for 25 drivers identification and softmax activation function). The optimizer is again the Adam.

For evaluation purposes, we used top-1 and top-25 driver identification accuracies. The top-1 accuracy accounts for the average success when a driver is identified taking into account only the highest final probability at journey level (among the 25 drivers). Whereas the top-5 accuracy considers a success, if at least the correct driver is among the 5 drivers with higher probabilities at journey level (also among the 25 drivers). The results are shown in Table 5.6. Although the metrics to evaluate the identification are the top-1 and top-5 accuracies at journey level, results at window level are also presented. That is, the success rate obtained by the identification network before averaging the probabilities to obtain the performances at journey level. To evaluate the complexities of the different models, Table 5.7 shows the number of parameters for each one of the network architectures.

![Deep Neural Network Architecture](image.png)

Figure 5.17: Deep Neural Network architecture for driver identification, replacing the pre-trained ResNet50 model with simple convolutional layers.

<table>
<thead>
<tr>
<th>Input</th>
<th>Transformation</th>
<th>Architecture</th>
<th>Accuracy window level</th>
<th>Accuracy journey level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 min</td>
<td>None</td>
<td>CNN+GRU</td>
<td>36.64%</td>
<td>53.57%</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>None</td>
<td>CNN+GRU</td>
<td>46.53%</td>
<td>69.08%</td>
</tr>
<tr>
<td>4 min</td>
<td>RP</td>
<td>ResNet50+GRU</td>
<td>20.01%</td>
<td>28.83%</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>RP</td>
<td>ResNet50+GRU</td>
<td>32.13%</td>
<td>54.70%</td>
</tr>
<tr>
<td>4 min</td>
<td>GASF</td>
<td>ResNet50+GRU</td>
<td>11.19%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>GASF</td>
<td>ResNet50+GRU</td>
<td>27.47%</td>
<td>44.58%</td>
</tr>
<tr>
<td>4 min</td>
<td>GADF</td>
<td>ResNet50+GRU</td>
<td>29.29%</td>
<td>49.59%</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>GADF</td>
<td>ResNet50+GRU</td>
<td>42.66%</td>
<td>63.92%</td>
</tr>
<tr>
<td>4 min</td>
<td>MTF</td>
<td>ResNet50+GRU</td>
<td>15.94%</td>
<td>25.39%</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>MTF</td>
<td>ResNet50+GRU</td>
<td>25.28%</td>
<td>43.53%</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>Spectrogram</td>
<td>ResNet50+GRU</td>
<td>20.86%</td>
<td>30.11%</td>
</tr>
</tbody>
</table>

Table 5.6: Driver identification accuracy for TIDrives_IdenVer.
Results in Table 5.6 indicate that the transformation to images greatly influences the model performance. The best results are obtained when using CNN on accelerometer signals both in 1D to 2D transformation (ResNet50+GRU) or when using 1D convolutions (CNN+GRU). ResNet50+GRU results (48.58% at window level, top-1 71.89%, top-5 92.03%) are only slightly better than those from CNN+GRU (46.53% at window level, top-1 69.08%, top-5 91.03%), which requires significantly less parameters (as Table 5.7 shows). Another clear result is that maneuvers provide always better driver identification accuracy than when using 4 minutes segments. Many state-of-the-art works already highlighted the importance of using maneuvers to identify the driver, such as (Wallace, et al., 2016) or (Hallac, et al., 2016).

A possible explanation of the low performance of RP, GASF, GADF and MTF methods is that they are more effective in representing periodic signals than our non-stationary accelerometer signals. In the case of spectrograms, despite transforming the whole maneuver, it seems that the resulting images are not significant enough for an adequate identification of the driver.

We have also calculated the confidence intervals on the performance of the ResNet50+GRU model, when we use CNN on accelerometer signals to 2D transformation. For this, we have used the Binomial confidence interval, since for each journey we have only two options, to associate correctly or not the trip; and the probability of success is the same for each one (1/25). Finally, we have obtained for a probability of 95% (desired confidence interval), a confidence interval range from 70.50% to 73.28% (at journey level). That is to say, the accuracy of the model is 71.89% ± 1.39% at the 95% confidence level (see Table 5.8). If we also calculate it for the architecture of Figure 5.17, which replaces the 1D to 2D transformation followed by ResNet50 by a CNN model with 1D convolutions, the result in this case is of a confidence interval of 1.43% (Table 5.8). A less precise estimate, although the statistical differences are not very significant.

Table 5.8: Confidence intervals for driver identification with the TIDrives_IdenVer database.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Number of drivers</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet50+GRU</td>
<td>25</td>
<td>71.89% ± 1.39%</td>
</tr>
<tr>
<td>CNN+GRU</td>
<td>25</td>
<td>69.08% ± 1.43%</td>
</tr>
</tbody>
</table>

Table 5.7: Complexity for each driver identification architecture.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Parameters</th>
<th>Trainable</th>
<th>No-Trainable</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN+GRU</td>
<td></td>
<td>375961</td>
<td>0</td>
<td>375961</td>
</tr>
<tr>
<td>ResNet50+GRU</td>
<td></td>
<td>24479897</td>
<td>53120</td>
<td>24533017</td>
</tr>
<tr>
<td>CNN</td>
<td></td>
<td>504448</td>
<td>0</td>
<td>504448</td>
</tr>
</tbody>
</table>
Our main contribution with respect to existing driver identification research is to propose a ResNet+GRU Deep Learning model that working only on smartphone accelerometers, provides an accuracy better or similar than other approaches that require more complex information as accelerometers and gyroscopes (Fontaine, 2017), GPS (Chowdhury, Chakravarty, Ghose, Banerjee, & Balamuralidhar, 2018), or car CAN bus signals (Bernardi, Cimitile, Martinelli, & Mercaldo, 2018). Another important value of our research is the evaluation on a real driver dataset, since in most of the existing research employ a small number of users, with predefined routes and often with the mobile in a fixed position, as in (Tanprasert, Saiprasert, & Thajchayapong, 2017). Our best results, with a top-1 accuracy of 71.89% and top-5 accuracy of 92.03%, can be compared to (Fontaine, 2017), with top-5 accuracy of 79% (though they do not specify the number of drivers). (Chowdhury, Chakravarty, Ghose, Banerjee, & Balamuralidhar, 2018) reports top-1 accuracy of 82.3% for driver groups of 4-5 people and (Tanprasert, Saiprasert, & Thajchayapong, 2017) 81% top-1 accuracy for a set of 10 bus drivers, following a fixed route.

5.2.2.4. Driver identification error analysis

Trying to gain better insights from the good results when using CNN feature maps, we must remember that three different CNN models were trained to map each 1D channel signal to one 2D image. Each one of these models were trained for a driver identification task. So, we compare the driver identification accuracy for these three CNN mapping networks and found that the best accuracy was for the longitudinal acceleration, followed by transversal acceleration. This may indicate that the longitudinal information, which includes maneuvers related to accelerations and decelerations, seems to be more discriminative to identify drivers. Therefore, by selecting specific windows with longitudinal information (i.e. large variability) more accurate results could be expected.

To further analyze the results obtained for the ResNet+GRU model, we have made an individual study by driver. The total confusion matrix is shown in Figure 5.18. Figure 5.19 shows the individual accuracy rates for each of the drivers. In this figure, it can be observed that even drivers with low top-1 accuracy, as drivers five or nine (top-1 accuracy 46.15% and 29.27%, respectively), have reasonable top-5 accuracies (83.33% and 92.68%). Except for driver seven, the rest of drivers are correctly identify in a list of 5 most likely, more than 80% of the time.
Figure 5.18: Confusion matrix for ResNet-50+GRU with feature maps, for TIDrivies_IdenVer.
We have also calculated the Cumulative Match Characteristic (CMC) curve for the identification network, using the ResNet+GRU model with CNN feature maps, see Figure 5.20. The CMC is commonly used as performance measure of identification systems showing several top-n rank accuracy results (in our case from 1 to 25). As shown before, top-1 accuracy is 71.89%, top-2 increases almost 10% to 81.56%, and values above 90% are obtained from top-4.
Trying to visualize a driver embedding we have extracted the feature map from the last Dense layer (in the ResNet+GRU model), before the final Softmax layer, and then we have averaged these vectors along a journey. The resulting vector can be seen as a driver2vec or driver embeddings for each of the journeys. These driver embeddings can be used to visualize driver clusters and then to explore the different drivers in terms of their inter-driver (internal variability of a driver for her/his different journeys) and intra-driver (variability with other drivers). For all the journeys of the 25 drivers in our database, we visualize (see Figure 5.21) the corresponding driver2vec embeddings with t-distributed stochastic neighbor embedding (t-SNE) algorithm. In Figure 5.21 we have circled the embeddings space for drivers eight, ten, nineteen and twenty two that can be easily identified as they show low intra-driver and high inter-driver values (see their high accuracy results in Figure 5.19). In this visualization we can also identify some drivers, as drivers seven and nine, that show very high intra-driver variability and therefore low identification accuracy as it can be seen in Figure 5.19.

![Figure 5.21: Two-dimensional t-distributed stochastic neighbor embedding (t-SNE 2D) projections of the feature vectors of the dense layers, using CNN like inputs in the ResNet+GRU model. Projections for 25 drivers, database TIDrives_IdenVer.](image)

The drivers with the worst results were seven and nine, with a top-1 journey level accuracy of 19.04% and 29.27% respectively (see confusion matrix of Figure 5.18). For these drivers that obtain low accuracy values at top-1 journey level, we have also drawn part of the trips, in order to observe if there are signals with strange behaviors or with low or high noise levels. Figure 5.22 presents journeys of driver seven that have been confused with driver eighteen. In particular for this driver, almost 25% of journeys confuse with driver eighteen. For driver nine, we have drawn both journeys well classified as wrong

131
classified, to observe possible differences, see Figure 5.23. In this case, driver nine confuses 53.22% of the journeys with driver twenty-five. Each section of the figures will present for a journey area: the raw accelerometers and the module of the horizontal projection for accelerations. The signal zones where maneuvers have been detected have also been marked in dotted green, and a solid orange line has been drawn on the subplot of the horizontal projection module, indicating the estimated background noise level.

![Figure 5.22: Examples of test journey sections, representing for each one: the raw accelerometers and the horizontal projection modulus of the accelerations. a), b) and c): Journeys of driver seven, which the network has incorrectly classified for driver eighteen. d), e) and f): Journeys of driver eighteen correctly identified.](image)

On the left side of Figure 5.22, we have drawn three journeys of the driver seven, which have been confused with driver eighteen: Figure 5.22 a), b) and c). And on the right side, we have drawn three journeys of driver eighteen, correctly identified: Figure 5.22 d), e) and f). Although the signals used in the network are the longitudinal and transversal accelerations and the angular velocity, the departure signals (raw accelerometers) do not have strange behaviors and do not present abnormal values. It also seems that the derived signals from the raw accelerometers correctly independent network decisions from the position of the mobile. Since both for the misclassified examples of driver seven, and for the correctly classified examples of driver eighteen, there are cases where the axes measure different values of gravity. Regarding the background noise level for each of them (orange line in the horizontal projection module), in all cases they are values below $1 \, \text{m/s}^2$;
therefore, wrong identification cannot be associated with low or high noise levels. In addition, the maneuvers marked in green show events of different nature, both in duration and type. No anomalies appear to be observed in the signals for said poor classification of driver seven with eighteen. Besides for driver eighteen in these test examples, it has not been incorrectly classified as seven in any case.

Driver nine is the second driver with a lower top-1 identification rate, 29.27%. In this case, 53% of the journeys confuse them with driver twenty five. Despite the fact that driver seven has the lowest accuracy of the whole group of drivers, their confusion is more distributed. In contrast, for driver number nine, more than half of the time, the network classifies it as driver twenty five. However, for driver twenty five, only one trip is incorrectly classified as driver nine; so the confusion between them is not reciprocal. The Figure 5.23 shows six examples of journeys: two trips where driver nine is confused with driver twenty five, two well-classified journeys for driver nine, and two well-classified journeys for driver twenty five. As before, there are no important characteristics that explain these errors.

Although from the previous examples of the individual journeys of driven seven and nine, we have not appreciated errors that could be due to noise, we decided to make an analysis for all the test journeys with all the drivers. As we have specified in the section 5.2.1 *Experimental framework*, each driver has a set of 801 journeys, of which 80% has been used.
for training and 20% for testing. Therefore, all drivers have the same number of trips under test (160 journeys), and also following the training requirements, we have used only 15 windows per journey, although all available ones could be used. To analyze it we have employed, as before, the background noise level of each journey (obtained from the horizontal projection module of the accelerometers), to observe if there are differences between more and less noisy trips. The signals used for the training are overlapping windows through the maneuvers, but in order to analyze it we have not calculated the noise in these maneuvers (because in these areas we would obtain higher values than normal), but rather the background noise level of each journey.

Figure 5.24 shows the values obtained in the test, when the results obtained at journey level have been correctly classified and when they have not. There are not many differences between the two, in both cases the background noise is around 0.6 m/s².

![Background noise level of test journeys](image)

Figure 5.24: Background noise levels for the test journeys, according to whether these trips have been correctly associated with each driver or not.

Finally, we have carried out an analysis based on the maneuver present in each window used in the identification tests. We have classified the corresponding windows in 6 types: only braking, only acceleration, braking&turn, acceleration&turn, only turn and a mixture of all of them. Depending on the longitudinal and transversal acceleration forces present in them. At window level, there are no significant differences, see Figure 5.25. Maneuvers related to longitudinal accelerations, both acceleration and braking, seem to offer higher accuracy values, than for example turns, associated with transversal forces.
5.2.3. Driver identification using acceleration signals derived from GPS

In the previous section we have used the TIDrivies_IdenVer database that includes accelerometer signals captured by smartphones, for a set of 25 drivers and 801 journeys by driver. The aim of this section is to contrast our driver identification results with state of the art research using a publicly available database: the AXA Driver Telematics database.

As we presented in Section 5.2.1, this database contains driving journeys represented in a 2D space by sequences of \(\{x, y\} \) values at a sampling rate of 1 Hz; \(\{x, y\} \) values are obtained from GPS data.

In order to evaluate our Deep Learning models using AXA Driver Telematics data, we developed an algorithm to obtain acceleration signals from these sequences of \(\{x, y\} \) positions. We considered this approach accurate enough, though it may introduce some small inaccuracies due to both the transformation of \(\{x, y\} \) sequences signals into acceleration signals and errors in GPS measurements.

As the organizers of AXA competition indicated, driver characterization is influenced by both the driving trip and the driver behavior: “The intent of this competition is to develop an algorithmic signature of driving type. Does a driver drive long trips? Short trips? Highway trips? Back roads? Do they accelerate hard from stops? Do they take turns at high speed? The answers to these questions combine to form an aggregate profile that potentially makes each driver unique. For this competition, Kaggle participants must come up with a "telematic fingerprint" capable of distinguishing when a trip was driven by a given driver. The features of this driver fingerprint could help assess risk and form a crucial piece of a larger telematics puzzle."
As a good demonstration of this, is that the team that finished in second place (see (Blog Kaggle, 2015)) combined trip matching with a driver signature model. In fact most of participants used the Ramer–Douglas–Peucker (RDP) algorithm for trip matching. RDP reduces the number of points in a line, by simplifying a polyline with respect to a pre-defined tolerance value (Belussi, Catania, Clementini, & Ferrari, 2007). Therefore (see Figure 5.26), it selects the vertex \(v \) with maximum distance from the segment connecting the endpoints of the polyline and compares such a distance with the tolerance value. If the distance is greater, the polyline is divided into two polylines incident at \(v \) and the process is recursively applied. If the distance is lower, the polyline is approximated by the segment itself.

![Figure 5.26: Example of polyline with five vertices reduced to a polyline of three vertices with the RDP algorithm (tolerance \(e \)). a) Polylines of five vertices. b) Polylines of three vertices.]

Although the winner team did not share his code, they specified that also employed the RDP algorithm for trip matching and they combined it using Gradient Boosting with some other driver behavioral features such as speed percentiles, acceleration, speed at turning angles, total distance, deceleration and acceleration before and after stops, etc. The driver identification accuracy, measured using the area under ROC curve, was 0.97983 for the private leaderboard (obtained using approximately 70% of the test data) and 0.97946 for the public leaderboard (for approximately 30% of the test data). The results for the team in second place were very similar, 0.97398 in the private leaderboard and 0.97334 in the public leaderboard.

It is important to point out that in these works, the teams found that the trip-matching was the most relevant information for obtaining these high accuracies in driver identification. Consequently, as the aim in this Thesis is to work only using driver behavioral features, we looked for some research using only this type of information on the AXA database. With these characteristics we found the work of (Dong, et al., 2016).

(Dong, et al., 2016) published an article based on the experiments that they performed in the AXA database. Their experiments included driver identification for several subsets of the database. In particular, they tested two subsets, one with 50 drivers and another one with 1000 drivers. In this work \(\{x, y\} \) sequences were represented using feature engineering to extract some statistical features. Using these features different Machine Learning models, including Deep Learning, were tested. First, they segment the signals into sections of length \(L_s \), with a shift of \(L_s/2 \). For each segment, they calculate 5...
features at every time point, called basic features: the speed norm, the difference of speed norm, the acceleration norm, the difference of acceleration norm, and the angular speed. From the resulting matrix of size \(5 \times L_s\), they finally get the statistical features used for identification. To do this, for frames of \(5 \times L_f\) (with \(L_f < L_s\)) and a shift of \(\frac{L_f}{2}\), they calculate the mean, the minimum, the maximum, the 25%, the 50%, and the 75% quartiles, and the standard deviation of the basic features in each frame. Obtaining an array of 35 rows, representing the driving feature axis, and \(2 \times \frac{L_s}{L_f}\) columns, representing the time axis. In particular, they use a \(L_s\) of 256 seconds and a \(L_f\) of 4 seconds.

Similarly to our research, they define three metrics to measure accuracy: window level accuracy (which they call segments), top-1 journey level accuracy and top-5 journey level accuracy. For driver identification they use 6 different models: a 1-D Convolutional network with pooling layers (three convolution-pooling layers and three fully connected layers), a 1-D Convolutional network without pooling layers (three convolution layers and three fully connected layers), a Recurrent Neural network that use as input the features extracted at the third convolutional layer in the pre-trained CNN (one layer and 100 neurons), a Neural network of 1 layer and 100 neurons, a Neural network of 2 stacked layer (100 neurons in each layer) and the Gradient Boosting Decision Tree (GBDT). With the GBDT, they also do a test, but instead of using the statistical features, they test with a set of 57 manually features, made up of both global features (as the mean, the minimum, the maximum, the standard deviation, etc.) and local features (as the time duration of the whole trip, the trip length, the average speed, among others). The results obtained are shown in the Table 5.9. For the set of 50 drivers, the candidate that offers the best results is for the model with a Recurrent Network of two stacked layers, employing as inputs the statistical features. Obtaining an accuracy at window level of 34.8%, and at journey level top-1 and top-5 of 52.3% and 77.4%, respectively. In the case of 1000 drivers, they did not carry out the tests with all the models. But among the architectures tested, the best performance is again with the Recurrent Network of two stacked layers and the statistical features, with an accuracy at window level and at journey top-1 and top-5 of 27.50%, 40.50% and 60.4%, respectively.

Table 5.9: Results of the work of (Dong, et al., 2016) for driver identification, in the database of AXA “Driver Telematics Analysis”.

<table>
<thead>
<tr>
<th>Method</th>
<th>No. drivers</th>
<th>Accuracy at window level (%)</th>
<th>Accuracy at journey level top-1 (%)</th>
<th>Accuracy at window level top-5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN without pooling layers</td>
<td>50</td>
<td>16.9</td>
<td>28.3</td>
<td>56.7</td>
</tr>
<tr>
<td>CNN</td>
<td>50</td>
<td>21.6</td>
<td>34.9</td>
<td>63.7</td>
</tr>
<tr>
<td>RNN of one layer pre-trained (using the features extracted at the third convolutional layer in the pre-trained CNN as inputs to train an RNN)</td>
<td>50</td>
<td>28.2</td>
<td>44.6</td>
<td>70.4</td>
</tr>
<tr>
<td>RNN of one layer</td>
<td>50</td>
<td>34.7</td>
<td>49.7</td>
<td>76.9</td>
</tr>
<tr>
<td>RNN of two staked layers</td>
<td>50</td>
<td>34.8</td>
<td>52.3</td>
<td>77.4</td>
</tr>
<tr>
<td>GBDT</td>
<td>50</td>
<td>18.3</td>
<td>29.1</td>
<td>55.9</td>
</tr>
<tr>
<td>GBDT on a set of 57 manually defined driving behavior features</td>
<td>50</td>
<td>-</td>
<td>51.2</td>
<td>74.3</td>
</tr>
<tr>
<td>CNN</td>
<td>1000</td>
<td>23.4</td>
<td>26.7</td>
<td>46.7</td>
</tr>
<tr>
<td>CNN</td>
<td>1000</td>
<td>27.5</td>
<td>40.5</td>
<td>60.4</td>
</tr>
<tr>
<td>GBDT on a set of 57 manually defined driving behavior features</td>
<td>1000</td>
<td>-</td>
<td>9.2</td>
<td>15.8</td>
</tr>
</tbody>
</table>
It is also important to note that although we have used the same database as in the AXA competition, the comparison with (Dong, et al., 2016) will not be straight, because we do not know exactly what subset of drivers for training and testing were used.

As discussed before, one of the main challenges in driver identification from smartphones accelerometers is the robustness to undesired sources of variability (such as the type of smartphone, the car model, type of route, or the position of the smartphone inside the vehicle). Therefore, it is important to remark that some of these sources of variability, that are present in TIDrivies_IdenVer dataset, does not affect AXA competition database. For example, in AXA database, sequences of \(\{x, y\} \) positions may have some noise due inaccurate GPS measures, but this noise is expected to be very different -and with less energy- than the common noise in tri-axial accelerometer devices. Also the variability due the terminal position and the effect in accelerometers of road noise through gravity will not be present in AXA database. In contrast to the absence of these variability sources, a peculiar difficulty in AXA database is that, according its design, of the 200 initial journeys by driver, there is a set of false trips, that is, routes that actually belong to another driver. This fact obviously will make some errors even if the identification algorithm is working correctly (but we have no way of checking these false trips as they are not identified in AXA database).

5.2.3.1. From \(\{x,y\} \) sequences to acceleration signals

The process to derive acceleration signals from sequences of 2D \(\{x,y\} \) positions is summarized below.

The first step was to divide the routes into segments, to avoid possible time breaks. It was necessary to clean the data in order to address two main issues:

- To remove some short segments of \(\{x,y\} \) positions with impossible trajectories, which are plausible due to invalid GPS measurements.
- To remove some segments of \(\{x,y\} \) with very close positions. This is generally due to states where the car is stopped and again GPS measures show some variability. Once a stop state is detected, the journey is divided in two sub-journeys.

After obtaining the subjourneys, the corresponding sequences of \(\{x,y\} \) positions were processed to obtain three signals: longitudinal and transversal accelerations, and angular velocity. Note that these signals are the same that are available in TIDrivies_IdenVer database. Though it is important to indicate that as \(\{x,y\} \) positions are available for every second, the sample rate now will be 1 Hz, while in TIDrivies_IdenVer was 5 Hz.

To derive these signals we performed the following steps. Using the first derivative of \(\{x,y\} \) positions we obtain the speed in X and Y axes. From these velocities we calculate the corresponding X and Y accelerations deriving. Then, in order to obtain the longitudinal and transversal accelerations, we projected accelerations on the \(\{x,y\} \) velocity vector. To improve the accuracy in these derivatives we used interpolation with splines. Once we have the longitudinal and transversal accelerations, the angular velocity can be obtained by means of the relation between the transversal component and the linear velocity \(w = a_t / \)
We estimate this linear velocity with the method described in (Cervantes-Villanueva, Carrillo-Zapata, Terroso-Saenz, Valdes-Vela, & Skarmeta, 2016).

Once we have longitudinal and transversal accelerations and angular velocity, in order to use ResNet-50 network, we define a window size of 224 samples (that at 1Hz represents 3.73 minutes of driving).

Next, as required in the driver identification process for TIDrives_IdenVer database, we now need a procedure to detect maneuver on AXA database signals. To this end, we extract information on typical duration of acceleration maneuvers (braking and accelerations) and turn maneuvers using the events obtained in Chapter 4 on TIDrives_IdenVer database. (Figure 5.27 a) represents a histogram of the durations of acceleration maneuvers, and (Figure 5.27 b) for turn maneuvers. According to these histograms, we decided to detect an acceleration/deceleration maneuver when longitudinal acceleration exceeds an empirical threshold for 3 consecutive seconds, while for a turn maneuver, when transversal acceleration is above another empirical threshold for at least 5 seconds.

Figure 5.27: Histogram of driving maneuver lengths in a set of 47240 journeys in TIDrives_IdenVer database. a) Acceleration maneuvers duration. b) Turn maneuvers duration.
Figure 5.28 shows an example of maneuver detection: the stem in cyan represents the areas where the acceleration/deceleration maneuvers are detected and in red where the turn events are detected. Now, we are working with a lower sampling frequency, 1 Hz instead of 5 Hz, so the information present in the windows of 224 samples is equivalent to 3.73 minutes instead of 44.8 seconds like before. Each window, although with less information per second, has more information about the journey. According to the cases studied for this database, as the example of the figure, it seems that there are not too many differences between selecting only maneuver windows, compared to selecting overlapping consecutive windows. The overlapping consecutive windows frequently overlap with maneuver information, so for this database we have decided to retake the strategy of the first minutes of the journey.

![Fig 5.28 Example of maneuver detection](image)

Figure 5.28: Example of maneuver detection obtained empirically for the AXA Driver Telematics database. The stem in cyan represents the areas where the acceleration/deceleration maneuvers are detected and in red where the turn events are detected. a) Speed. b) Longitudinal acceleration. c) Transversal acceleration. d) Angular velocity.
5.2.3.2. **Experiments and results**

AXA Driver Telematics database has sequences of \(\{x, y\}\) positions, at 1Hz sampling rate, for a total of 2739 drivers, with 200 journeys of different duration per driver. Once we have longitudinal and transversal accelerations and angular velocity, we followed the same driver identification process we used for TIDrivies_IdenVer database (5.2.2 Driver identification from accelerometer signals). The whole process is shown in Figure 5.29. From the sequences of \(\{x, y\}\) positions, we calculate the acceleration. Then with this acceleration, we obtain both the longitudinal and transversal accelerations associated (projecting on the speed) and finally the angular velocity.

![Diagram](image)

Figure 5.29: Driver identification process, for the AXA Driver Telematics database.

As for the Deep Learning model we studied for TIDrivies_IdenVer database (see Figure 5.6, Section 5.2.2), 2-D images of three channels were generated from acceleration and angular velocity 1D time series. The driver identification model then consist of a ResNet-50 network followed by a Recurrent Neural Network (GRU) block followed by a Dense and Softmax layers. As before, we tested the best procedure we found in Section 5.2.2 to transform 1D signals to 2D images using a convolutional network, Figure 5.15, for each of the channels. For this new database, we trained again each convolutional network of Figure 5.15 with the AXA journeys (we did not use the weights obtained with the database of TIDrivies_IdenVer). And we employed for training the same set of 25 drivers that the one used in the tests.

Based on previous tests for the TIDrivies_IdenVer database, our initial purpose was to also use a fixed number of windows per journey. For the previous database we used 15, but since we had longer windows we decided to reduce the number used to 10 as a first approximation. Demanding this number of windows caused that from the 200 initial journeys by driver, not all could be employed because they were shorter than the desired size. In addition, the fact of requiring the same number of training and testing journeys for all drivers had greatly reduced the number of available trips, obtaining in total 100 journeys
by driver, 80 for training and 20 for testing. Due to the reduced number of trips, we decided to use all the available windows, in order not to limit the available windows so drastically.

Driver identification performance results are presented in Table 5.10. Similarly as in Section 5.2.2 (see 5.2.2.3 Experiments and Results), the accuracy results are given at window level, as well as at top-1 and top-5 journey levels respectively. As it can be seen in Table 5.10, the results for AXA are: window level 52.47%, top-1 66.97% and top-5 84.80%. Previously, we had for the database of TIDrivies_IdenVer: window level 48.58%, top-1 71.89% and top-5 92.03%. We can conclude that results for TIDrivies_IdenVer are only slightly better than those for AXA, and both results are competitive with an accuracy top-1 of almost 67%, and an accuracy top-5 of almost 85%.

Table 5.10: Results for driver identification using the ResNet50+GRU model, databases of AXA Driver

<table>
<thead>
<tr>
<th>Database</th>
<th>No. drivers</th>
<th>Network</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At window level</td>
<td>At journey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(%)</td>
<td>top-1 (%)</td>
</tr>
<tr>
<td>AXA Driver Telematics</td>
<td>25</td>
<td>ResNet50+GRU</td>
<td>52.47%</td>
</tr>
<tr>
<td>TIDrivies_IdenVer</td>
<td>25</td>
<td>ResNet50+GRU</td>
<td>48.58%</td>
</tr>
</tbody>
</table>

As we done for the TIDrivies_IdenVer database, we have calculated the confidence intervals on the performance of this model using the AXA database (see Table 5.11). As seen in the table, for the AXA database there is a 95% likelihood that the range 63.85% to 70.09% covers the true model accuracy. For this database, we have a larger confidence interval, so we have a less precise estimate than with the TIDrivies_IdenVer dataset.

Table 5.11: Confidence intervals for driver identification using the ResNet50+GRU model.

<table>
<thead>
<tr>
<th>Database</th>
<th>No. drivers</th>
<th>Network</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXA Driver Telematics</td>
<td>25</td>
<td>ResNet50+GRU</td>
<td>66.97% ± 3.12%</td>
</tr>
<tr>
<td>TIDrivies_IdenVer</td>
<td>25</td>
<td>ResNet50+GRU</td>
<td>71.89% ± 1.39%</td>
</tr>
</tbody>
</table>

5.2.3.3. **Driver identification error analysis**

As we did for TIDrivies_IdenVer database (Section 5.2.2.4 Driver identification error analysis), we have addressed an analysis of driver identification results for the set of 25 drivers. As Figure 5.30 shows, the overall accuracy top-1 is 66.97%. The worst performing driver is driver nineteen with a top-1 accuracy of 40%. However, as we also observed previously, although there are some drivers with poor top-1 accuracy, their top-5 is significantly better. The drivers with the best results do not reach top-1 of 85% and slightly higher than 90% for the top-5.
We have obtained again the Cumulative Match Characteristic (CMC) curve that is shown in Figure 5.31. Comparing the curves for AXA and TIDrivies_IdenVer, the growth of the CMC AXA curve is not as prominent as the TIDrivies_IdenVer one. While in TIDrivies_IdenVer, top-4 accuracy values exceeds 90%, for these accuracy level are not obtained for AXA until top-10.

Figure 5.31: Cumulative Match Characteristic curve for the ResNet50+GRU identification network, using the feature maps from the CNN as inputs, database of AXA Driver Telematics.
Finally, we have represented accuracy values for journeys with different number of windows (Figure 5.32 a)) and for journeys with a minimum number of windows (Figure 5.32 b)). The overall accuracy at top-1 journey level was 66.97 % (red line, Figure 5.32 a)). Increasing the number of windows per journey, accuracy obviously increases reaching a 75% for journeys with more than 12 windows.

Figure 5.32: Accuracies at window level, for the architecture of ResNet50+GRUs, based on: a) journeys with a given number of windows, b) journeys with a minimum number of windows.
5.2.3.4. Improving driver identification in AXA Telematics database

Results of our driver identification ResNet50+GRU model for AXA database are slightly worse than those for TIDrivies_IdenVer (accuracy top-1, 67% vs. 72%). In this Subsection, looking for improvements in AXA driver identification results, two strategies are studied: a) use a simpler Deep Learning model and b) apply data augmentation techniques.

The reason for applying these two strategies, it that signals in AXA database have a sampling frequency of 1 Hz, so there are less information to model simpler maneuvers. With less data, we believe that better results could be obtained with simpler models, so we evaluated a model without the first convolutional stage (i.e. neither ResNet nor CNN) and only with a RNN stage followed by a Softmax layer. Besides, considering data scarcity in AXA database, data augmentation techniques were also evaluated.

RNN model

The first strategy is to apply simpler models, replacing the architecture of the Figure 5.6, by a RNN model as illustrated in Figure 5.33. For the recurrent part of the network, both LSTM and GRU layers will be tested.

![Figure 5.33: Recurrent Neural Network architecture, for driver identification in AXA Driver Telematics database.](image)

Data augmentation

The second strategy is to use data augmentation techniques to increment the training set. Generally, ML and DL techniques produce better results when more training data is available. When we have a smaller training dataset, overfitting can appear (overfitting is less likely when the dataset grows). Also, it can be interesting to increase the data not only because data scarcity, but in cases of unbalanced classes.

Among the solutions that can be used to address these problems are transfer learning and data augmentation. Transfer learning has been used in the Section 5.2.2 Driver identification from accelerometer signals, for TIDrivies_IdenVer database, to make use of the power of a pre-trained ResNet-50 model. For AXA database, since the training set is smaller
than in TIDrivies_IdenVer (80 journeys per driver for training in AXA database), we evaluated several data augmentation techniques specific for time series.

Data augmentation address the problem of having a small amount of data for training. The goal of data augmentation (Forestier, Petitjean, Dau, Webb, & Keogh, 2017) is to reduce the classifier errors due to variance. The process consists in creating synthetic data to be used for training.

Data augmentation has been widely used in computer vision, for instance for applications oriented to object classification or handwriting recognition systems. Generally, to increase the set of images techniques include cropping, shifting or rotating, among others. The most common data augmentation methods for images can be divided into two broad categories: unsupervised data augmentation and supervised data augmentation (Shijie, Ping, Peiyi, & Siping, 2017). The first refers to methods not related to data labels; for instance flipping, rotation, cropping, shifting, color jittering (changing the random factors of color saturation, brightness and contrast), adding noise, or PCA jittering (performing PCA on the image in order to obtain the principal components, and then adding them to the original image with a Gaussian disturbance). Among supervised data augmentation methods we can find the use of GAN (Generative Adversarial Networks), where each augmentation image simple is generated with the specific category required for training.

When working with time series some of those for images can be used, as for example time shifting, however others such as flipping could not be applied. If we flip the signal in the horizontal direction, the signal will lose all the temporal information (this would not be valid for a dynamic signal). In the case of our sensors, these are continuous signals that change over time. Even if we perform the rotation on the feature extraction domain, the features are still time series. Below, we review the state of the art on data augmentation techniques for time signals, some of which will be tested in our experiments.

Works like (Le Guennec, Malinowski, & Tavenard, 2016) propose two techniques. The first one is called window slicing (WS), which consists of extracting segments of the signal and to make the classifications on those segments, instead of doing it over the whole signal. The signal is divided into windows and each of the windows will present the same class as the complete signal. Usually, in order to make the global decision, each window is classified individually and the final decision will be the majority vote or a series of similar decisions. Another technique they propose is the so-called window warping (WW), where a random segment of the complete signal is warped by speeding it up or down. Among the disadvantages of this method, is that it will generate a signal of different size than the original. Consequently, a good way to solve it is to divide the resulting signal into fixed-size windows.

Another research that also uses WS is (Cui, Chen, & Chen, 2016). Although in the work they do not mention data augmentation, the techniques proposed could be considered for augmentation data, since from each original signal they generate different signals that go through different convolutional networks, to be concatenated again before the final classification. Transformations include time-domain down-sampling and frequency transformations, applying low frequency filters with multiple degrees of smoothness (in particular moving average filters). Applying filters of different degrees of smoothness
allows obtaining multiple new time series. Figure 5.34 shows the architecture that they propose for time series classification. Specifically, what they call transformation stage could be considered another way to increase training data.

![Figure 5.34: Overall architecture proposed by (Cui, Chen, & Chen, 2016) for time series classification. Image obtained from (Cui, Chen, & Chen, 2016).](image)

(Rashid & Louis, 2019) also use WW in time series. In the following image (Figure 5.35), an example speeding up and slowing down the activity X is illustrated.

![Figure 5.35: Examples of WW data augmentation. Image obtained from (Rashid & Louis, 2019).](image)

Others like (Forestier, Petitjean, Dau, Webb, & Keogh, 2017) generate new synthetic time series from a set of them, by means of a weighted version of the time series using averaging method DBA (DTW (Dynamic Time Warping) Barycenter Averaging). As they indicate, an infinite set of new temporal signals can be generated by varying the weights. In
Figure 5.36, an example of his work is presented (Petitjean, et al., 2016). The first plot on the left (Figure 5.36 a) shows a set of input signals belonging to the same class, which are going to be used under the algorithm. Successive plots (Figure 5.36 b,c) show the new time series produced by the Euclidean average and produced by the DBA, respectively. As seen in the image, the advantage of this method is that it better preserves the shape of the times series than when we use the Euclidean average. But as inconvenient for its application to our signal, is that it is difficult to find some input signals that can be averaged to generate new signals. Because if we take maneuvers, although they belong to the same class, they have different forms and durations and, if averaging them, the resulting signal could lose valuable information contained in the maneuver itself.

In a related field where data augmentation for temporal signals is widely used is in electroencephalography (EEG) signals classification; due to the difficulty of obtaining a large set of brain signals (although acquisition methods have improved, they are usually invasive). In (Zhang, Lei, & Li, 2018) noise is added to EEG signals, but unlike other works, where they add it in the time domain, they perform a transformation to the frequency domain and then add Gaussian perturbation to the amplitudes. The reasons mentioned by the authors to add noise in this way, it is because the EEG has low signal-to-noise ratio, it is non-stationary, and has insufficient spatial resolution compared to images. So, if the noise was applied directly to the temporal signal, it may destroy important features of EEG signals.

Besides, data augmentation can be applied or over the data-space domain, as for example WW, or in the feature-space, as synthetic over-sampling (Wong, Gatt, Stamatescu, & McDonnell, 2016). The over-sampling is very useful when the data classes are unbalanced. A technique of over-sampling widely used is the one proposed in (Chawla, Bowyer, Hall, & Kegelmeyer, 2002), called Synthetic Minority Over-Sampling Technique (SMOTE). In this technique, synthetic examples are created in the feature-space from randomly selected pairs of real world feature-examples from the minority class.

A research that performs data augmentation in the feature space applied to sensor signals is (Eyobu & Han, 2018). They employ wearable inertial measurement unit (IMU) sensors to recognize between three types of activities: walking, sitting and standing. They use accelerometer and gyroscope signals and their approach is to take the tri-axial
accelerometer and gyroscope signals, and calculate the spectrogram in overlapping windows along the signal, for each axis. Depending on the size of the selected windows, they will obtain a different number of spectrograms by signal. Moreover, once obtained the three axes, they combine them into one. In the combined spectral data spectrogram, they apply data augmentation. Firstly, they do a local average generating process, which consists of averaging a certain number of windows and forming a column (vectors column) with these values. Then, they join the initial set of windows with the locally averaged data, located at the end of the original matrix. Later, they shuffle randomly the data, to finally make another local averaging process, adding the new averaged signals to the previous matrix shuffled. Among the tests they perform to see the effect on the final accuracy are: testing a data augmentation that ends after the first locally averaged data, another that would complete the whole process, as well as trying with a different set of window sizes and learning rates.

(Wang, Zhong, Peng, Jiang, & Liu, 2018) adds noise in time domain, in order to increase the EEG training database (although not directly on the raw temporal signal, but on the differential entropy (DE) feature from the recorded EEG signal segment). As they justify, if Poisson noise, Salt noise or Pepper noise were added, these could change the features of EEG data locally, because EEG signal has a strong randomness and non-stationarity. To avoid this, they add Gaussian noise specifically, in order to ensure that the amplitude value of the sample will not be changed with the addition of noise. They generate the Gaussian noise with mean zero and test different values of standard deviation.

In (Sakai, Minoda, & Morikawa, 2017), they also apply data augmentation on EEG signals. In particular, they apply 4 methods: to shift all the sampled data by specific amount of time, to shift certain sampled data, to amplify the sampled data by a specified number and to amplify only some sampled data.

After analyzing the techniques mentioned above, we decided to select 4 of them: window slicing (WS), adding noise over the time domain, low frequency filters with several degrees of smoothness and the window warping (WW). The WS has already been used during all tests, dividing the journeys into overlapping windows and then making a decision at journey level, with the sum of the individual decisions.

Works as (Zhang, Lei, & Li, 2018) add Gaussian noise over the time domain to increase the training dataset. To check that Gaussian noise fits well to the characteristics of the input signals, first we have calculated the histogram of the three channels used for the tests: the longitudinal and transversal accelerations, and the angular velocity. Histograms are shown in Figure 5.37 where it can observed that the distribution of longitudinal acceleration is more different from the rest, perhaps because it includes both braking and acceleration maneuvers, and this probably produces that asymmetry. Considering the results achieved, we have decided to continue adding noise with a Gaussian distribution of zero mean for the data augmentation. Also, we will perform tests with a truncated Gaussian distribution, as proposed in some works in the literature.
Figure 5.37: Histogram of the distributions for the a) longitudinal accelerations, b) transversal accelerations distribution, and c) angular velocities.

For data augmentation using low frequency filters with several degrees of smoothness, we used moving average filters of 3, 5 and 8 points. With respect to WW, in the previous works they proposed two ways: warping by speeding up or down the signals. Of both options, we will use to warp the signals to the double size. The reason for warping to the double size is because our network architecture is designed for 224 sample windows. If warping by speeding down, we should adjust them in some way, for example with padding and it does not really seem beneficial. On the other hand, if warping by speeding up for multiples of 224 samples, it is easy to divide the new window into the windows with the original length. In particular, we have decided the double size, in order not to distort the new warped signal too much and to divide easily the new window in two.

Experiments and results using Recurrent Networks on AXA Telematics database

We use the same experimental setup in 5.2.3.2 *Experiments and results*, consisting of the same set of 25 drivers and used a window size of 224 samples. In this new experiments, signals have been normalized with z-norm, subtracting the average and dividing by the
standard deviation (both obtained at journey level for the whole train dataset and applying then these same training values to the test). Previously, with the ResNet-50 pre-trained model that used images as input, we obtained worse results when we normalized, so we did not apply it.

For the Recurrent Network model, initial tests using a two-layer LSTM with 64 cells, followed by a Dense layer and an output Softmax layer showed overfitting with notable differences in accuracy between training and testing. This could be because the model was too complex for that dataset. Consequently, we found it necessary to increase the training set and/or to reduce the model complexity (for example, using less layers or less neurons per layer). Since regularization techniques (i.e. dropout) was already applied in the initial tests we implemented the simplified model of Figure 5.33: a single Recurrent Network directly followed by an output softmax layer. In addition, as a simple way of data augmentation, we decided to reduce the window hop-size from 25% to 10%.

Results for different tests are shown in the Table 5.12. As shown in the table, using a GRU layer with 64 neurons, the accuracy at window level was 43.51%, and at journey level top-1 and top-5 of 57.71% and 82.63% respectively. Substituting the GRU layer by an LSTM the accuracy values increased to 54.18% at window level and 67.31% and 85.71% top-1 and top-5 at journey level, respectively. We then increased the number of LSTM cells to 128, and we reached accuracies of 61.54%, 73.25% and 87.31% for window level, and journey level top-1, top-2, respectively. So far, globally with we have increased top-1 accuracy at journey level from 66.97% (for the ResNet50+GRU network, with a window shift of 25%) to 73.25% (for a LSTM layer with 128 neurons and hop-size of 10%).

Results when using data augmentation techniques are shown in Table 5.13. The first technique implemented has been to add Gaussian noise to the training set. In particular, we added Gaussian noise of zero mean in the complete journey and then we divided the journeys into windows. Firstly, we decided to do several tests using Gaussian noise with zero mean and varying the standard deviation (0.001, 0.01, 0.02, 0.1, 0.2, 0.5), in order to obtain an optimal value, that was found to be 0.01.

![Table 5.12: RNN model results for driver identification on AXA Driver Telematics, for 25 drivers.](image-url)
Results for Gaussian noise without truncating were of 63.49%, 75.20% and 87.20% for window level, journey level top-1 and top-5, respectively (which improves the values regarding not using data augmentation techniques). We also implemented truncated Gaussian noise, with zero mean and standard deviation 0.01, but truncated between [-0.02, 0.02]. Results are below those obtained previously (see (Table 5.13.)).

For testing data augmentation using low frequency filters (smoothing), as mentioned before, we applied filters of 3, 5 and 8 points; creating 3 new sets and thus multiplying the training set x4. However, results using this technique does not seem to improve the results too much (window level accuracy of 62.01%, and top-1 and top-5 journey level accuracies of 72.46% and 87.54% respectively). (Table 5.13.)

The last data augmentation technique we tested was WW, expanding the signal to a double size (i.e. from a window of 224 samples to a window 448 of samples) and then we divided it into two 224 samples windows. Results using this technique worsened with respect to not using it (accuracy at window level and accuracies at journey level top-1 and top-5 of 47.59%, 63.08% and 83.54%, respectively, see Table 5.13).

Finally, we decided to use all the data generated for the individual augmentation techniques. Two approaches were tested. The first one gathers all the data generated using all the augmentation technique, so the training set was multiplied x11. The second one eliminates WW data augmentation (since according to our previous results seems not to be appropriate), so the training set is multiplied x9. Although both approaches increases the accuracy, the best results are obtained for the second one has obtained with window level accuracy of 65.13%, and journey level top-1 of 75.54% and top-5 of 87.09% (see Table 5.13). By analyzing the whole set of results in the table, it seems that the method that contributes most to the improvement is the addition of Gaussian noise, although it individually achieves lower accuracy than when using x9 combination, results are very close.

Table 5.13: Results for driver identification, database of AXA Driver Telematics, for 25 drivers, applying data augmentation techniques.

<table>
<thead>
<tr>
<th>No. drivers</th>
<th>Network</th>
<th>Data augmentation</th>
<th>Data augmentation type</th>
<th>Accuracy at window level (%)</th>
<th>Accuracy at journey level top-1 (%)</th>
<th>Accuracy at window level top-5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1 layer LSTM, 128 neurons</td>
<td>Yes (x6)</td>
<td>Gaussian noise: (\mu = 0), (\sigma = 0.01).</td>
<td>63.49%</td>
<td>75.20%</td>
<td>87.20%</td>
</tr>
<tr>
<td>25</td>
<td>1 layer LSTM, 128 neurons</td>
<td>Yes (x6)</td>
<td>Truncated Gaussian noise: (\mu = 0), (\sigma = 0.01), truncated: ([-2\sigma, 2\sigma]).</td>
<td>59.88%</td>
<td>71.88%</td>
<td>87.08%</td>
</tr>
<tr>
<td>25</td>
<td>1 layer LSTM, 128 neurons</td>
<td>Yes (x4)</td>
<td>Smoothing (filters of moving average of 3, 5 y 8 points).</td>
<td>62.01%</td>
<td>72.46%</td>
<td>87.54%</td>
</tr>
</tbody>
</table>
As a summary of the main conclusions that can be drawn from this experiments, we can discuss the following ones. Different network configurations were tested, varying the type of cell between LSTM and GRU, as well as the number of neurons by layer and the number of layers. We tested several regulation techniques such as batch normalization and dropout. In our experiments we found that the use of dropout was very important. Without dropout the accuracy results were down more than 10% in most configurations. This did not happen for the ResNet50+GRU model (in the same database, AXA Driver Telematics), tested in Section 5.2.3.2, where better results were obtained without the use of dropout (although with a difference around 1~2%), maybe because the network does not reach the overfitting during the training. Another significant change in our experiments using a RNN model on AXA database with respect to the results obtained with the pre-trained ResNet-50+GRU model on database of TIDrivies_IdenVer, is that we modified the optimizer. We changed the Adam optimizer for the RMSProp optimizer, because with Adam we found many instabilities during training. For the LSTM layer model, we observed a trend to overfitting if we did not apply regularization. Using Batch Normalization and dropout together improved the results with respect to using each one individually. Although, if we increased the dropout values too much, the accuracy worsened.

As we did in the previous tests, we have calculated again the confidence intervals on the performance for this model (Table 5.14), replacing the previous architecture with a simpler model and incorporating the data augmentation techniques of Gaussian noise and smoothing. The accuracy is to 72.69% to 78.39%. Comparing with the results obtained for the same AXA database and the ResNet50+GRU model, the LSTM architecture seems to be a better option. Nevertheless, the tests done with database of TIDrivies_IdenVer offer the smallest confidence interval of 1.39%, so the most precise estimate.
Table 5.14: Confidence intervals for driver identification.

<table>
<thead>
<tr>
<th>Database</th>
<th>No. drivers</th>
<th>Network</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXA Driver Telematics</td>
<td>25</td>
<td>LSTM</td>
<td>75.54%±2.85%</td>
</tr>
<tr>
<td>AXA Driver Telematics</td>
<td>25</td>
<td>ResNet50+GRU</td>
<td>66.97% ± 3.12%</td>
</tr>
<tr>
<td>TIDrivies_IdenVer</td>
<td>25</td>
<td>ResNet50+GRU</td>
<td>71.89% ± 1.39%</td>
</tr>
</tbody>
</table>

To provide now more insights of the driver identification performance using LSTM layer and data augmentation x9, we have represented individual results per driver in Figure 5.38. The worst-performing driver, driver ten, offers a top-1 accuracy at journey level of 54.29%, which rises to 82.86% in the top-5. In general, the results obtained improve upon those obtained with the ResNet50+GRU (Figure 5.30).

Figure 5.38: Top-1 and top-5 accuracy results in driver identification for 1-layer LSTM model and data augmentation techniques, database of AXA Driver Telematics.

For this same configuration (LSTM and x9 data), the Cumulative Match Characteristic (CMC) is shown in the Figure 5.39, together with previous tests with the same database but the ResNet50+GRU model and the TIDrivies_IdenVer database and the ResNet50+GRU model. As seen in the figure, accuracy values of 90% are achieved up to top-8, while for the same database but with the ResNet50+GRU model and without data augmentation are obtained for top-10. From the top-19, these show practically the same behavior. However, despite the fact that the LSTM and data augmentation configuration outperform the top-1 accuracy regard to the TIDrivies_IdenVer database and
ResNet50+GRU model, the general performance of the last one is much higher, with accuracy values exceeding the 90% in the top-4.

![CMC curve for driver identification](image)

Figure 5.39: Cumulative Match Characteristic curve for 1-layer LSTM model and data augmentation techniques, database of AXA Driver Telematics.

Also, we have represented accuracy values for journeys with different number of windows (Figure 5.40 a)) and for journeys with a minimum number of windows (Figure 5.40 b)). All these results are at top-1 journey level. As we observed previously, the overall accuracy at top-1 journey level was 75.54% (red line in Figure 5.40). But if we increase the number of windows per journey, for example, by requiring at least more than 10 windows by trip, the values are above 82%, except when we begin to have more than 59 windows (but this is because there are few journeys with these windows and the results are not representative).
Figure 5.40: Accuracies at window level, for 1-layer LSTM model and data augmentation techniques, database of AXA Driver Telematics, based on: a) journeys with a given number of windows, b) journeys with a minimum number of windows.
5.2.3.5. **Comparison with the state of the art**

In order to compare our results with the work of (Dong, et al., 2016), we have expanded the number of drivers to 50, without data augmentation and with the network of the Figure 5.33, formed by a LSTM layer with 256 neurons. We have not performed the tests with data augmentation and 1000 drivers due to the high computational cost of the training. Although we both use Deep Learning models, the main difference between their research and ours is that we use accelerations derived from sequences of 2D \(\{x, y\} \) positions as input signals, and they work with statistical features extracted directly from the \(\{x, y\} \) sequences. As we already mentioned at the beginning of the Section 5.2.3, although we have used the same database, the comparison is not straight, because we do not know exactly what subset of 50 drivers they have been employed.

The results for 50 drivers, increasing the number of neurons of the LSTM layer to 256, have been accuracy at window level of 60.06%, and top-1 and top-5 journey level of 71.60% and 83.54%, respectively (see Table 5.15). The best results in (Dong, et al., 2016) were with a Neural network of 2 stacked layer and 100 neurons in each layer, obtaining 34.8%, 52.30% and 77.4% of accuracy at window level, top-1 and top-5 journey level, respectively (Figure 5.9). So, we can conclude that our results outperform this state-of-the-art research in the three metrics evaluated.

<table>
<thead>
<tr>
<th>Research</th>
<th>Network</th>
<th>No. drivers</th>
<th>Accuracy</th>
<th>At window level (%)</th>
<th>At journey level top-1 (%)</th>
<th>At window level top-5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our proposal</td>
<td>1 layer LSTM, 256 neurons</td>
<td>50</td>
<td>60.06%</td>
<td>71.60%</td>
<td>83.54%</td>
<td></td>
</tr>
<tr>
<td>(Dong, et al., 2016)</td>
<td>CNN without pooling layers</td>
<td>50</td>
<td>16.9</td>
<td>28.3</td>
<td>56.7</td>
<td></td>
</tr>
<tr>
<td>(Dong, et al., 2016)</td>
<td>CNN</td>
<td>50</td>
<td>21.6</td>
<td>34.9</td>
<td>63.7</td>
<td></td>
</tr>
<tr>
<td>(Dong, et al., 2016)</td>
<td>RNN of one layer pre-trained</td>
<td>50</td>
<td>28.2</td>
<td>44.6</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>(Dong, et al., 2016)</td>
<td>RNN of one layer</td>
<td>50</td>
<td>34.7</td>
<td>49.7</td>
<td>76.9</td>
<td></td>
</tr>
<tr>
<td>(Dong, et al., 2016)</td>
<td>RNN of two staked layers</td>
<td>50</td>
<td>34.8</td>
<td>52.3</td>
<td>77.4</td>
<td></td>
</tr>
<tr>
<td>(Dong, et al., 2016)</td>
<td>GBDT</td>
<td>50</td>
<td>18.3</td>
<td>29.1</td>
<td>55.9</td>
<td></td>
</tr>
<tr>
<td>(Dong, et al., 2016)</td>
<td>GBDT on a set of 57 manually defined driving behavior features</td>
<td>50</td>
<td>-</td>
<td>51.2</td>
<td>74.3</td>
<td></td>
</tr>
</tbody>
</table>
5.3. Driver verification

Driver verification is another area of driver biometrics that consists of checking if a driver is really who she/he claims to be. Driver verification is important in anti-theft issues, especially with the new technologies that are being implemented in cars. With the new systems of Keyless Access, it is no longer necessary to insert the key to open the vehicles. Simply with carrying the key, the system detects when the driver is between one and a half meters distance from the vehicle, unlocking the car when opening the door or the trunk. As well, cars include more computers on board, even there are vehicles connected to the Internet. The drawback of these new systems is that cars are exposed to new vulnerabilities that must be detected and resolved. Driver verification systems are not only important in anti-theft tasks; they are also widely used in security, for the authentication of drivers and authorized vehicles in restricted or private areas.

In order to face driver verification, we have implemented three different strategies that were tested on the same database used in driver identification (Section 5.2 Driver identification), TIDrivies_IdenVer database. Relying on our driver identification results that suggest that maneuver regions (i.e. windows) have more discriminative power, we decided to perform driver verification only on maneuver windows.

The first strategy was to explore the use of the so-called Siamese Neural networks. The idea summarized behind these networks is to use two inputs, one with the real driver and the other one with the person that we need to verify. Then, the network will output if these inputs belong to the same person or not. The Siamese Networks were presented by (Bromley, Guyon, LeCun, Sickinger, & Shah, 1993). These networks receive two inputs in order to compare their patterns, and produce an output whose state value corresponds to the similarity between these two patterns. That is to say, the two outputs of the twin networks are considered as latent feature vectors that can be used as input to a similarity function. This similarity function can be a simple cosine distance measure or a NN, for example a Dense layer with a sigmoid unit, that generates an output score between [0, 1]. This technique is widely used for example in signature verification (Dey, et al., 2017), or in speaker verification (Saleghaaffari, 2018).

The second strategy has been the use of embeddings. Embeddings are, in our case, representations of the driver at journey level rather than at window level, which are obtained from a deep neural network. We train that deep neural network for the identification task, and then embeddings obtained from it are used in verification. Embeddings have been employed in speaker recognition, where they are described as a fixed-length vector representing a speaker obtained from variable-length utterances, see for example (Lozano-Diez, Plchot, Matejka, & Gonzalez-Rodriguez, 2018).

The third strategy we explored for driver verification was Triplet Loss training. Here, during training, instead of having two inputs we will have three, since for each driver example the network must learn to verify a positive example (from the same driver) and a negative example (from another driver). These models are based on a different way of calculating the losses, minimizing the distance between a base or anchor example and
another positive example of the same class, and maximizing the distance between the same anchor and another negative example of different class. There are also numerous works, as (Sankaranarayanan, Alavi, Castillo, & Chellappa, 2016) that use this kind of losses for face verification, or (Bredin, 2017), where Triplet Loss training is used in speaker recognition.

5.3.1. Siamese Neural Networks

Different Deep Learning techniques have been used for the driver identification and verification. Most Machine or Deep Learning algorithms require large amounts of training data to obtain high accuracy results. For cases in which a large database is not available, One-Shot Learning, presented in (Fei-Fei, Fergus, & Perona, 2006), was proposed based on the idea of training new categories with few examples. Works as (Lake, Lee, Glass, & Tenenbaum, 2014) or (Koch, Zemel, & Salakhutdinov, 2015) have suggested One-Shot Learning for speech recognition and image classification. So, one-shot learning classification is done under the condition that only a single example of each class can be observed before making a prediction. In this type of networks the input is not directly classified, but by means of a similarity function it is decided whether the two inputs are similar or not. For this type of training, Siamese Networks are used, where we decide if a pair of inputs belongs to the same class or not.

The term Siamese comes from twins, since the same network is used for each of the two inputs, they share parameters with two copies of the same network. At the output of the chosen network, we will obtain the features vectors that will be used as input to the similarity function. If the inputs correspond to the same driver, it is expected that the vectors will be similar, while if they correspond to different drivers they will be more different. Usually, the function used to compare the vectors is a Dense layer with a sigmoid unit that generates an output score between [0, 1].

We have evaluated Siamese networks for driver verification on a close-set of 25 drivers in TIDrivies_IdenVer database (the same dataset used in our driver identification studies, Section 5.2 Driver identification). The Siamese architecture is shown in the Figure 5.41. The weights for the ResNet50+GRU models were initialized from driver identification and then fine-tuned for driver verification.
Figure 5.41: Siamese Neural network for driver verification.

The purpose of Siamese networks is to identify if the pair of examples belong to the same class or not. So we train a Deep Network to verify if the twins introduced are of the same driver or not. Therefore, each input will go through the same Deep Neural Network (shared weights) in order to extract some features. After extracting these features, a similarity is calculated through the absolute difference between said outputs, the L1 distance between the twin embeddings. In our case, we will not use sigmoid activation. As our inputs are maneuver windows of a trip, we prefer the softmax activation. This will allow to obtain the probabilities for each window, and then to perform a consistency analysis along the journey, which will increase the success rate.

In order to evaluate the results, we have used different metrics: precision, recall and F1 score. We have calculated them both for each driver and globally. The global results are shown in the Table 5.16. Almost 80% of the predicted positive are actual positive (precision). Regarding the rate of predicted positive with respect to the total of actual positive (recall or true positive, TP) it represents 69.12%. If we observe the F1 score, which is the weighted harmonic mean of precision and recall, it is of 74.09%.

Table 5.16: Results in driver verification for Siamese Neural Network.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Drivers</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>F1 score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siamese Neural Network</td>
<td>All</td>
<td>79.83</td>
<td>69.12</td>
<td>74.09</td>
</tr>
</tbody>
</table>

Individual results for each driver is shown in Figure 5.42. It can be observed that there are some drivers that present high verification results, as, for example, drive 3 with 100% precision, 72.73% recall and 84.21% F1-score. While other drivers seem to be more difficult to verify, as it is the case of driver 17 (50% precision, 54.55% recall and 52.17% F1-score).
Typically, verification performance is evaluated with the Detection Error Tradeoff (DET) and Receiver Operating Characteristics (ROC) curves. The curves for the case of the Siamese network are shown in the Figure 5.43. From them, we can obtain an EER and AUC of 28.91% and 78.67%, respectively.

Figure 5.43: Result curves for driver verification with Siamese Neural Network: DET plot (purple) and ROC plot (magenta), TIDrivies_IdenVer database.
We have also carried out an analysis of the maneuvers that are most useful in providing a correct verification. The results are shown in the Figure 5.44. These have been obtained using all the test windows, before making the calculation at the journey level, that is, for each of the individual windows. Analyzing the longitudinal and transversal acceleration forces present in a window, we have classified every window in 6 classes (only braking, only acceleration, braking&turn, acceleration&turn, only turn and a mixture of all of them). Figure 5.44 shows accuracy results for different maneuvers in terms of True Negatives (TN: correct detection of non-authorized drivers), True Positives (TP: correct detection of non-authorized drivers) and Balanced Accuracy ((TP + TN) /2). According to these results better accuracy is observed when using richer maneuvers (i.e. braking & turn, acceleration & turn or a combination of them). Maneuvers that combine information in the movement direction (acceleration or deceleration) with turns seem to be especially discriminative considering the verification or authentication of the driver.

![Accuracies for individual windows](image)

Figure 5.44: Accuracies obtained for classification of individual windows depending on the type of maneuver, with Siamese Neural Network architecture.

5.3.2. Embeddings

The typical network architecture used to obtain embeddings is presented below, Figure 5.45. The first part of the architecture before the pooling layer works at frame level, and it is composed by several hidden layers that will receive the input on a frame-by-frame basis. Then the pooling layer process the sequence of outputs from the previous layer and provides an fixed-length vector representing a possible variable-length input sequence in a latent embedding space. Pooling layer usually perform mean or standard deviation estimations over time. Finally, after the pooling layer, some dense layers followed by a softmax layer are used to obtain the final posterior classification probabilities.
DNN embeddings have been proposed for speaker verification (Snyder, et al., 2016). In this work a feed-forward DNN with four hidden layers, followed by a temporal pooling layer is used. The input to the network is a sequence of stacked MFCCs, which are mapped into a speaker embedding vector. The pooling layer aggregates the outputs of the previous layer over time and computes the average and the standard deviation. Finally, a last hidden layer followed by a linear output is used to produce the embedding. Through the PLDA, they calculate the distance between two embeddings.

In this work (Snyder, Garcia-Romero, Povey, & Khudanpur, 2017) a slightly different architecture to obtain the embeddings is presented. As before, the architecture consists of some hidden layers before the pooling layer, but in this case two layers are used to obtain the embeddings before a final softmax output layer. According to the reported results significant improvements were obtained by using these two layers to obtain the embeddings, especially for short-utterances.

Another work, which implements embeddings is (Li, et al., 2017). The embedding system they use is composed by a neural network (they test two types, CNNs and RNNs) working at frame-level part, followed by a pooling layer, an affine layer and a length normalization layer. One of the peculiarities of this system is that for training they use triplet loss. In addition, the pooling layer only performs time averaging, instead of average and standard deviation as in other works. The affine layer is a dense layer without activation.

Based on these last two works, we have decided to address the following studies. The network used to extract the embeddings was trained for driver identification. For the extraction of embeddings, we have first grouped 15 maneuvers windows of 224 samples creating a matrix of [15x224x3] for three channels: longitudinal and transversal accelerations and angular velocity. Different combinations of convolutional and recurrent networks before the pooling layer were tested: for example CNN of two layers + dense, CNN of three layers + dense, CNN of two layers + GRU of 2 stacked layers + dense, CNN of two layers + LSTM of 2 stacked layers + dense, LSTM of 2 stacked layers + dense, CNN of three layers + LSTMs of 2 stacked layers + dense, among others. Pooling layers as well as the final dense and softmax layers have been the same for all the combinations we tested. The pooling layer calculates the mean and the standard deviation of the previous output and concatenates them (for each journey). Finally, there are two dense layers (where do we get the embeddings), plus a final softmax layer. One example of the network we used is shown in the Figure 5.46. As mentioned before, these networks are simply used for the extraction of the embeddings.
of embeddings. Once embeddings are obtained, first we perform LDA to reduce their dimensionality and then we trained a Gaussian PLDA model, to score the model with the test data. We evaluate different number of parameters (from 32 to 128) for the frame-level layers between. For the embeddings, we decided a final size of the dense layers of 64.

![Figure 5.46: Example of one of the architecture used to extract the embeddings for the driver verification.](image)

The problem is that the results obtained are very bad. Probably because the network used to extract the embeddings, whose task is identification, already yields very low accuracies (see Table 5.17). For example when before the pooling layer we apply a LSTM network of two stacked layers, the results at journey level top-1 barely reach the 6% and at journey level top-5 the 25%. If this network is not able to obtain good representations of the trips at journey level, the representations will not be valid for the verification either. It seems that this technique, from which we get an embedding from a complete journey, is not adequate, does not seem discriminatory. Better results are obtained when training at window level.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Accuracy journey level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top-1</td>
</tr>
<tr>
<td>3 CNN</td>
<td>3.80%</td>
</tr>
<tr>
<td>2 CNN + 2 GRU</td>
<td>4.08%</td>
</tr>
<tr>
<td>2 CNN + 2 LSTM</td>
<td>5.58%</td>
</tr>
<tr>
<td>2 LSTM</td>
<td>4.35%</td>
</tr>
<tr>
<td>3 CNN + 2 LSTM</td>
<td>4.28%</td>
</tr>
</tbody>
</table>

5.3.3. Triplet loss

Triplet Loss architecture is another powerful way to learn latent representations or embeddings based on the notion of similarity and dissimilarity. This was introduced by (Weinberger & Saul, 2006). In their work they emphasize that the accuracy obtained in a classification task can vary heavily depending on the metric used to calculate distances between examples. They use the k-nearest neighbor (kNN) classification and train a metric in order to neighbors belong to the same class are closer, while neighbors belong to different classes are more separated. In the work presented in (Schroff, Kalenichenko, & Philbin,
what the triplet loss consists of is intuitively described. As it can be seen in Figure 5.47, during the training stage the triplet loss function will look for embeddings $f(x) \in \mathbb{R}^d$, obtained from the input signals x embed into a d - dimensional Euclidean space (for the work mentioned also x are images), such that the squared distances between examples of the same class give small distances, whereas the squared distances between a pair of examples from different classes give large distances. As it is shown in the Figure 5.47, we must close the anchor example x_i^a with the positive examples x_i^p (same class) and move it away from any negative example x_i^n (different class).

![Diagram](Figure 5.47: Triplet loss goal: to minimize distances between anchor (A) and positive (P) examples and to maximize distances between anchor (A) and negative (N) examples.)

The formula is shown below:

$$\|f(x_i^a) - f(x_i^p)\|^2 + \alpha < \|f(x_i^a) - f(x_i^n)\|^2$$

with α like a margin between positive and negative pairs. Therefore, the losses to be minimized will be:

$$L = \sum^N \left[\|f(x_i^a) - f(x_i^p)\|^2 + \alpha < \|f(x_i^a) - f(x_i^n)\|^2\right]$$

(5.7)

(5.8)

Works like (Bredin, 2017) also employ Triplet Loss to train Euclidean embeddings, and they consider convenient to use a triplet sampling strategy, since it is neither efficient nor effective to use all the possible triplets. (Schroff, Kalenichenko, & Philbin, 2015) mentions this fact, since there are going to be many triplets that satisfy equation (5.7) and these triplets in particular do not contribute to the training, in addition to making a slower convergence. So it is convenient to select the hard triplets, that is, the hard positive x_i^p such that $\arg\max \alpha \|f(x_i^a) - f(x_i^p)\|^2$ and the hard negative x_i^n such that $\arg\min \alpha \|f(x_i^a) - f(x_i^n)\|^2$.

165
In our case, for the search of the hardest positive and negative we have used the generation of triplet online, where we select them within a batch. If the batch has \(N \) examples, we generate \(N \) embeddings. To obtain the triplets of the embeddings, we select within the valid triplets (there are two examples with the same label but different, and an example with different label to the previous one), the hardest positive and the hardest negative for each anchor (calculating the distances between embeddings). As margin \(\alpha \), we selected a value of 0.2, as it is a value widely used in other identification works (Hermans, Beyer, & Leibe, 2017).

To apply triplet loss training in driver verification, we must obtain some embeddings from the input accelerometer signals (as it is shown in the Figure 5.48), and then calculate the losses. The embeddings must collect the information of the trip at journey level, so the input will not be the overlapping window of the maneuver, but a matrix with all the maneuvers windows of the journey. That is, instead of using a window of 224 samples for each of the three channels, matrices of 15x224 samples will be used for each of the three channels (as before, there will be 15 windows per journey). As the previously trained identification network uses individual windows as inputs, fine-tuning cannot be done in this case. Therefore, it has been necessary to train a specific network in identification (we will utilize the same as the one used previously, Figure 5.6), where the inputs are matrices of journeys of 15x224. And, like in the Siamese networks, in order to carry out the verification, we calculate the Euclidean distance with the embeddings to decide which pairs of examples correspond to the same driver or not.

![Figure 5.48: Triplet Loss training for driver verification.](image)

For triplet loss trainings, the values of the metrics of precision, recall and F1 score have also been obtained (see Table 5.18). However, the results do not reach the levels obtained with the Siamese networks. Below, we show the overall values.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>F1 score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>47.50</td>
<td>51.63</td>
<td>49.48</td>
</tr>
</tbody>
</table>

It seems that the network is not discriminant enough, in order to do the verification task with this training model. The precision obtained is 47.50%; that is to say, about half of the time incorrectly verify drivers. Regarding the recall, it is 51.63% (the rate of predicted
positive with respect to the total of actual positive) and the F1 score 49.48% (weighted harmonic mean of precision and recall). One of the main differences between this approach and the Siamese Neural network approach, which obtains the best results in verification, is the input signals employed. Siamese networks use individual windows, while Triplet loss process all the windows in a journey to obtain an embedding vector at journal level. This journal-level embedding was trained for driver identification. We tested the driver identification accuracy using these embeddings and we found that only a low 23.87% driver accuracy was obtained. Though this is better than chance (4% for 1/25 drivers) it means that they are poor quality embeddings that can explain the low Triplet Loss results.

5.3.4. Comparison with the state of the art

A major difference when comparing our driver verification proposal to other state-of-the-art research is that we only use smartphone accelerometer signals. Another important contribution is our experimental framework including 25 drivers performing 20025 daily life journeys and no predefined trips.

Most research do not implement verification systems directly. Generally, they rely on the output of a driver identification system to perform driver verification by the definition of thresholds that minimize the probability of false alert. For instance, (Il Kwak, Woo, & Kang Kim, 2016) propose the use of driver profiles from driver identification to verify authenticated drivers. That is, they apply a threshold on a similarity score from the identification system to determine if a driver belongs to a predefined group of authorized drivers. The main difference with our work is that they do not perform the verification with respect to a single driver, but for a group of 10 authorized drivers. In addition, the data they use comes from the CAN bus and the driver profiles are predefined in three different road types.

(Ezzini, Berrada, & Ghogho, 2018) perform the same strategy as the previous research, but including more smartphone signals and for only six drivers (on predefined routes). As (Il Kwak, Woo, & Kang Kim, 2016), a non-authorized driver is detected when the probabilities fall below a given threshold for all authorized drivers.

Unlike previous works, (Wahab, Quek, Keong Tan, & Takeda, 2009) address the verification for each driver, not for a group. In this research, they use the accelerator pedal pressure and the brake pedal pressure signals, for 3 groups of 10 drivers. They obtain average Equal Error Rates from 3.44% to 5.02%. The main differences with our work is the use of car signals and the evaluation on a small set of drivers (10 drivers per group), they utilize the N-leave-one-out validation method (test is carried out in one case).

5.4. Conclusions

In this chapter, we have addressed both driver identification and driver verification. Although both tasks are related, the identification refers to the driver recognition within a given set, while verification refers to check if a driver is really who she/he claims to be.
We have presented a state of the art in this area, where we have seen that most of existing research is focused in driver identification, using bus CAN signals of the vehicle and a wide number of sensors. Among the most used sensors are the GPS or signals from pedals such as the accelerator, brake or steering wheel.

For driver identification we have studied two scenarios, always using signals corresponding to vehicle accelerations. The first scenario uses as inputs the accelerometer signals of the driver smartphone. The smartphone can be located in any position inside the vehicle. In this database, TIDrivies_IdenVer, we have studied driver identification on a set of 25 drivers with 801 journeys by driver using Deep Learning techniques. We have explored Transfer Learning techniques, which use a model to recognize some features in one domain and transfer their knowledge to another model in another domain. As we have transformed the temporal 1-D input acceleration signals into 2-D images, we have specifically used the pre-trained ResNet-50 model, trained on a large dataset (ImageNet) for image classification. We have tested different procedures for mapping temporal 1-D input signals into 2-D matrices: the Recurrence Plots (RP), the Gramian Angular Summation Field (GASF), the Gramian Angular Difference Field (GADF), the Markov Transition Field (MTF), the spectrogram and the feature maps obtained from the layers of convolutional networks. The best results have been obtained with the Deep Learning model that uses CNN feature maps for 1D to 2D transformation and ResNet-50 + GRU networks. Several strategies have been proposed to select the most discriminative parts of the journey for driver identification, concluding that maneuver areas give the best results. Classification accuracy at top-1 journey level of 71.89% and top-5 of 92.03% was obtained for the set of 25 drivers using only 15 sliding windows per journey.

A second scenario for driver identification employs accelerations derived from sequences of \(\{x, y\}\) positions of the vehicle trajectory, in a 2D map at 1Hz sampling rate. This scenario has been selected in order to compare our results with state-of-the-art, since this data was used in a Kaggle competition organized by AXA, called “Driver Telematics Analysis”. As the number of journeys for training is not very high, we used 80 journeys per driver, we studied several data augmentation techniques. The results obtained with the ResNet-50+GRU model, for the TIDrivies_IdenVer database, were a top-1 and top-5 accuracies at journey level of 66.97% and 84.80%, respectively. For the AXA database, we found that using less complex models and incorporating data augmentation techniques, we have achieved accuracies at journey level top-1 and top-5 of 75.54% and 87.09%, respectively. This increase in accuracy can be explained for the less noisy signals derived from sequences of \(\{x, y\}\) positions. AXA drivers seem also to make similar routes (as can be concluded from the good results on trip matching in Kaggle competition), so perhaps simpler models can get advantage of this route-related patterns that can be modelled by Recurrent Networks and thus improving driver characterization results.

Finally in this chapter, we have implemented three different strategies to carry out driver verification: the use of Siamese Neural networks, the use of embeddings and triplet loss trainings. The strategy with best results has been the use of Siamese Neural networks, with global with a precision of 79.83%, recall of 69.12%, and F1 score of 74.09%.

An analysis of the architectures that have offered the best results in both identification and verification, for the database of TIDrivies_IdenVer, it seems to indicate that
they are not directly correlated. Since there are drivers, as driver number five, which shows very low identification accuracy but relatively good verification result. On the other hand, other drivers, such as driver twenty, has a high identification rate but a low verification result. As some studies, (Decann & Ross, 2012), demonstrate it is possible that a biometric system performing well at verification can fail at identification, and vice versa. It is the specific statistical distribution for inter-driver and intra-driver scores for each driver what can explain these different results in verification and identification tasks.
Chapter 6

Conclusions and Future Work

In Chapter 1, Introduction, we commented that the main motivation of the Thesis was the driving characterization, both from the point of view of detection and classification of maneuvers, and from the driver recognition, using the accelerometers present in the drivers’ smartphones. Accelerometers are motion sensors incorporated in all current smartphones. The main advantage of use compared to other signals is that these are cost and energy efficient sensors that allow to capture characteristics related to driver behavior. As characterization tool we have used Deep Learning techniques, in order to learn high level features and to detect complex interactions.

6.1. Conclusions

Driver behavior characterization is closely related to maneuver or event characterization, that is, how drivers perform maneuvers. Most state-of-the-art works, in order to define a driving style, first address the event detection and classification.

As a first step towards that goal, we have studied the identification of the maneuvering events. Since the driver smartphone can place in a free position, it is necessary to obtain the acceleration forces in the vehicle’s reference system, because the orientation directions may be different on the journeys. Moreover, we do not have other sensors such as the gyroscope or the magnetometer, so the transformation from the smartphone reference system to the vehicle reference system has been carried out exclusively with accelerometers, making it impossible to apply the typical rotation matrices used in the literature. To address this mapping, we have developed two different approaches, depending on the degree of classification desired. The first one allows a general categorization, which can be useful for creating driver profiles based on criteria such as the aggressiveness (risky and safe drivers) or for car insurances. While the second one, performs a more precise maneuver classification, useful for instance in route reconstruction applications. The most remarkable contribution of these approaches is the manner of detecting and classifying maneuvers, without applying the rotation matrices mentioned above and without a required fixed position of the mobile terminal, providing alternative solutions to the current developed works.
The first of the approaches implements a general maneuver characterization. In order to create an independent reference system, we have accepted the assumption that in a 2D horizontal plane, based on the estimation of the gravity vector, both the longitudinal and transversal forces of the vehicle must be found. For the second approach, the mapping of the maneuvers is not carried out to a horizontal plane, but we estimate what we have called vehicle movement direction (VMD). This novel form of obtaining the movement direction allows establishing a reference vector that is constant along the journey, as long as the smartphone position does not change (where it is necessary to recalculate it), and which replaces traditional calibration processes.

The first previous step before classification must be the maneuver detection, that is, to identify the segment in the journey where a maneuver is. For this, we have used the measurements of the horizontal plane. Through measures of the energy or L1 norm through the journeys, as well as post-processing algorithms that allow better delimitations, this horizontal plane provides a worthy detection system. This proposed detection and delimitation procedure replaces other traditional methods, which used templates for matching to reference patterns or needed a greater number of sensors.

When working with time series, it is a recurrent problem to find the most appropriate way of segmenting the signals, since it is difficult to define significant representations that simplify calculations and analysis. In the first approach focused on a general classification of the maneuvers, in acceleration/deceleration and turn/mixed events, we have studied three segmentation strategies: fixed-length windows, variable length windows and sliding windows. The main problem of using fixed-length windows is the difficulty of finding an appropriate length, which covers most of the available events. According to the analysis we have done, it seems that most of the maneuvers have durations of less than 20 seconds. However, if we take this length as the window size used in the Neural Network inputs, we excludes other events of greater length and in the case of minor maneuvers we need to incorporate information from the surrounding. For the second segmentation strategy, we have used windows of variable length, based on the use of dynamic networks in Tensor Flow, which allow us to learn the information contained in the actual duration of the maneuver and to ignore the rest, specifying the real length in the training. Using a two-layer LSTM network, we have obtained the best results for all the maneuver classification tests carried out, with an accuracy of 88.82%. As we have just said, these results are also better than the results obtained in the last strategy, which employs sliding windows along the journey. The main advantage of using sliding window, is that we do not need a pre-processing of the maneuvering areas, since the network classifies the information of the windows directly, however this produces lower results with very unbalanced classes.

The second approach allows a more specific maneuver categorization in classes such as accelerations and decelerations or left and right turns, among others. In this case, for the mapping we have based on the VMD, which represents the movement directional vector in the smartphone reference system associated to the longitudinal forward movement of the vehicle. As we have already commented, this directional vector offers a novel form of classifying maneuvers with respect to the previous works in the literature. In order to obtain it, we have proposed three different methods based on: the stop detection,
the acceleration forces classification and the longitudinal and transversal acceleration assignment.

The stop detection method is based on the development of two different classifiers: the first of them detects acceleration/deceleration maneuvers, while the second detects stop situations. Using a post-processing algorithm, the information from both is combined to obtain the VMD. The stop classifier obtains a final accuracy of 74.2%. This task is difficult since the accelerometers is very similar when driving at constant speed than when we stop the vehicle. Also, because of the nature of the maneuvers, it is difficult to classify an event as purely an acceleration or a deceleration, so it is important to create a robust consistency algorithm, introducing energy conditions, deviation angle, probability values of the classifier or Principal Component Analysis (PCA). One of the problems that has appeared in this method, and it is very common in classification problems using deep networks, is the size of the database. The database used for stops (we need truth stops to compare) is much lower than that used with the maneuvers, which cause lower values in training. Furthermore, one of the drawbacks of this method is that it cannot be applied to any journey, since stops need to be detected (and vehicles not always need to stop). For example, on a journey in a motorway it would be difficult to make a stop unless the start or end of the trip is captured. The second method of acceleration forces classification directly categorizes the maneuvers into braking (deceleration), acceleration, pure turn, and mixed event. We tested different preprocessing of the input signals, but the best was removing the gravity force from the accelerometer components. Gravity greatly influences the network’s decision process and it is possible to observe how in the CNN+GRU network this variable was not independent until almost the output of the recurrent network, as was the case of the noise level. We also done tests with the estimation of the linear speed, however a good estimation is complicated and did not improve the previous results. The results also showed that it is difficult to categorize a maneuver in a pure class because the classes can easily present patterns of other groups. In the final estimation method of the VMD, we tried to associate the principal components (PC) calculated on the filtered accelerometers and without gravity with the longitudinal and transversal accelerations, training a network that associated each PC with the accelerations considering the correct sign. This is the method that has offered the best results with an overall accuracy of 90.07%. The tests showed that it was easier to correctly assign the longitudinal accelerations than the transversal ones, a possible explanation for this is that the driving acceleration and deceleration patterns may differ more from each other than right/left turning patterns. It is important to mention that the post-processing algorithms, which facilitate the VMD estimation, have been obtained after following a detailed analysis of the signals employed, in order to add the conditions that favor the correction of errors in network decision making. A common step that we have done during the developed procedures has been to obtain the most significant vectors within a set of them. For this, we have used our own clustering algorithm, which is based on two main concepts, the separation angle between the vectors and the number of vectors.

On the other hand, another great important area in the driving characterization is the driver recognition, directly related to biometric systems that use behavioral characteristics of a person to authenticate their identity. Driver recognition systems include two main tasks, driver identification and verification, which we have addressed differently. Among the biggest difficulties of the driver recognition are the multiple sources of
variability that appear with the signals employed, the noise of the accelerometer signals (compared to other more attenuated as in the case of GPS), the capturing devices, the route variability or the vehicle type. For the identification and verification analysis using accelerometers, we have employed smartphones with both Android and iOS operating systems, in different positions (free placed inside the car), routes both urban, non-urban and mixed, and different vehicles.

For driver identification, we have addressed two different scenarios. In the first scenario, we have directly used only the accelerometers, as well as in the maneuver characterization. In the second scenario, we have used the acceleration signals obtained from GPS data.

For the first scenario employing the tri-axial acceleration signals collected during the driving journeys, we have combined the use of pre-trained CNNs (ResNet-50) from image classification and Recurrent Neural Networks (RNNs), specifically a Gated Recurrent Unit (GRU) network. In order to use these pre-trained networks, we have had to study different mapping techniques for 1-D temporal acceleration signals into 2-D images. Not many works in literature study these transformations of time series, so in this Thesis we have contributed in this field with the analysis of the results obtained after applying six different transformations in the accelerometer signals related to driving. The encoding techniques implemented have been: the Recurrence Plots (RP), the Gramian Angular Summation Field (GASF), the Gramian Angular Difference Field (GADF), the Markov Transition Field (MTF), the spectrograms and the use of CNN to obtain a feature map from one of its layers. The temporal signals transformed into images have been the longitudinal and transversal accelerations and the angular velocity. The transformation to images greatly influences the model performance. The best results have been obtained using CNN on accelerometer signals. In addition, selecting input maneuvers as signals, rather than any type of journey information, provide always better driver identification accuracy values. One interesting conclusion of our test is that the RP, GASF, GADF and MTF methods seem more effective in representing periodic signals than our non-stationary accelerometer signals. And for the spectrograms, the images obtained are not significantly enough to adequately represent the information for the identification. Among the three input signals transformed into images, the performances are also different. The longitudinal acceleration achieves higher accuracies, followed by transversal acceleration. This may indicate that the maneuvers related to accelerations and decelerations seems to be more discriminative. Although the identification task is complex, we obtained a top-1 accuracy of 71.89%, the top-2 increases almost 10% to 81.56%, and values above 90% are obtained from top-4.

In the second scenario we have used an open database of the literature, formed by driving journeys represented in a 2D space by sequences of \(\{x,y\}\) values, obtained from GPS data. In order to compare our previous results with this database, it has been necessary to transform these sequences of \(\{x,y\}\) positions into acceleration signals, which introduces, in addition to the errors in the GPS measurements, possible conversion errors. The results using the ResNet50+GRU model showed lower values than those obtained with the previous database, formed by raw accelerometers. To improve the results we had to both simplify the Deep Learning model (in this case the database had a smaller number of trips per driver), as well as apply data augmentation techniques. The model used has been a recurrent network of a single layer LSTM. As with the transformation of 1-D temporal
signals to 2-D images, not many works apply the data augmentation directly to the times series, so we have had to study specific techniques to increase our initial set of signals over time. The techniques used have been to add Gaussian noise to the training set, to use low frequency filters (smoothing), the window warping (WW) and a combination of them. The best results have been achieved using the Gaussian noise and the low frequency filters (training data was multiplied by 9), with a journey level top-1 of 75.54% and top-5 of 87.09%. Accuracy values of 90% are achieved up to top-8.

In the driver verification task, we have implemented three different strategies in the reference database with raw accelerometers from smartphones. These strategies or techniques have been typically applied to other tasks, such as speaker verification, so through their study in this Thesis, we have been able to understand their performance in driving signals. The first strategy uses Siamese networks, where from two input examples the network must indicate if the inputs belong to the same person or not. For the second strategy we have used embeddings, through representations of the driver at journey level rather than at window level as in the previous case of the Siameses. The last strategy uses Triplet Loss training, where we have three inputs and the network learns for each example to verify a positive example (from the same driver) and a negative example (from another driver). The best results have been obtained with the first strategy, the Siamese networks, with a precision of 79.83%, a recall of 69.12% and an F1 score of 74.09%. The EER and AUC are 28.91% and 78.67%, respectively. For the verification task, it seems that the most useful maneuvers are events that contain braking & turn maneuvers, acceleration & turn maneuvers or a combination of them, that is to say richer and more complex maneuvers, in particular information in the movement direction (acceleration or deceleration) with turns. The results obtained with both the embeddings and the Triplet Loss have been quite low. It seems that the networks are not able to obtain good representations of the trips at journey level, the representations have not been valid neither for the verification task nor identification task. On the other hand, for Siamese networks that use window-level inputs, the results are quite competitive.

Furthermore, after the tests carried out, it seems that do not exist a correlation between the results obtained in identification with those obtained in verification. Because there are drivers who obtain good performances in identification and bad in verification, and vice versa. Probably due to the specific statistical distribution for inter-driver and intra-driver scores for each driver.

6.2. Research contributions

The research contributions are shown below (these publications are ordered by date):

Abstract: Air pollution and climate change are some of the main problems that humankind is currently facing. The electrification of the transport sector will help to reduce these problems, but one of the major barriers for the massive adoption of electric vehicles is their limited range. The energy consumption in these vehicles is affected, among other variables, by the driving behavior, making range a value that must be personalized to each driver and each type of electric vehicle. In this paper we offer a way to estimate a personalized energy consumption model by the use of the vehicle dynamics and the driving events detected by the use of the smartphone inertial sensors, allowing an easy and non-intrusive manner to predict the correct range for each user. This paper proposes, for the classification of events, a deep neural network (Long-Short Time Memory) which has been trained with more than 22,000 car trips, and the application to improve the consumption model taking into account the driver behavior captured across different trips, allowing a personalized prediction. Results and validation in real cases show that errors in the predicted consumption values are halved when abrupt events are considered in the model.

Abstract: Characterization of driving maneuvers or driving styles through motion sensors has become a field of great interest. Before now, this characterization used to be carried out with signals coming from extra equipment installed inside the vehicle, such as On-Board Diagnostic (OBD) devices or sensors in pedals. Nowadays, with the evolution and scope of smartphones, these have become the devices for recording mobile signals in many driving characterization applications. Normally multiple available sensors are used, such as accelerometers, gyroscopes, magnetometers or the Global Positioning System (GPS). However, using sensors such as GPS increase significantly battery consumption and, additionally, many current phones do not include gyroscopes. Therefore, we propose the characterization of driving style through only the use of smartphone accelerometers. We propose a deep neural network (DNN) architecture that combines convolutional and recurrent networks to estimate the vehicle movement direction (VMD), which is the forward movement directional vector captured in a
phone's coordinates. Once VMD is obtained, multiple applications such as characterizing driving styles or detecting dangerous events can be developed. In the development of the proposed DNN architecture, two different methods are compared. The first one is based on the detection and classification of significant acceleration driving forces, while the second one relies on longitudinal and transversal signals derived from the raw accelerometers. The final success rate of VMD estimation for the best method is of 90.07%.

This article contains the research of Chapter 5 Driver recognition.

Abstract: With the evolution of the onboard communications services and the applications of ride-sharing, there is a growing need to identify the driver. This identification, within a given driver set, helps in tasks of antitheft, autonomous driving, fleet management systems or automobile insurance. The object of this paper is to identify a driver in the least invasive way possible, using the smartphone that the driver carries inside the vehicle in a free position, and using the minimum number of sensors, only with the tri-axial accelerometer signals from the smartphone. For this purpose, different Deep Neural Networks have been tested, such as the ResNet-50 model and Recurrent Neural Networks. For the training, temporal signals of the accelerometers have been transformed as images. The accuracies obtained have been 69.92% and 90.31% at top-1 and top-5 driver level respectively, for a group of 25 drivers. These results outperform works in the state of the art, which can even utilize more signals (like GPS-Global Positioning System-measurement data) or extra-equipment (like the Controller Area-Network of the vehicle).

Article accepted, pending publication.

This article contains the research of Chapter 5 Driver recognition.
Abstract: This paper addresses driver identification and verification using Deep Learning (DL) on tri-axial accelerometer signals from drivers’ smartphones. The proposed driver identification architecture includes ResNet-50 followed by two Stacked Gated Recurrent Units (SGRUs). ResNet provides a deep layer model, thanks to shortcut connections, is able to extract rich features from accelerometers, and GRU layers model the dynamics of drivers’ behavior. ResNet-50 pre-trained on image classification has been evaluated testing two approaches to map 1D accelerometer signals into 2D images. Siamese Neural Networks and Triplet Loss Training have been proposed for driver verification. The Siamese architecture is built on the same ResNet-50 + GRU model of driver identification, while the Triplet loss has required obtaining embeddings at journey level. Experimental results have been obtained for a dataset of 25 drivers, performing 20,025 daily life journeys with more than 800 per driver. Driver identification achieved top-1 and top-5 accuracies of 71.89% and 92.02%, respectively, and driver verification a F1 score of 74.09%. These results are competitive with state-of-the-art research that have generally tested smaller databases (in many cases based only on predefined routes), and have relied on information sources other than accelerometers, such as gyroscopes, magnetometers and GPS. Therefore, we believe that the proposed DL architectures are suitable for developing efficient driver monitoring applications based on only energy-efficient smartphone accelerometer signals.

6.3. Future work

For future work we would like to differentiate between two types of lines. The first is about research that we have already started, but either due to time constraints or limitations on the available database, we have not been able to analyze in depth. While the second one is about lines that have not been explored and would provide a good continuation to our work.

6.3.1. Developed work

Below we present complementary studies that we have developed throughout the Thesis on driving characterization. These proposals have not been finalized and need further study.

6.3.1.1. Roundabout detector with Neural Networks

Another possible manner to calculate the VMD is through a roundabout detector. If we could detect the roundabouts of a journey, these types of maneuvers could be divided into a sequence of actions that help to obtain the mentioned VMD. As a limitation to this method, it is that a roundabout will not be carried out on all the journeys.
We have already started to implement it, for this by means of the dynamic time warping (DTW) algorithm, we detected the roundabouts with gyroscope, in order to have a truth database for the training with neural networks without gyroscope. We looked for only five roundabout patterns, with the same shape but different lengths. The main problem was to obtain the database for the training process, since using only five patterns, there were only roundabouts of five sizes in the training. For the classification, we employed a sliding window along the journeys, as well as only maneuver windows distinguishing between normal events (accelerations/decelerations or turns) and roundabouts. If we used the first strategy, almost all the events were classified as roundabouts. While if we used the second one, the problem was that many normal turn events were classified like roundabouts, and this caused that when we used them to obtain the VMD we could not deduce an adequate rotation direction. Images of Figure 6.1 and Figure 6.2 show two examples obtained for each of the strategies.

As future work it would be necessary to expand the database used for roundabout detection, since it was very limited. As well as looking for a more effective manner to identify roundabout patterns, since it was very dependent on the length of the maneuver.

Figure 6.1: Example of real journey, where the whole trip is classified according to two classes: no roundabout maneuver and roundabout maneuver. Driving events are marked with a green dotted box, formed by a blue box when it corresponds to acceleration/deceleration zone and a red box when it corresponds to turn zone. Roundabouts are marked in a solid brown box. a) Module of the horizontal projection of accelerations. b) Module of the filtered gyroscopes. c) Probabilities obtained in the classification by the neural network.
6.3.1.2. Differentiation of acceleration and deceleration/braking maneuvers

We also tried to obtain the VMD with a method that employed an event classifier in two steps. Firstly, we classified the maneuvers between acceleration/deceleration events and turn/mixed events, and then used a second specific network to distinguish, within the first class, between acceleration and deceleration/braking maneuvers. Once we had the acceleration and braking maneuvers, we could perform a consistency analysis to obtain the final VMD.

The results offered by the network in distinguishing between acceleration and braking were not very good, which caused that the success rate when we calculated the VMD was also very low, it was around 40%. These poor results are probably due to the similarity between these types of maneuvers. As future work it would be recommended to extend the database for this purpose.

6.3.1.3. Differentiation of transport modes

Another great area within the driving characterization, that we would have liked to address in more depth, is the differentiation of types of transport. In an increasingly globalized world, the identification of the mode of transport used is interesting not only to
contextualize the activity of a person, but also from a point of view of the sustainable
development of transport. Identifying it, we could analyze the traffic according to each mode
and even try to understand the driver behaviors according to different areas or regions.

In the Thesis we tried to differentiate the modes of transport using exclusively the
accelerometer signals captured with the smartphones. Identifying when people went or not
by car, differentiating it from trains, planes, boats, motorcycles and buses. And studying
different input signals for transport classification. The problem, as it happened before, was
that the database of the other modes of transport (not car) was very small. Despite this,
some of the conclusions we obtained were that the background noise areas seemed more
useful to distinguish modes of transportation (more than the maneuvering areas).

Differentiation of transport modes is incorporated in many of the activity
recognition applications. So it would be interesting to continue investigating this, expanding
the database of only accelerometers, since most of the state of the art research incorporate
a greater number of sensors.

6.3.1.4. Sequence-to-Sequence (Seq2Seq) networks to predict longitudinal and
transversal signals of accelerations

The Seq2Seq models convert sequences from one domain to sequences in another domain.
They are widely used for example in language translation or for free-from question
answering (generating a natural language answer given a natural language question). In
addition, for cases where the input and output do not have to be the same length, an RNN
that acts as an encoder and another RNN that acts as a decoder is usually used.

In order to predict the longitudinal and transversal signals, we used as inputs both
the projection of accelerations on the horizontal plane and the PC on filtered accelerometers
without gravity. We tried to predict the journey in frames of 2, 6 and 20 second overlapping
windows, using CNN+GRU and bidirectional networks. Bidirectional networks offered
better results than CNN+GRU, and 20-second windows than smaller windows. For the
assignments we used the correlations. The results obtained for the bidirectional network
case were a correct assignment of the longitudinal acceleration (modulus and sign) of
71.32% and of the transversal acceleration (modulus and sign) of 59.49%. However, the
mean square error obtained to calculate the losses during the training stages presented
relatively high values. And the scale of the predicted signals was much smaller than the
scales of the output signals to be predicted. For example, in the case of Figure 6.3, both the
main components and the signs are well assigned.
6.3.1.5. i-vectors for driver identification

In speaker recognition, i-vectors were widely used (Dehak, Torres-Carrasquillo, Reynolds, & Dehak, 2011) to represent an utterance. The i-vectors map a sequence of frames for a given utterance into a low-dimensional vector space, called as the total variability space.

Normally, the procedure to obtain the i-vectors consists of the following steps:

1. The first step is to process the input signal for obtaining feature vectors which represent the signals at frame level. Usually in speaker recognition extract the MFCC features.
2. Then, it is necessary to train a UBM from all the training data. The UBM is defined by the mean vector and the covariance matrix.
3. Before, it is calculated the statistics needed for the i-vector model (the statistics represent each frame according the UBM) and it is learnt the total variability subspace. With all this, the i-vectors are calculated.

4. Finally, after calculating the i-vectors, the scoring is performed. In speaker recognition, the use of a simple cosine distance scoring or a PLDA is widely employed. Sometimes before applying the scoring technique, for example LDA is applied to reduce dimensionality on the i-vectors.

Based on the good results obtained in speech area, we decided to test it for driver identification. The problems appeared in the first step, to find a good way to extract the features. Several tests were carried out varying the signals used to observe which one achieved a better representation. We used among others:

- The feature vector, of size \([n \times 64]\), obtained at the output of a network (trained for identification) formed by two convolutional layers, plus a GRU of two stacked layers and dense layers. Using as input the horizontal projections plus the gyroscope signals (6 channels in total).
- The feature vector obtained with the same network mentioned above, but using the longitudinal and transversal accelerations and the angular velocity (3 channels) as inputs.
- The Mel Frequency Cepstral Coefficients (MFCC) on the horizontal projections plus the gyroscope signals.
- The MFCC on longitudinal and transversal accelerations and the angular velocity.

None of the features seemed sufficiently representative. In the first two cases the results on the network reached very low values. Even running the MFCCs, in case three and four, through a simple fully connected layer classifier does not work well. In all cases, the identification rates were extremely low, so when using the features in the i-vector procedure, it did not give adequate results either. Perhaps the poor results obtained are due to the number of drivers employed for the tests, 25 drivers. Normally, a very high number is necessary for this type of models to work properly, in order to obtain a representative global variability matrix.

As future work, it is necessary to expand the number of drivers employed, as well as to study new ways of extracting features in order to improve the whole procedure and to compare Deep Learning techniques with i-vectors.

6.3.2. Future new lines

There are also new lines that we would like to study, as a continuation of the work developed. We detail them below:

- To substitute or compare the results of new architectures such as the Capsule Networks or the SincNets with the CNN standards.
The Capsule Networks (CapsNets) were presented by (Sabour, Frosst, & Hinton, 2017). As they describe in the article: "A capsule is a group of neurons whose activity vector represents the instantiation parameters of a specific type of entity such as an object or an object part. We use the length of the activity vector to represent the probability that the entity exists and its orientation to represent the instantiation parameters. Active capsules at one level make predictions, via transformation matrices, for the instantiation parameters of higher-level capsules. When multiple predictions agree, a higher level capsule becomes active." They not only reach the state of the art on the MNIST dataset, but they had better results with multi-layer capsule systems than with convolutional networks at recognizing highly overlapping digits.

The SincNet is an architecture presented by (Ravanelli & Bengio, 2018) based on CNN, where it should be parameterized sinc functions. That is, this type of networks instead of learning all elements of each filter as in standard CNN, just learn low and high cutoff frequencies. Among the advantages of this architecture are a fast convergence, reduction of the number of parameters and facilitates interpretability.

- **Attention models.**

The attention models was due to the work presented by (Bahdanau, Cho, & Bengio, 2015). It was originally developed for Machine Translation, but it has been extended to numerous other application areas. The idea behind these models is computing a set of attention weights, which provide contextual information (for example, from the context of a sentence in the case of translation) and these tell us what we should pay attention to the input signal.

- **To analyze tools that allow visualizing the internal behavior of the networks used.**

To analyze the internal behavior of networks such as LSTMs, as in the work of (Guo, Lin, & Antulov-Fantulin, 2019). In this research, they study the internal structure of recurrent LSTM networks trained on time series, in order to learn variable hidden states. That is, they try to distinguish the contribution in the prediction of different variables in time series. For this, they interpret two relevant aspects to analyze both the variable importance and the variable-wise temporal importance.

- **To extend our study to a larger population of drivers,** as this would allow us to analyze the influence of driver features, such as the age and experience of the driver, as well as the type of road, car and traffic situation.

- **Cost parameters and energy consumption analysis for different combinations of sensors,** as well as comparison of results with the smartphone placed in a fixed position inside the vehicle.
References

Colophon