Full text
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (10MB) | Preview |
Mingo Lopez, Fernando De and Gomez Blas, Nuria and Arteta Albert, Alberto (2017). Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations.. "Soft Computing" (n. 22); pp. 2567-2582. ISSN 2567–2582. https://doi.org/10.1007/s00500-017-2511-0.
Title: | Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations. |
---|---|
Author/s: |
|
Item Type: | Article |
Título de Revista/Publicación: | Soft Computing |
Date: | 11 February 2017 |
ISSN: | 2567–2582 |
Subjects: | |
Freetext Keywords: | Binary particle swarm optimization; Combinatory optimization; Multidimensional knapsack; Problem; Genetic operations |
Faculty: | E.T.S.I. de Sistemas Informáticos (UPM) |
Department: | Sistemas Informáticos |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (10MB) | Preview |
Particle swarm optimization is a heuristic and stochastic technique inspired by the flock of birds when looking for food. It is currently being used to solve continuous and discrete optimization problems. This paper proposes a hybrid, genetic inspired algorithm that uses random mutation/crossover operations and adds penalty functions to solve a particular case: the multidimensional knapsack problem. The algorithm implementation uses particle swarm for binary variables with a genetic operator. The particles update is performed in the following way: first using the iterative process (standard algorithm) described in the PSO algorithm and then using the best particle position (local) and the best global position to perform a random crossover/mutation with the original particle. The mutation and crossover operations specifically apply to personal and global best individuals. The obtained results are promising compared to those obtained by using the probability binary particle swarm optimization algorithm.
Type | Code | Acronym | Leader | Title |
---|---|---|---|---|
Government of Spain | TRA2013-48314-C3-2-R | Unspecified | Unspecified | Sistema avanzado de asistencia a la conducción para entornos interurbanos. Sistemas de comunicación, modelado y actuación |
Madrid Regional Government | S2013/MIT-27139 | SEGVAUTO TRIES | Unspecified | Unspecified |
Item ID: | 68017 |
---|---|
DC Identifier: | https://oa.upm.es/68017/ |
OAI Identifier: | oai:oa.upm.es:68017 |
DOI: | 10.1007/s00500-017-2511-0 |
Official URL: | https://link.springer.com/article/10.1007%2Fs00500-017-2511-0 |
Deposited by: | Memoria Investigacion |
Deposited on: | 31 Jan 2022 19:16 |
Last Modified: | 30 Nov 2022 09:00 |