Precisión y estabilidad numérica de la estimación estadística

Pingarrón González, Lorena (2021). Precisión y estabilidad numérica de la estimación estadística. Proyecto Fin de Carrera / Trabajo Fin de Grado, E.T.S. de Ingenieros Informáticos (UPM), Madrid, España.

Description

Title: Precisión y estabilidad numérica de la estimación estadística
Author/s:
  • Pingarrón González, Lorena
Contributor/s:
  • Fernández del Pozo de Salamanca, Juan Antonio
Item Type: Final Project
Degree: Grado en Ingeniería Informática
Date: June 2021
Subjects:
Faculty: E.T.S. de Ingenieros Informáticos (UPM)
Department: Inteligencia Artificial
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

El presente trabajo de fin de grado tiene como objetivo analizar distintos algoritmos para una serie de estimadores concretos y comparar obtenidos y por así determinar el más eficiente. El trabajo contiene las descripciones más relevantes relacionadas con los conceptos de precisión y estabilidad de algoritmos numéricos. Además, también se ha incluido un capítulo explicativo sobre el estándar utilizado por los ordenadores, es decir, el IEEE 754. Posteriormente, se expone una clasificación sobre las tres vertientes de la estadística, diferenciando la clásica, la bayesiana y la computacional. Todos los conocimientos teóricos sobre la estadística clásica son necesarios para entender los algoritmos y estadísticos empleados para estimar los distintos parámetros estadísticos principales como la media, varianza, covarianza y otros como los momentos (por ejemplo, la curtosis o la asimetría). El objetivo del trabajo ha sido establecer un proceso que ayude a identificar cuál es el algoritmo más estable para cada estimador. La estabilidad es especialmente sensible cuando operamos con valores grandes y pequeños simultáneamente. El procedimiento seguido ha sido el de añadir valores grandes (variando la magnitud) a un vector inicial e identificar la aparición de inestabilidades en cada algoritmo. Esto ha facilitado que se pueden identificar qué algoritmo empieza a fallar antes que otro y por tanto cuál es más estable. Los valores añadidos que se han introducido han variado desde 103 hasta 1019. La implementación de los algoritmos se ha llevado a cabo en el lenguaje R y en Python pudiendo hacer uso de las numerosas librerías que nos ofrecen para analizan la precisión numérica de los resultados que se han ido obteniendo.---ABSTRACT---The aim of this final project is to analyze different algorithms for a series of specific estimators and compare the results to conclude the most efficient one. The document contains the most relevant descriptions related to the concepts of precision and stability of numerical algorithms. In addition, an explanatory chapter on the standard used by computers, that is, IEEE 754, has also been included. Also, a classification is presented on the three aspects of statistics, differentiating the classical, the Bayesian and the Computational. All the theoretical knowledge about classical statistics is necessary to understand the different algorithms and statistics to estimate the different statistical parameters such as the mean, variance, covariance and others such as moments (for example, kurtosis). The objective of the work has been to establish a process that helps to identify which is the most stable algorithm for each estimator. Stability is especially sensitive when managing large and small values simultaneously. The procedure followed has been to add large values (varying the magnitude) to an initial vector and identify the appearance of instabilities in each algorithm. This has made it easier to identify which algorithm begins to fail before another and therefore which is more stable. The added values that have been entered have varied from 103 to 1019. The implementation of the algorithms has been carried out in the R language and in Python, being able to make use of plenty libraries that they offer us to analyze the numerical precision of the results that have been obtained.

More information

Item ID: 68101
DC Identifier: https://oa.upm.es/68101/
OAI Identifier: oai:oa.upm.es:68101
Deposited by: Biblioteca Facultad de Informatica
Deposited on: 05 Aug 2021 06:11
Last Modified: 23 May 2022 18:02
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM