Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations.

Mingo Lopez, Fernando De and Gomez Blas, Nuria and Arteta Albert, Alberto (2017). Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations.. "Soft Computing" (n. 22); pp. 2567-2582. ISSN 2567–2582. https://doi.org/10.1007/s00500-017-2511-0.

Description

Title: Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations.
Author/s:
  • Mingo Lopez, Fernando De
  • Gomez Blas, Nuria
  • Arteta Albert, Alberto
Item Type: Article
Título de Revista/Publicación: Soft Computing
Date: 11 February 2017
ISSN: 2567–2582
Subjects:
Freetext Keywords: Binary particle swarm optimization; Combinatory optimization; Multidimensional knapsack; Problem; Genetic operations
Faculty: E.T.S.I. de Sistemas Informáticos (UPM)
Department: Sistemas Informáticos
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (10MB) | Preview

Abstract

Particle swarm optimization is a heuristic and stochastic technique inspired by the flock of birds when looking for food. It is currently being used to solve continuous and discrete optimization problems. This paper proposes a hybrid, genetic inspired algorithm that uses random mutation/crossover operations and adds penalty functions to solve a particular case: the multidimensional knapsack problem. The algorithm implementation uses particle swarm for binary variables with a genetic operator. The particles update is performed in the following way: first using the iterative process (standard algorithm) described in the PSO algorithm and then using the best particle position (local) and the best global position to perform a random crossover/mutation with the original particle. The mutation and crossover operations specifically apply to personal and global best individuals. The obtained results are promising compared to those obtained by using the probability binary particle swarm optimization algorithm.

Funding Projects

TypeCodeAcronymLeaderTitle
Government of SpainTRA2013-48314-C3-2-RUnspecifiedUnspecifiedSistema avanzado de asistencia a la conducción para entornos interurbanos. Sistemas de comunicación, modelado y actuación
Madrid Regional GovernmentS2013/MIT-27139SEGVAUTO TRIESUnspecifiedUnspecified

More information

Item ID: 68017
DC Identifier: https://oa.upm.es/68017/
OAI Identifier: oai:oa.upm.es:68017
DOI: 10.1007/s00500-017-2511-0
Official URL: https://link.springer.com/article/10.1007%2Fs00500-017-2511-0
Deposited by: Memoria Investigacion
Deposited on: 31 Jan 2022 19:16
Last Modified: 30 Nov 2022 09:00
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM