CARACTERÍSTICAS FÍSICO-MECÁNICAS DEL PINO INSIGNIS Y SU INFLUENCIA CON LA EDAD Y EL CRECIMIENTO

Santiago Vignote Peña

UNIVERSIDAD POLÍTÉCNICA DE MADRID

1984
AGRADECIMIENTOS

En primer lugar, he de agradecer al Director de Tesis, Don Cesar Peraza Oramas, Catedrático de Tecnología de la Madera, quien sabiendo la importancia del tema, sugirió este estudio para la realización de la tesis doctoral y lo ha dirigido, resolviendo todos los problemas que durante su desarrollo han ido surgiendo.

Asimismo, he de agradecer la ayuda prestada por todo el personal de la Cátedra de Tecnología de la Madera, así como la de la Asociación de Investigación Técnica de las Industrias de la Madera y Corcho, con especial mención a los Ingenieros de Montes: Don Fernando Peraza Sánchez, Don Roque Pérez-Aguíz López y Don Federico Peláez, quienes han colaborado en los ensayos de probetas de madera, y a Don Salvador Fernández Capitán, quien, además de colaborar desinteresadamente en la parte de la mecanografía, ha sido autor de las fotografías expuestas.

Asimismo, he de agradecer los consejos prácticos de Don Antonio Gutiérrez Oliva, del Departamento de Maderas del INIA, de Don Antonio Prieto, de la Cátedra de Ordenación y a Don Ramón Elena del Departamento de Ecología del INIA.

Por último, he de agradecer a la Comisión Asesora de Investigación Científica y Técnica, la ayuda económica prestada, así como a Serfocona, Diputación de Alava y a las Empresas Lana Cooperativa S. Coop. y Maderas Lequeitio, S.A., quienes han prestado la madera y material necesario para la realización del proyecto.
ÍNDICE

AGRADECIMIENTOS ................................................................. 1

1. CARACTERÍSTICAS DE LAS MASES DE PINO INSIGNIS EN ESPAÑA ................................................................. 5
   1.1. Introducción ................................................................. 5
   1.2. Evolución de las repoblaciones ...................................... 7
   1.3. Características del área de implantación y dasométricas ................ 12
   1.4. Características de la producción ..................................... 22
   1.5. Existencias y diferencias entre la posibilidad de corta y su aprovechamiento ......................................................... 30
   1.6. Resumen y Conclusiones ................................................. 32

2. CARACTERÍSTICAS DE LA MADERA ....................................... 34
   2.1. Características morfológicas del árbol ............................. 34
   2.2. Características de las trozas .......................................... 35
   2.3. Características anatómicas ........................................... 36
   2.4. Características químicas ............................................. 40
   2.5. Características físico-mecánicas .................................... 41
   2.6. Características tecnológicas ......................................... 45

3. TENSIONES BÁSICAS DE LA MADERA ................................... 58
   3.1. Concepto ............................................................... 58
   3.2. Tensiones básicas .................................................... 62
   3.3. Tensiones de trabajo ................................................ 65
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. APLICACION DE LA MADERA EN FUNCIÓN DE SUS CARACTERÍSTICAS</td>
<td>69</td>
</tr>
<tr>
<td>4.1. La elaboración de pastas y sus perspectivas</td>
<td>69</td>
</tr>
<tr>
<td>4.2. Los tableros y sus perspectivas</td>
<td>72</td>
</tr>
<tr>
<td>4.3. La madera de sierra y sus perspectivas</td>
<td>76</td>
</tr>
<tr>
<td>4.4. Otras aplicaciones</td>
<td>85</td>
</tr>
<tr>
<td>4.5. Conclusiones</td>
<td>86</td>
</tr>
<tr>
<td>5. CARACTERISTICAS SIFICO-MECANICAS DEL PINUS RADIATA D. DON (PINO INSIGNIS) Y SU INFLUENCIA CON LA EDAD Y EL CRECIMIENTO</td>
<td>88</td>
</tr>
<tr>
<td>5.1. Desarrollo de los trabajos</td>
<td>88</td>
</tr>
<tr>
<td>5.2. Características físico-mecánicas</td>
<td>95</td>
</tr>
<tr>
<td>5.3. Análisis de los resultados y conclusiones</td>
<td>97</td>
</tr>
<tr>
<td>5.4. Propuestas de clasificación de la madera aserrada para construcción</td>
<td>106</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>109</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>111</td>
</tr>
<tr>
<td>RESUME</td>
<td>113</td>
</tr>
<tr>
<td>BIBLIOGRAFIA CONSULTADA</td>
<td>115</td>
</tr>
</tbody>
</table>
ÍNDICE DE ANEXOS

I - CARACTERISTICAS DE LA MUESTRAS ......................... 117

II - RESULTADOS DE LOS ENSAYOS DE LAS DIFERENTES PROBETAS A LA HUMEDAD NORMAL .................. 125

III - VARIACION DE LAS CARACTERISTICAS MECANICAS CON LA EDAD .................................................. 227

IV - RELACION ENTRE LAS CARACTERISTICAS DE LAS MUESTRAS Y LOS RESULTADOS DE LOS ENSAYOS .............. 235

V - CLASIFICACION DE LA MADERA ASERRADA SEGUN NORMA UNE 56.527-72 ................................................. 239

VI - NORMAS UNE ................................................................. 245

VII - REPORTAJE FOTOGRAFICO ........................................... 280
1.- CARACTERÍSTICAS DE LAS MASAS DE PINO INSIGNIS EN ESPAÑA.

1.1. INTRODUCCION.

El Pinus radiata D. Don, vulgarmente llamado pino insignis o de Monterrey, es un pino cuya área natural se reduce a menos de 4.000 Ha. de la costa californiana, con tres pequeños núcleos en Swanton, Cambria y Monterrey, además de las islas de Santa Rosa, Santa Cruz y Guadalupe (véase mapa n° 1).

Actualmente se le ha introducido artificialmente en el Suroeste de Europa, Nueva Zelanda, Chile, Sudáfrica y Suroeste de Australia, superado la superficie repoblada el millón de Ha.

En España se ha introducido en toda la Cornisa Cantábrica, con especial incidencia en el País Vasco, donde se concentran las dos terceras partes de todas las masas de pino insignis.

El pino insignis fue introducido por primera vez en España, a mediados del siglo XIX por el ilustre dendrólogo D. Carlos Adan de Yarza, que logró reunir en su parque de Zubiete, inmediato a la villa de Lequeitio, multitud de especies exóticas, sobre todo coníferas. Su hijo, D. Mario Adan de Yarza, viendo la perfecta adaptación y rápido crecimiento de alguna de éstas especies, repobló algunos montes con estas coníferas. Al cabo de unas décadas se pudo confirmar el éxito de éstas especies y sobre todo, del pino insignis, iniciando con ello el camino de su extensión. En menos de tres cuartos de siglo, la extensión de esta especie alcanzaba el cuarto de millón de Ha.
MAPA N° 1

ÁREA NATURAL DEL PINO INSIGNE

(según W.B. Critchfield y E. L. Little, Jr.)
1.2. EVOLUCION DE LAS REPOBLACIONES.

La aparición del pino insignis como especie dominante en el paisaje forestal de la Cornisa Cantábrica es el resultado de una coyuntura crítica, en la que por una parte las especies autóctonas prácticamente desaparecen y por otra parte aumenta rápidamente la demanda de madera.

Las especies tradicionales de relevancia forestal de la Cornisa Cantábrica son fundamentalmente los robles, hayas y castaños y en menor medida fresnos, encinas y nogales. La regresión y progresiva desaparición de éstas especies arbóreas es el resultado de un excesivo aprovechamiento, cuyos inicios habría que situarlos en el siglo XVI creciendo progresivamente hasta principios de nuestro siglo.

En el siglo XVI la política del Imperio Español y la colonización de América, impulsaron a un crecimiento de la construcción naval y en menor medida de la industria siderúrgica que si bien tuvo sus efectos en toda la península, fue de particular relieve en el Norte, por ubicarse en ésta zona la industria. Todo ello hace suponer que las talas intensivas, necesarias para éstas industrias, rompió el equilibrio entre la producción y el aprovechamiento de los montes provocando un importante retroceso en su masa forestal (1).

Si bien en el siglo XVII esta demanda sufre un retroceso, en el siglo XVIII vuelve a aumentar, principalmente con destino a la industria siderúrgica y a la construcción. Además en éste siglo, se produce un aumento notable de la superficie agrícola (2) a base de roturaciones en el monte.

El retroceso de la superficie forestal se verá acentuado en el último tercio del siglo XVIII y durante el siglo XIX como consecuencia de un proceso de desamortización de montes comunales, que ya en manos de particulares, en un afán de obtener rápidamente beneficios, diezmaron la superficie forestal. El proceso desamortizador empezó como consecuencia de la guerra de Independencia y guerras Carlistas, que empujaron el erario público de numerosos municipios de las provincias Vascones, no teniendo


(2) Extractos de la Real Sociedad Bascogada, año 1977, pág. 19.
más salida que la de venta de propiedades municipales. Después, el proceso desamortizador fue consecuencia de la política general de España.

También contribuye al retroceso de la superficie forestal durante el siglo XIX, el aumento de la demanda de madera para la construcción, manteniéndose todavía las finales del siglo una gran demanda para la industria del hierro y el acero. Aumento de la superficie agrícola, aumento del pastoreo y un aprovechamiento muy importante de hojas de árboles, helechos etc.

Durante finales del siglo XIX y principios del XX se suceden las plagas sobre el castaño, el roble y en menor medida de la encina, que arrasaron los vestigios de arboleda que aún existía. Es de hacer notar, que si bien no se tienen datos que cuantifiquen la regresión forestal habida, sí existen opiniones de ilustres forestales, como es el caso de D. Mariano Adan de Yarza que en la Casa de Juntas de Guipúzcoa en 1913 pronunció una conferencia, en la que estimaba que de las 500.000 Ha. de vertiente Cantábrica que tiene el País Vasco y Navarra, 150.000 Ha. se encontraban des pobladas y necesitadas de una pronta repoblación.

Frente a éstas perspectivas de oferta de madera, la demanda tuvo un crecimiento vertiginoso a partir de mediados del siglo XIX. Bien es verdad que la madera con destino a la siderurgia, se hizo prácticamente nula y que la madera con destino a la construcción y astilleros fue sustituida en su función estructural por otros materiales, pero la revolución industrial y la sociedad de consumo que ella conlleva, multiplicó la industria naval y la construcción y con ello la demanda de madera. Es todavía más importante la demanda de madera que produjo el desarrollo de la moderna industria de pastas y papel.

Toda esta coyuntura, hizo que no fuese casual el estudio de nuevas especies de perfecta adaptación, rápido crecimiento y turno corto, que tendiese a equilibrar la oferta de madera con la demanda.

(*) Revista "Mecanización y Transformación Forestal" nº 9, pág. 8, año 1983
El éxito de las experiencias con pino insignis que tuvo D. Mario Adan de Yarza, fue suficiente aliciente como para que los propios particulares se decidiesen por la implantación de esta especie. En apenas un cuarto de siglo se logró cambiar la fisonomía de todo el Norte de España, con especial incidencia en el área Oceánica de las provincias Vascas, donde el pino insignis ocupa más de la tercera parte de la superficie total y cerca del 60% de la superficie forestal.

En el cuadro y gráfico n° 1 se detalla la evolución de la superficie ocupada por las repoblaciones de pino insignis desde 1947 hasta 1971, año en que se realizó el Inventario Forestal de España. En el gráfico se puede observar la rápida extensión de este pino, sobre todo en el quinquenio de 1955 a 1960, en el que se repoblaron más de 100.000 Ha. También debe tenerse en cuenta que la diferencia de extensión entre el año del Inventario Forestal Nacional (1971) y el anterior, se debe a una infravaloración de los datos estadísticos hasta ese año, con lo que la evolución real de la extensión del pino insignis se ajustará a la línea de puntos del gráfico. Según esta posible curva, las repoblaciones en el quinquenio 1955-1960 se acercaron a las 150.000 Ha, lo que representa más de la mitad de la extensión de la superficie total de pino insignis.

Esta cifra tiene su especial importancia en los momentos actuales dado que cumplen en el actual quinquenio la edad del turno normal.

Es importante hacer notar, y así lo ha pretendido éste estudio que el pino insignis ha ocupado en la mayoría de los casos zonas degradadas en donde predominaba el matorral de brezos, argomas o helechos. No han sido importantes, por su extensión, las superficies de haya, robles o castaños que han sido taladas para la implantación de éste pino.
GRAFICO N° 1
Evolución de la Superficie Poblada de P. Insignis

Superficie poblada x 1.000 Ha.

Año

47 49 51 53 55 57 59 61 63 65 67 69 71
CUADRO N° 1

EVOLUCION DE LA SUPERFICIE DE PINO INSIGNIS EN ESPAÑA

<table>
<thead>
<tr>
<th>AÑO</th>
<th>EXTENSION en Ha.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>37.717</td>
</tr>
<tr>
<td>1950</td>
<td>46.667</td>
</tr>
<tr>
<td>1951</td>
<td>48.896</td>
</tr>
<tr>
<td>1954</td>
<td>57.237</td>
</tr>
<tr>
<td>1956</td>
<td>79.296</td>
</tr>
<tr>
<td>1957</td>
<td>92.667</td>
</tr>
<tr>
<td>1959</td>
<td>139.516</td>
</tr>
<tr>
<td>1961</td>
<td>176.290</td>
</tr>
<tr>
<td>1963</td>
<td>188.927</td>
</tr>
<tr>
<td>1965</td>
<td>173.244</td>
</tr>
<tr>
<td>1967</td>
<td>182.650</td>
</tr>
<tr>
<td>1969</td>
<td>193.395</td>
</tr>
<tr>
<td>1971</td>
<td>263.639</td>
</tr>
</tbody>
</table>


Anuario Estadístico Agrario. Ministerio de Agricultura.
1.3.- CARACTERISTICAS DEL AREA DE IMPLANTACION Y DASOMETRICAS:

1.3.1.- Situación Geográfica.

En el cuadro n° 2 se detalla por provincias las extensiones de las masas de pino insignis, según el Inventario Forestal Nacional concluido en 1971-72 y 73.

En este cuadro se observa como el pino insignis se extiende fundamentalmente en la Cornisa Cantábrica, con especial relieve en Vizcaya y Guipúzcoa donde se concentran el 60% del total de las masas de pino insignis.

La distribución de las masas del pino insignis, se esquematiza en el mapa n° 2 (Fuente: Las coníferas españolas en el inventario forestal nacional del Ministerio de Agricultura).

1.3.2.- Distribución por pertenencias.

En el cuadro n° 3 se señala la distribución del área ocupada por el pino insignis según pertenencias.

| CUADRO N° 3 |
| EXTENSION DEL PINO INSIGNIS SEGUN Pertenencias |

<table>
<thead>
<tr>
<th>Montes del Estado</th>
<th>Extensión en 1.000 Ha.</th>
<th>% sobre total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montes consorciados con el Estado</td>
<td>59,6</td>
<td>24,5</td>
</tr>
<tr>
<td>Montes de Utilidad Pública</td>
<td>22,7</td>
<td>9,3</td>
</tr>
<tr>
<td>Montes de Régimen Privado</td>
<td>159,3</td>
<td>65,4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>243,5</td>
<td>100 %</td>
</tr>
</tbody>
</table>
CUADRO Nº 2

EXTENSIÓN DE LAS MASAS DE PINO INSIGNIS POR PROVINCIAS

<table>
<thead>
<tr>
<th>PROVINCIAS</th>
<th>EXTENSION en Ha.</th>
<th>PA</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alava</td>
<td>16.550</td>
<td>7</td>
<td>15,3</td>
</tr>
<tr>
<td>Coruña</td>
<td>18.271</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td>Guipúzcoa.</td>
<td>59.027</td>
<td>24</td>
<td>49,7</td>
</tr>
<tr>
<td>Lugo</td>
<td>10.599</td>
<td>4</td>
<td>0,0</td>
</tr>
<tr>
<td>Navarra.</td>
<td>5.794</td>
<td>2</td>
<td>1,9</td>
</tr>
<tr>
<td>Oviedo.</td>
<td>26.027</td>
<td>11</td>
<td>7,9</td>
</tr>
<tr>
<td>Pontevedra.</td>
<td>3.200</td>
<td>1</td>
<td>1,6</td>
</tr>
<tr>
<td>Santa Cruz de Tenerife.</td>
<td>2.424</td>
<td>1</td>
<td>2,9</td>
</tr>
<tr>
<td>Santander.</td>
<td>14.962</td>
<td>6</td>
<td>8,6</td>
</tr>
<tr>
<td>Vizcaya</td>
<td>86.742</td>
<td>36</td>
<td>68,7</td>
</tr>
<tr>
<td><strong>TOTALES</strong></td>
<td><strong>243.596</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PA: Porcentaje de superficie arbolada con pino insignis, respecto del total nacional.

PR: Porcentaje de superficie arbolada de pino insignis, respecto del total de superficie forestal de esa provincia.
Se puede observar cómo el área ocupada por el pino insignis pertenece fundamentalmente a particulares. Además debe hacerse notar la atomización de la propiedad forestal en toda la Cornisa Cantábrica, que se puede cifrar, de acuerdo con los datos estadísticos del Inventario Nacional Forestal en alrededor de 3 Ha.

Esta parcelación del área ocupada por el pino insignis da idea del enorme interés social que tiene esta especie en la economía de la región. Así mismo, es un dato que refleja la dificultad de poder hacer una política programada, tanto a nivel de repoblación o de selvicultura, como de aprovechamiento de su producción.

1.3.3. - Distribución según tipos de montes.

De acuerdo con la publicación "Las coníferas españolas en el Inventario Forestal Nacional", la distribución de las masas de pino insignis según tipos de monte es la siguiente:

CUADRO N° 4

<table>
<thead>
<tr>
<th>Tipo de Monte</th>
<th>Extensión en Ha</th>
<th>% sobre total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte alto</td>
<td>4,375</td>
<td>2</td>
</tr>
<tr>
<td>Repoblaciones</td>
<td>239,221</td>
<td>98</td>
</tr>
<tr>
<td>TOTAL</td>
<td>243,596</td>
<td>100</td>
</tr>
</tbody>
</table>

Se puede decir que la práctica totalidad de las masas de pino insignis son repoblaciones.
1.3.4.- Distribución por altitudes.

De los datos del Inventario Forestal Nacional se deduce la siguiente distribución por altitudes.

CUADRO N° 5

EXTENSION DEL PINO INSIGNIS SEGÚN ALTITUDES

<table>
<thead>
<tr>
<th>Intervalos de Altitud</th>
<th>Extensión en 1000 Ha.</th>
<th>% sobre el</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 400 m.</td>
<td>146,4</td>
<td>60,1</td>
</tr>
<tr>
<td>De 400 a 800 m.</td>
<td>93,4</td>
<td>38,4</td>
</tr>
<tr>
<td>De más de 800 m.</td>
<td>3,7</td>
<td>1,5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>243,5</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Del cuadro se deduce como más del 98% de la superficie ocupada por el pino insignis se encuentra en cotas por debajo de los 800 m. de altitud.

La altitud es un factor abiótico que influye muy decisivamente en el crecimiento del pino insignis, fundamentalmente por la sensibilidad de ésta especie al frío y a las nevadas(*) factores que en la Cornisa Cantábrica está muy directamente relacionado con la altitud.

1.3.5.- Distribución según pendientes.

El Inventario Forestal no analiza las masas arbóreas en función de la pendiente, no obstante, según el estudio Ecología de los pinares españoles. IV Pinus Radiata...

(*) Ecología de los Pinares Españoles IV Pinus Radiata D. Don.
Ministerio de Agricultura, INIA 1947, pág. 99.
D. Don (*), la distribución es la siguientes:

CUADRO N° 6

<table>
<thead>
<tr>
<th>Pendiente</th>
<th>Porcentajes de masas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 19</td>
<td>24,71</td>
</tr>
<tr>
<td>20 - 39</td>
<td>42,54</td>
</tr>
<tr>
<td>40 - 59</td>
<td>20,11</td>
</tr>
<tr>
<td>60 - 79</td>
<td>9,77</td>
</tr>
<tr>
<td>80 - 99</td>
<td>2,87</td>
</tr>
</tbody>
</table>

De este cuadro se deduce la fuerte pendiente que afecta en la mayoría de los casos a las masas de pino insignis. En el señalado estudio ecológico no se encuentra correlación entre crecimiento y pendiente, no obstante, se ha recogido en este estudio los datos de pendiente por la posible influencia que pueda tener sobre la calidad de la madera y sobre todo por la posible producción de madera de reacción.

1.3.6.- Existencias y crecimientos.

De acuerdo con el estudio "Las Coníferas españolas en el Inventario Forestal Nacional" las existencias en 1971 por provincias, regiones, pertenencias, clases y cátedas diamétricas y calidad del arbolado, son las especificadas en el Cuadro nº 7.

De este cuadro se puede apreciar la cuantía de los crecimientos y sobre todo, su importancia en términos unitarios de superficie de donde se deriva el interés económico de la especie.

(*) Ecología de los pinares españoles IV Pinus Radiata D. Don. Ministerio de Agricultura. INIA 1947, pág. 47
CUADRO N° 7

EXISTENCIAS DEL PINO INSIGNIS

<table>
<thead>
<tr>
<th>CONCEPTOS</th>
<th>N</th>
<th>V</th>
<th>IV</th>
<th>PA</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totales:</td>
<td>48,233,033</td>
<td>13,731,779</td>
<td>2,460,992</td>
<td>100</td>
<td>4,1</td>
</tr>
<tr>
<td>PROVINCIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alvea</td>
<td>2,971,057</td>
<td>1,133,895</td>
<td>315,978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coruna</td>
<td>2,742,376</td>
<td>625,137</td>
<td>191,986</td>
<td>5</td>
<td>1,5</td>
</tr>
<tr>
<td>Gualeguay</td>
<td>2,010,913</td>
<td>434,067</td>
<td>73,959</td>
<td>19</td>
<td>4,8</td>
</tr>
<tr>
<td>Lago</td>
<td>4,049,955</td>
<td>819,280</td>
<td>55,449</td>
<td>2</td>
<td>4,0</td>
</tr>
<tr>
<td>Navarino</td>
<td>419,272</td>
<td>154,332</td>
<td>19,998</td>
<td>1</td>
<td>0,4</td>
</tr>
<tr>
<td>Orense</td>
<td>350,657</td>
<td>61,022</td>
<td>17,113</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>Osedo</td>
<td>4,930,297</td>
<td>2,342,213</td>
<td>314,232</td>
<td>10</td>
<td>8,5</td>
</tr>
<tr>
<td>Las Palmas</td>
<td>30,962</td>
<td>6,103</td>
<td>1,195</td>
<td>0</td>
<td>0,9</td>
</tr>
<tr>
<td>Montevideo</td>
<td>612,499</td>
<td>311,654</td>
<td>18,775</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>Santa Cruz de Tenerife</td>
<td>631,469</td>
<td>311,531</td>
<td>32,806</td>
<td>2</td>
<td>3,7</td>
</tr>
<tr>
<td>Santander</td>
<td>1,318,901</td>
<td>445,152</td>
<td>65,320</td>
<td>3</td>
<td>4,2</td>
</tr>
<tr>
<td>Vizcaya</td>
<td>20,670,029</td>
<td>6,790,243</td>
<td>1,155,197</td>
<td>49</td>
<td>83,0</td>
</tr>
</tbody>
</table>

CLASES DIAMÉTRICAS

<table>
<thead>
<tr>
<th>DIÁMETRO</th>
<th>N</th>
<th>V</th>
<th>IV</th>
<th>PA</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>26,726,929</td>
<td>4,915,202</td>
<td>1,002,064</td>
<td>32</td>
<td>6,5</td>
</tr>
<tr>
<td>25</td>
<td>12,807,202</td>
<td>3,820,362</td>
<td>713,344</td>
<td>24</td>
<td>5,9</td>
</tr>
<tr>
<td>30</td>
<td>5,320,608</td>
<td>2,573,448</td>
<td>400,463</td>
<td>19</td>
<td>4,8</td>
</tr>
<tr>
<td>35</td>
<td>2,068,295</td>
<td>1,485,200</td>
<td>122,241</td>
<td>11</td>
<td>3,4</td>
</tr>
<tr>
<td>40</td>
<td>764,997</td>
<td>732,400</td>
<td>80,130</td>
<td>6</td>
<td>2,7</td>
</tr>
<tr>
<td>45</td>
<td>261,991</td>
<td>333,052</td>
<td>24,763</td>
<td>2</td>
<td>1,6</td>
</tr>
<tr>
<td>50</td>
<td>62,829</td>
<td>102,012</td>
<td>5,621</td>
<td>1</td>
<td>0,7</td>
</tr>
<tr>
<td>55</td>
<td>28,192</td>
<td>53,446</td>
<td>2,433</td>
<td>0</td>
<td>0,6</td>
</tr>
<tr>
<td>60</td>
<td>20,063</td>
<td>23,334</td>
<td>924</td>
<td>0</td>
<td>0,3</td>
</tr>
<tr>
<td>65</td>
<td>3,259</td>
<td>10,272</td>
<td>247</td>
<td>0</td>
<td>0,3</td>
</tr>
<tr>
<td>70 y superiores</td>
<td>4,305</td>
<td>13,867</td>
<td>268</td>
<td>0</td>
<td>0,1</td>
</tr>
</tbody>
</table>

CATEGORÍAS DIAMÉTRICAS

<table>
<thead>
<tr>
<th>DIÁMETRO</th>
<th>N</th>
<th>V</th>
<th>IV</th>
<th>PA</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>44,914,213</td>
<td>10,040,112</td>
<td>2,134,230</td>
<td>90</td>
<td>5,7</td>
<td></td>
</tr>
<tr>
<td>Media (35 a 45)</td>
<td>3,109,672</td>
<td>2,589,716</td>
<td>297,134</td>
<td>10</td>
<td>7,7</td>
</tr>
<tr>
<td>Menos (50 a más)</td>
<td>208,450</td>
<td>203,951</td>
<td>9,498</td>
<td>1</td>
<td>0,4</td>
</tr>
</tbody>
</table>

CALIDAD DEL AMAROLO

<table>
<thead>
<tr>
<th>CALIDAD</th>
<th>N</th>
<th>V</th>
<th>IV</th>
<th>PA</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bueno</td>
<td>--</td>
<td>4,935,929</td>
<td>--</td>
<td>36</td>
<td>6,7</td>
</tr>
<tr>
<td>Corriente</td>
<td>--</td>
<td>8,639,160</td>
<td>--</td>
<td>63</td>
<td>3,9</td>
</tr>
<tr>
<td>Defectuoso</td>
<td>--</td>
<td>72,099</td>
<td>--</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>Moto</td>
<td>--</td>
<td>7,486</td>
<td>--</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Sin asignar</td>
<td>--</td>
<td>77,129</td>
<td>--</td>
<td>1</td>
<td>--</td>
</tr>
</tbody>
</table>

Pies menores

<table>
<thead>
<tr>
<th>CONCEPTOS</th>
<th>N</th>
<th>V</th>
<th>IV</th>
<th>PA</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totales:</td>
<td>242,222,266</td>
<td>17,299,203</td>
<td>2,759,725</td>
<td>100</td>
<td>5,0</td>
</tr>
<tr>
<td>PROVINCIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alvea</td>
<td>16,784,390</td>
<td>110,437</td>
<td>227,668</td>
<td>8</td>
<td>21,1</td>
</tr>
<tr>
<td>Coruna</td>
<td>2,314,148</td>
<td>902,921</td>
<td>210,166</td>
<td>9</td>
<td>7,4</td>
</tr>
<tr>
<td>Gualeguay</td>
<td>54,659,279</td>
<td>1,974,460</td>
<td>601,801</td>
<td>22</td>
<td>51,2</td>
</tr>
<tr>
<td>Lago</td>
<td>22,62,909</td>
<td>248,299</td>
<td>131,938</td>
<td>5</td>
<td>7,1</td>
</tr>
<tr>
<td>Navarino</td>
<td>7,193,090</td>
<td>198,301</td>
<td>99,077</td>
<td>3</td>
<td>2,0</td>
</tr>
<tr>
<td>Orense</td>
<td>2,894,816</td>
<td>82,407</td>
<td>22,490</td>
<td>1</td>
<td>2,3</td>
</tr>
<tr>
<td>Osedo</td>
<td>51,096,283</td>
<td>586,813</td>
<td>178,931</td>
<td>8</td>
<td>4,7</td>
</tr>
<tr>
<td>Las Palmas</td>
<td>107,285</td>
<td>2,940</td>
<td>1,964</td>
<td>0</td>
<td>3,6</td>
</tr>
<tr>
<td>Montevideo</td>
<td>2,708,926</td>
<td>67,730</td>
<td>28,578</td>
<td>1</td>
<td>7,1</td>
</tr>
<tr>
<td>Santa Cruz de Tenerife</td>
<td>1,036,953</td>
<td>174,669</td>
<td>7</td>
<td>7,1</td>
<td></td>
</tr>
<tr>
<td>Santander</td>
<td>5,379,398</td>
<td>470,232</td>
<td>100,200</td>
<td>6</td>
<td>5,1</td>
</tr>
<tr>
<td>Vizcaya</td>
<td>75,643,675</td>
<td>2,803,598</td>
<td>1,002,782</td>
<td>39</td>
<td>72,9</td>
</tr>
</tbody>
</table>

CLASES DIAMÉTRICAS

<table>
<thead>
<tr>
<th>DIÁMETRO</th>
<th>N</th>
<th>V</th>
<th>IV</th>
<th>PA</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>95,028,597</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>94,184,139</td>
<td>2,973,175</td>
<td>1,470,217</td>
<td>41</td>
<td>4,8</td>
</tr>
<tr>
<td>15</td>
<td>39,990,470</td>
<td>4,276,853</td>
<td>1,286,508</td>
<td>39</td>
<td>7,2</td>
</tr>
</tbody>
</table>

TOTAL

| (pies mayores + pies menores) | 250,355,903 | 20,981,807 | 3,120,707 |

Referencia a unidad de superficie

<table>
<thead>
<tr>
<th>Ha</th>
<th>119,1 árboles/ha.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/5</td>
<td>86,6 m3 c/ha.</td>
</tr>
<tr>
<td>IV/5</td>
<td>21,3 m3 c/ha.</td>
</tr>
</tbody>
</table>

Síando: N = NT de pies

| V = Volumen medible en m3 c/ha |
| IV = Crecimiento anual del volumen medible, en m3 c/ha |
Estos datos de existencias se refieren al año 1971, las existencias actuales se podrán calcular agregándoles los crecimientos anuales y sustrayéndoles los aprovechamientos en el intervalo habido hasta el presente año.

Dado que en el siguiente capítulo se analizarán éstos aprovechamientos y dada la importancia de éste punto en el análisis de la situación de esta especie forestal, su estudio se realizará en otro capítulo.

1.3.7. - Características de producción de las masas.

Si bien existen unas tablas de producción de las masas, según la altura dominante de éstas, se da a continuación la tabla de producción media obtenida del Inventario Forestal Nacional (*). Sólo se da la tabla de masa regular, por ser esta el tipo dominante en la práctica totalidad de su extensión.

**CUADRO N° 8**

<table>
<thead>
<tr>
<th>VALORES DEL PIE MEDIO</th>
<th>MASA PRINCIPAL ANTES DE LA CORTE</th>
<th>MASA EXTRAVADA</th>
<th>MASA PRINCIPAL DESPUÉS DE LA CORTE</th>
<th>MASA TOTAL DE CORTE</th>
<th>CRECIMIENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>t d h v</td>
<td>N G F V</td>
<td>N V</td>
<td>N G F V</td>
<td>V</td>
<td>%</td>
</tr>
<tr>
<td>10  8.5 6.5 21 2.321 14 9.51 46 1.310 25 1.031 6 4.27 20 46 57 4.60 15.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 11.2 10.9 81 1.031 21 12.01 89 627 686 584 12 6.94 51 115 43 7.67 19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 22.8 11.7 584 150 26 12.62 156 272 52 382 17 8.25 98 214 35 10.70 21.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 34.5 17.6 532 136 26 12.24 230 112 60 270 21 8.65 144 520 29 12.80 21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 39.5 26.3 720 236 33 11.12 246 59 64 201 25 8.28 185 425 26 14.17 20.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 47.6 22.6 1.455 201 36 9.73 246 76 66 115 28 7.50 222 538 23 15.08 20.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 55.9 22.8 2.079 155 38 8.06 322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Siendo:  
\[ t = \text{edad de la masa en años.} \]
\[ d = \text{diámetro en cm.} \]
\[ h = \text{altura del árbol en m.} \]
\[ v = \text{volumen del arbol} \]

\[ N = \text{Número de árboles/ Ha.} \]
\[ G = \text{área basimétrica en m}^2/\text{Ha.} \]
\[ F = \text{área altimétrica en H}^2/\text{Ha.} \]
\[ V = \text{volumen de la masa en m}^3/\text{Ha.} \]

(*) Fuente: "Las Coníferas Españolas en el Inventario Forestal Nacional". 1979. Ed. ICONA.
De acuerdo con esta tabla, el turno de máxima renta en madera sería el punto de intersección entre la curva de crecimiento medio y la de crecimiento corriente (véase gráfico no 2).

En la actualidad se está aplicando el turno económico, situado alrededor de los 25 años de edad.

1.3.8.- Posibilidades de corta.

Para el año del Inventario Forestal Nacional la posibilidad de corta para el total de las masas sería:

\[
P = \frac{V}{T} + \frac{C}{2}
\]

Siendo: \( P \) = Posibilidad de corta anual.
\( V \) = Volumen maderable.
\( T \) = Turno.
\( C \) = Crecimiento medio.

Para un turno de 25 años la posibilidad sería:

\[
P_{25} = \frac{20.981.807\ \text{m}^3}{25} + \frac{12,8\ \text{m}^3/\text{Ha.año} \times 243.596\ \text{Ha.}}{2} = 2.398.000\ \text{m}^3
\]

Para un turno de 35 años, la posibilidad sería:

\[
P_{35} = \frac{20.981.807\ \text{m}^3}{35} + \frac{15,09\ \text{m}^3/\text{Ha.año} \times 243.596\ \text{Ha.}}{2} = 2.436.000\ \text{m}^3
\]

Referido a la unidad de superficie, la posibilidad sería:

\[
P_{25} = 9,85\ \text{m}^3/\text{Ha.año}.
\]

\[
P_{35} = 10,00\ \text{m}^3/\text{Ha.año}
\]
CURVAS DE CRECIMIENTO

GRAFICO Nº 2
1.4. - CARACTERISTICAS DE LA PRODUCCION.

1.4.1. - Aprovechamientos de madera.

En éste capítulo se abordará el aprovechamiento de madera en base a las estadísticas del Ministerio de Agricultura y posteriormente, en vista a las limitaciones que tienen las estadísticas, se hará una evaluación global de las cortas de pino insignis en el País Vasco y Navarra en base a datos directos sobre el consumo para 1977, realizado en las empresas forestales. Por último y en función de ambos estudios se analizará la evolución de las cortas de madera.

1.4.1.1. - Cortas de madera según la Estadística del Ministerio de Agricultura.

Los datos de producción son los siguientes:

CUADRO N° 9

CORTAS DE PINO INSIGNIS SEGÚN ESTADÍSTICA DEL MINISTERIO DE AGRICULTURA

<table>
<thead>
<tr>
<th>Años</th>
<th>Cortas x 1000 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.947</td>
<td>248,4</td>
</tr>
<tr>
<td>1.951</td>
<td>180,4</td>
</tr>
<tr>
<td>1.955</td>
<td>408,0</td>
</tr>
<tr>
<td>1.957</td>
<td>371,4</td>
</tr>
<tr>
<td>1.959</td>
<td>202,6</td>
</tr>
<tr>
<td>1.961</td>
<td>222,9</td>
</tr>
<tr>
<td>1.963</td>
<td>198,9</td>
</tr>
<tr>
<td>1.965</td>
<td>365,3</td>
</tr>
<tr>
<td>1.966</td>
<td>443,7</td>
</tr>
<tr>
<td>1.967</td>
<td>448,6</td>
</tr>
<tr>
<td>1.969</td>
<td>634,0</td>
</tr>
<tr>
<td>1.970</td>
<td>632,2</td>
</tr>
<tr>
<td>1.971</td>
<td>800,0</td>
</tr>
<tr>
<td>1.972</td>
<td>869,0</td>
</tr>
<tr>
<td>1.973</td>
<td>972,3</td>
</tr>
<tr>
<td>1.974</td>
<td>1.400,9</td>
</tr>
<tr>
<td>1.975</td>
<td>757,3</td>
</tr>
<tr>
<td>1.976</td>
<td>1.034,4</td>
</tr>
<tr>
<td>1.977</td>
<td>929,8</td>
</tr>
<tr>
<td>1.978</td>
<td>932,0</td>
</tr>
<tr>
<td>1.979</td>
<td>924,8</td>
</tr>
<tr>
<td>1.980</td>
<td>1.066,5</td>
</tr>
<tr>
<td>1.981</td>
<td>908,1</td>
</tr>
</tbody>
</table>
GRÁFICO No 3: CORTAS DE PINO INSIGNIS SECUEN ESTADÍSTICA DEL M. A.
Estos datos se expresan en el gráfico nº 3.

De la observación conjunta del cuadro y gráfico se deduce como hasta el año 1963 los volúmenes de corta se mantenían entre los 200 y 300 mil metros cúbicos, experimentando a partir de ése año un crecimiento continuo, fruto de las primeras claras de las repoblaciones iniciadas una década anterior, estabilizándose en alrededor de 900.000 m³. En el año 1974, ante las expectativas de escasez surgidas por la crisis económica, las empresas, sobre todo papeleras, hicieron grandes acopios de madera dando como resultado un elevado volumen de corta en ése año, para después en los años siguientes, debidos a los fuertes stocks y al mercado en recesión, bajar el consumo de madera, estabilizándose definitivamente en los 900.000 m³.

De todas las formas, los datos expuestos anteriormente no ofrecen fiabilidad en sus valores absolutos, ya que por diversas razones, se encuentran considerablemente infravalorados. Por el contrario sí ofrecen visas de fiabilidad todo, en lo que se refiere a la evolución de los datos y a consideraciones enunciadas, por mantenerse la infravaloración.

1.4.1.2.- Cortas de madera, datos de consumo de la industria forestal.

Según el "Estudio Ecológico de las Repoblaciones de Coníferas Exóticas en el País Vasco" (*) el consumo de madera realizado por la industria forestal durante 1978 fue de 1.544.000 m³ c/c, de acuerdo con el cuadro nº 10.

En ese mismo año, los datos del Anuario Estadístico Agrario fijan, para el País Vasco y Navarra un aprovechamiento de 766.000 m³ c/c, lo que supone una infravaloración del 101,6 % en los datos suministrados por ICONA y la Dirección General de Producción Agraria.

(*) Tomo III, pág. 1396 y siguientes.
CUADRO NO 10

CONSUMO DE MADERA DE PINO INSIGNIS SEGÚN TIPO DE INDUSTRIA

| Industria de pasta procedimiento mecánico | 552,000 m$^3$ c/c. |
| Industria de pasta procedimiento químico | 529,000 " |
| Fibra sintética | 29,000 " |
| Industria de tableros de partículas | 100,000 " |
| Puntales para minas | 14,000 " |
| Industria del aserrado | 320,000 " |
| **TOTAL** | **1,544,000 m$^3$ c/c.** |

Como puede apreciarse, esta cifra coincide en mejor medida con las posibilidades de cortas analizadas en el capítulo anterior, si bien en general está todavía por debajo, lo que supone que en cierta medida se está produciendo una capitalización del monte de pino insignis. Esta opinión es asimismo compartida en todos los estudios últimos, realizados a ésta especie (*), como por los forestales de la zona.

A nivel únicamente indicativo, para posteriormente poder dar una idea de las existencias actuales, se va a suponer que los datos de infravaloración de las cortas anuales dadas por el Ministerio de Agricultura, se van a mantener, tanto para el resto de las provincias, como para todos los años, con lo que se obtendrían los siguientes valores:

(*) - Estudio Umbra.

Estudio ecológico económico de las repoblaciones de coníferas exóticas en el País Vasco.
CUADRO NO 11

CORTAS ANUALES DE PINO INSIGNIS

<table>
<thead>
<tr>
<th>Años</th>
<th>Cortas según A.E.A. x 1000 m</th>
<th>Cortas según valoración directa x 1000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,971</td>
<td>800,0</td>
<td>1,612,9</td>
</tr>
<tr>
<td>1,972</td>
<td>869,0</td>
<td>1,752,0</td>
</tr>
<tr>
<td>1,973</td>
<td>972,3</td>
<td>1,960,3</td>
</tr>
<tr>
<td>1,974</td>
<td>1,400,9</td>
<td>2,824,4</td>
</tr>
<tr>
<td>1,975</td>
<td>757,3</td>
<td>1,526,8</td>
</tr>
<tr>
<td>1,976</td>
<td>1,034,4</td>
<td>2,085,5</td>
</tr>
<tr>
<td>1,977</td>
<td>929,8</td>
<td>1,874,6</td>
</tr>
<tr>
<td>1,978</td>
<td>932,0</td>
<td>1,879,0</td>
</tr>
<tr>
<td>1,979</td>
<td>924,8</td>
<td>1,864,5</td>
</tr>
<tr>
<td>1,980</td>
<td>1,066,5</td>
<td>2,150,2</td>
</tr>
<tr>
<td>1,981</td>
<td>908,1</td>
<td>1,830,8</td>
</tr>
</tbody>
</table>

A.E.A. = Anuario de Estadística Agraria.

1.4.2.- Valor de la producción.

Según los datos del Anuario Estadístico Agrario, la evolución del precio de la madera desde 1974, es el siguiente:

CUADRO NO 12

VALOR DE LA MADEIRA DE PINO INSIGNIS

<table>
<thead>
<tr>
<th>Año</th>
<th>Valor en pie pts/m³ c/c.</th>
<th>Valor en cargadero pts/m³ c/c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,974</td>
<td>1,562</td>
<td>1,886</td>
</tr>
<tr>
<td>1,975</td>
<td>1,065</td>
<td>1,518</td>
</tr>
<tr>
<td>1,976</td>
<td>1,104</td>
<td>1,540</td>
</tr>
<tr>
<td>1,977</td>
<td>1,214</td>
<td>1,735</td>
</tr>
<tr>
<td>1,978</td>
<td>1,231</td>
<td>1,768</td>
</tr>
<tr>
<td>1,979</td>
<td>1,261</td>
<td>1,733</td>
</tr>
<tr>
<td>1,980</td>
<td>1,288</td>
<td>1,269</td>
</tr>
<tr>
<td>1,981</td>
<td>1,269</td>
<td>1,907</td>
</tr>
</tbody>
</table>
En el cuadro n° 12 se aprecia como el precio de la madera prácticamente se ha sostenido en el último decenio, con oscilaciones entre año y año, pero sin que exista una tendencia clara de alteración.

El precio en el cuadro se refiere al precio medio, sin embargo es importante resaltar la diferencia del precio en pie de la madera según el destino. Así, para 1977, la madera con destino a la industria de desintegración se pagaba alrededor de las 700,- ptas. el estéreo s/c (975 ptas. m$^{3}$ c/c) mientras que la madera para sierra oscilaba alrededor de 2.000,- ptas./m$^{3}$ (*).

Según opiniones contrastadas directamente con el sector forestal implicado, estos precios prácticamente no se han visto modificados en los últimos años.

1.4.3.- Características de la explotación y su análisis.

Como consecuencia de la estructura atomizada de la propiedad forestal, la explotación se suele realizar de forma muy desgarrada, sin coordinación, en parcelas de apenas Ha. Esto lleva consigo, los siguientes inconvenientes:

- Dificultad de tener una infraestructura viaria en condiciones. Esto es una realidad, según el Anuario de Estadística Agraria de 1981, la situación de las vías de saca es la siguiente: (Cuadro n° 13).

CUADRO N° 13

VIAS DE SACA EN Km, DURANTE 1981 Y SU RELACIÓN CON LA SUPERFICIE FORESTAL.

<table>
<thead>
<tr>
<th>Provincias</th>
<th>Vías de saca en Km.</th>
<th>Superficie forestal en Ha.</th>
<th>Metros de vía de saca Superficie forestal en Ha.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vizcaya</td>
<td>1,645</td>
<td>126,000</td>
<td>13,1</td>
</tr>
<tr>
<td>Guipúzcoa</td>
<td>2,134</td>
<td>119,000</td>
<td>17,9</td>
</tr>
<tr>
<td>Oviedo</td>
<td>5,247</td>
<td>363,000</td>
<td>14,5</td>
</tr>
<tr>
<td>La Coruña</td>
<td>1,265</td>
<td>356,000</td>
<td>3,6</td>
</tr>
</tbody>
</table>

(*) Estudio Ecológico y Económico de las repoblaciones de Coníferas Exóticas en el País Vasco, pág. 1.401
Teniendo en cuenta, el porcentaje de superficie que ocupa el pino insignis en estas provincias, resulta una densidad media de vías de saco de 13,8 m/ha.

Si bien esta cifra puede estar infravalorada, sobre todo en el caso de La Coruña, da idea de la insuficiencia viaria de estas provincias. Debe tenerse en cuenta que en la actualidad se están barajando cifras de densidades viarias para montes productores de 35 a 60 m/ha., según lo accidentado del terreno.

La consecuencia de una falta de red viaria lleva consigo el aumento de costes del desembosque, debido de una mayor distancia entre el punto del apeo y la playa de carga.

- Dificultad de mecanización de las operaciones de apeo y saco, debido al pequeño tamaño de los aprovechamientos.

- Dificultad de comercialización como consecuencia de la dispersión de la oferta. Esto obliga a la existencia de intermediarios, ya sean rematantes o personal fijo de las empresas forestales, que faciliten el intercambio entre el propietario forestal y el empresario.

Todo ello lleva consigo unos excesivos gastos de explotación (vease cuadro nº 12) que suponen prácticamente el 50 % del valor de la madera en pie. Estos gastos se han ido incrementando año a año como consecuencia del aumento del coste de la mano de obra, de la energía y de la maquinaria, restando valor a la madera en pie, dado que de alguna forma los costos de la madera en los patios de apilado vienen influidos por los mercados internacionales.

Con todo ello, se quiere resaltar la importancia que tendría sobre el valor de la producción del monte, la mejora de las explotaciones.
1.4.4. - Destino de la madera de pino insignis.

Extendiendo los valores dados en el cuadro n° 10 al resto de las provincias de la Coraisa Cantábrica, resultaría el siguiente destino de la madera.

CUADRO N° 14

DESTINO DE LA MADERA DE PINO INSIGNIS DURANTE 1.978

<table>
<thead>
<tr>
<th></th>
<th>m³ c/c</th>
<th>% sobre total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industria de pasta procedimiento químico.</td>
<td>644.500</td>
<td>34,3</td>
</tr>
<tr>
<td>Industria de pasta procedimiento mecánico.</td>
<td>672.600</td>
<td>35,8</td>
</tr>
<tr>
<td>Industria de pasta fibras sintéticas.</td>
<td>31.900</td>
<td>1,7</td>
</tr>
<tr>
<td>Industria de tableros de partículas</td>
<td>122.100</td>
<td>6,5</td>
</tr>
<tr>
<td>Puntales para minas.</td>
<td>16.900</td>
<td>0,9</td>
</tr>
<tr>
<td>Industria del aserrado.</td>
<td>389.000</td>
<td>20,8</td>
</tr>
<tr>
<td>TOTAL..................................</td>
<td>1.878.900</td>
<td>100</td>
</tr>
</tbody>
</table>

Como puede apreciarse, el 70 % de la madera de pino insignis se destina a la industria de pasta, mercado tradicional de ésta madera, mientras que solo el 20 % se destina al aserrado, para el aprovechamiento íntegro de sus cualidades físico mecánicas.
1.5.- EXISTENCIAS Y DIFERENCIAS ENTRE LA POSIBILIDAD DE CORTA Y SU APROVECHAMIENTO.

Como ya se decía anteriormente, los datos de existencias dados hasta ahora se refieren a los datos del año que se realizó el Inventario Forestal en dicha provincia. Las existencias actuales son bien diferentes, dado el tiempo transcurrido desde entonces. Su cálculo, teóricamente se podría realizar sumando año a año los crecimientos, tanto de las masas actuales, como de las nuevas repoblaciones y sustrayéndole los aprovechamientos tanto económicos como los debidos a catástrofes (riadas, incendios, etc.).

Dado el alto valor del error con que se hicieron los datos del Inventario Nacional, y sobre todo lo imperfecto de los datos de corta, sería improcedente querer calcular con exactitud las existencias actuales, bastando un cálculo aproximado que sirva para reflejar el estado actual de las masas de pino insignis.

Así, suponiendo que los datos calculados en el apartado anterior se refieran al año 1.971, que la posibilidad de ese año se refiera a la denominada P_{25} y que a efectos de cálculo de la existencia actual, esta se mantenga constante, las existencias en 1.981 serían:

\[ E_{81} = E_{71} + 10 \times P_{25} - A \]

Siendo: \( E = \) existencias, \( P = \) posibilidad, \( A = \) aprovechamientos.

\[ E_{81} = 20.981.807 + 10 \times 2.389.000 - 21.361.000 = 23.600.000 \text{ m}^3 \text{ c/c}. \]

Ello indica, que las existencias actuales son aproximadamente un 10% superiores a las señaladas en el Inventario Forestal Nacional.
De acuerdo con esto, la posibilidad actual sería:

\[ P_{25} = 2.500.000 \, m^3/\text{año}. \]

Suponiendo una media de los aprovechamientos actuales de 2.000.000 \( m^3/\text{año} \) resulta una diferencia entre la oferta de madera y la demanda de medio millón de \( m^3 \) (20% de la producción de madera).
1.6.- RESUMEN Y CONCLUSIONES.

El desequilibrio existente en España, a principios de siglo, entre una escasa oferta, debilitada por un abuso secular de los aprovechamientos y gran demanda fundamentada en el abastecimiento de las industrias de pasta, impulsó a que se repoblaran un cuarto de millón de hectáreas de pino insignis, que con su rápido crecimiento y turno corto, satisfizo en pocos años esa demanda, sobre todo a lo que se refiere a pasta de fibra larga.

La crisis económica y la escasa adaptación que siempre tienen las especies forestales a las fluctuaciones de la demanda ha hecho que en la actualidad se haya invertido el desequilibrio existente a principios de siglo, dándose un exceso de oferta de madera de alrededor del 20% de la producción de madera. Este exceso de madera lleva consigo las siguientes consecuencias:

- Capitalización a corto y medio plazo del monte, con progresivo aumento de la posibilidad, frente a una demanda estacionaria. Esta capitalización supondrá un aumento sobre todo, de la madera con destino a sierra.

- Disminución en términos reales del valor de la madera.

- Abandono selvícola de los montes. La alta valor económico de los montes propiciará la falta de inversiones en el mismo, tanto en lo que se refiere a infraestructura, como en labores culturales (poda, etc...)

- Cambio de destino de los montes, o por lo menos cambio de especie, como consecuencia de la falta de rentabilidad.

Para evitar en lo posible todas éstas consecuencias de indudable repercussions en la economía agraria de la Cornisa Cantábrica se deberían tomar las siguientes medidas:
- Diversificación de los destinos de la madera de pino insignis, sobre todo en lo que se refiere a madera de sierra.

- Agrupación de la propiedad forestal en comarcas forestales industriales para la ordenación integral de la zona de mayor vigencia actualmente, por desarrollo de la xiloenergética. Sin lugar a dudas facilitará económicamente la creación y cuidados del monte, infraestructura y sobre todo su comercialización al concentrar la oferta y regularizar su aprovechamiento.
2. CARACTERISTICAS DE LA MADERA

2.1. Características morfológicas del árbol.

El pino insignis es un árbol elevado que puede llegar fácilmente a los 30 m., siendo su altura media se puede cifrar en unos 20 m. Su porte es regular, piramidal en la juventud y finalmente ensanchado, globoso o truncado.

El tronco es recto, bastante cónico, coeficiente mórifico a los 25 años de edad alrededor de 0,45, aumentando con la menor calidad de la masa, no teniendo relación el coeficiente mórifico con la densidad de la masa. (*)

Ramas verticiladas en forma de brazos de candelabro, horizontales o erecto, patentándose en el arranque, vertical y ascendente en sus extremos, cortas en relación a los entrenudos, dando al árbol un aspecto característico. El número de brotes anuales suele ser de dos, si bien en ocasiones pueden ser más. Las ramas son bastante persistentes aún con falta de luz, por lo que para su eliminación no basta con buscar una máxima espesor, sino que es necesario realizar las podas artificialmente. Si bien, con la espesor no se eliminan las ramas, está si tiene influencia en su desarrollo y, por tanto, en el tamaño de los nudos de la madera.

