Full text
![]() |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (639kB) |
Bernaola Álvarez, Nikolas, Michiels Toquero, Mario, Bielza Lozoya, María Concepción ORCID: https://orcid.org/0000-0001-7109-2668 and Larrañaga Múgica, Pedro María
ORCID: https://orcid.org/0000-0002-1885-4501
(2020).
BayesSuites: an Open Web Framework for Visualization of Massive Bayesian Networks.
"Proceedings of Machine Learning Research", v. 138
;
pp. 1-4.
ISSN 2640-3498.
Title: | BayesSuites: an Open Web Framework for Visualization of Massive Bayesian Networks |
---|---|
Author/s: |
|
Item Type: | Article |
Título de Revista/Publicación: | Proceedings of Machine Learning Research |
Date: | 2020 |
ISSN: | 2640-3498 |
Volume: | 138 |
Subjects: | |
Freetext Keywords: | Bayesian networks, Interpretability, Visualization of massive networks, Gene regulatory networks |
Faculty: | E.T.S. de Ingenieros Informáticos (UPM) |
Department: | Inteligencia Artificial |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
![]() |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (639kB) |
BayesSuites 1 is the first web framework for learning, visualizing, and interpreting Bayesian networks that can scale to tens of thousands of nodes while providing fast and friendly user experience. BayesSuites solves the problems of scalability, extensibility and interpretability that massive networks bring by separating backend calculations from the frontend interface and using specialized learning algorithms for massive networks. We demonstrate the tool by learning and visualizing a genome-wide gene regulatory network from human brain data with 20,708 nodes.
Item ID: | 68483 |
---|---|
DC Identifier: | https://oa.upm.es/68483/ |
OAI Identifier: | oai:oa.upm.es:68483 |
Official URL: | http://proceedings.mlr.press/v138/bernaola20a/bern... |
Deposited by: | Biblioteca Facultad de Informatica |
Deposited on: | 24 Feb 2023 09:39 |
Last Modified: | 24 Feb 2023 09:39 |