La distancia entre ramas oscila bastante según las condiciones del terreno, no obstante se puede establecer una media de alrededor de medio metro. Esta distancia puede modificarse, con la espesor de la masa en alrededor de un 20 %. (**) siendo a mayor espesor, mayor el entrenudo.


(**) Tratamiento del Pinus insignis. Ed. I F I E 1944, pág. 41.
2.2. **Características de las trozas.**

Las trozas poseen una buena conformación general, son derechas y medianamente cilíndricas, con el único defecto específico de la abundancia de nudos, según lo señalado en el apartado anterior.

La sección transversal es muy regular y circular, con el corazón bastante centrado.

La corteza pardo rojiza gruesa, prematuramente agrietada, rugosa, al final color pardo oscuro.

Porcentaje de corteza en volumen 15 % aproximadamente.

La madera de albura tiene un color blanco amarillento, que se oscurece relativamente rápido con la luz. El duramen, de poco a mediano diferenciado, tiene color pardo amarillento a pardo marrón.

El peso específico de las trozas varía bastante con la época de apeo, oscilando entre 1.075 Kg/m3 en el mes de julio y 936 Kg/m3 en el mes de marzo. El peso de las trozas baja rápidamente por la acción de su secado al aire libre; así por ejemplo en meses el peso de las trozas pasa a ser de 700 Kg/m3.

La durabilidad de las trozas es bastante pequeña, afectándolas rápidamente los hogos cromógenos, causantes del azulado, primero en sus caras más externas para después en corto espacio de tiempo, extenderse al resto de la troza.
2.3. CARACTERISTICAS ANATOMICAS.

2.3.1. Características macroscópicas.

Madera con crecimiento de los anillos anuales bien diferenciados, delimitándose por una franja estrecha de madera de verano más oscura.

Anillos de anchura bastante irregular, exageradamente anchos sobre todo en los primeros años, pudiendo alcanzar los 15 mm., para con la edad irse haciendo más regulares y estrechos, oscilando alrededor de los 2 a 6 cm. de anchura.

En el diagrama se representa la anchura de los anillos en las muestras, observándose la curva de distribución media.

Grano medio a fino. Fibra recta.

Es esponjosa, de ligera a mediana de peso, medianamente dura y muy poco resinosaa.

2.3.2. Características microscópicas. (Véase figura n° 1).

Traqueidas:

De sección poligonal. Punteaduras areoladas en las paredes radiales en una sola línea, diámetro tangencial medio de 35 \( \mu \), variando entre las 20 \( \mu \) y las 40 \( \mu \), longitud media 3,06 mm., variando entre 4,24 y 1,25 mm. Relación entre longitud, anchura 87,5. No presenta punteaduras en las paredes tangenciales de las traqueidas de otoño.
Radios leñosos:

Uniseriados y fusiformes. Los primeros de 4-10 células por término medio, y los valores extremos encontrados son de una célula con 30 μ y de 23 células con 420 μ; son heterogéneos con traqueidas radiales, con marcada tendencia marginal. Las puntas del campo de cruce de las células del parénquima radial con las traqueidas verticales son de forma lenticular o escasamente ovaladas. Pinoides con reborde muy grueso.

Por lo general tienen dos por cruce y pueden presentarse, aunque raramente, cinco. Mayor número por alineación, tres; generalmente existe una alineación horizontal pero no es raro el encontrar dos. Las traqueidas radiales están muy poco dentadas y dispersas. Canales resiníferos y horizontales presentes, característicos del genero pinus, alojados en el interior de algunos radios.

Canales resiníferos verticales:

Los canales, en número variable de 0-4 por mm2, tienen diámetros de 100-200 μ
FIGURA N°. 1: Aspecto microscópico de la madera.

Sección transversal × 75

Sección tangencial × 75

Sección radial × 550
2.4. Características químicas.

La característica más notable de la madera de pino insignis es el bajo porcentaje de contenido de resinas, que oscila entre 0,25 y 3 %, siendo su valor medio 1,18 %.

También es destacable el contenido en celulosa, que oscila alrededor del 57,5 %.(*)

(*) Datos basados en el estudio "Pinus insignis, crecimiento y producción en el Norte de España y aplicación a la elaboración de pastas de celulosa". Ed. IFIE, 1944.
2.5. Características físico-mecánicas.

Las características físico-mecánicas de la madera de pino insignis se resumen en los cuadros 14 y 15.

En cuanto a características físicas, cabe destacar su relativa alta densidad, si se la compara con los resultados que hasta ahora se disponían y su dureza, la más alta de los pinos peninsulares.

En cuanto a sus características mecánicas, si bien en valores absolutos de resistencia a la rotura son bajos, su cotas indican la buena disposición de esta madera a los esfuerzos mecánicos; es resiliente, elástica, muy flexible, medianamente tenaz y adherente.
<table>
<thead>
<tr>
<th>CARACTERÍSTICAS</th>
<th>MEDIA</th>
<th>DESVIACIÓN ESTANDAR</th>
<th>DESVIACIÓN TÍPICA</th>
<th>NÚMERO DE ENSAYOS</th>
<th>INTERPRETACIÓN SEGÚN LA NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico anhidro $P_0$</td>
<td>0,466</td>
<td>0,063</td>
<td>0,0625</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Peso específico al 12% $P_{l2}=D$</td>
<td>0,495</td>
<td>0,064</td>
<td>0,0640</td>
<td>138</td>
<td>Entre ligera y semipesada.</td>
</tr>
<tr>
<td>Higroscopidad</td>
<td>$H_1$</td>
<td>$2,7 \times 10^{-3}$</td>
<td>$1,29 \times 10^{-3}$</td>
<td>138</td>
<td>Normal a pequeña.</td>
</tr>
<tr>
<td>Punto de saturación de la fibra $P.S.F$</td>
<td>34,58</td>
<td>7,93</td>
<td>7,89</td>
<td>91</td>
<td>Normal.</td>
</tr>
<tr>
<td>Contracción total</td>
<td>$B$</td>
<td>16,53</td>
<td>3,79</td>
<td>91</td>
<td>Gran contracción.</td>
</tr>
<tr>
<td>Volumétrica</td>
<td>$V$</td>
<td>0,478</td>
<td>0,145</td>
<td>138</td>
<td>Medianamente nerviosa.</td>
</tr>
<tr>
<td>Contracción lineal total</td>
<td>$B_{Tg}$</td>
<td>7,15</td>
<td>2,04</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Tangencial unitario</td>
<td>$V_{Tg}$</td>
<td>0,206</td>
<td>0,058</td>
<td>183</td>
<td>Normal a pequeña.</td>
</tr>
<tr>
<td>Tangencial total</td>
<td>$B_r$</td>
<td>4,77</td>
<td>1,7</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Radial Unitario</td>
<td>$V_r$</td>
<td>0,137</td>
<td>0,049</td>
<td>183</td>
<td>Normal a grande.</td>
</tr>
<tr>
<td>Dureza valor de N</td>
<td>$N$</td>
<td>3,16</td>
<td>1,64</td>
<td>132</td>
<td>Semidura.</td>
</tr>
<tr>
<td>Tangencial cota de dureza $N/D^2$</td>
<td>13,13</td>
<td>6,81</td>
<td>6,78</td>
<td>132</td>
<td>Alta.</td>
</tr>
<tr>
<td>Radial cota de dureza $N'/D^2$</td>
<td>4,15</td>
<td>2,495</td>
<td>2,486</td>
<td>132</td>
<td>Dura.</td>
</tr>
</tbody>
</table>

**NOTA:** - el peso específico viene expresado en gramos/cm³.
- las resistencias vienen expresadas en Kg/cm².
### CARACTERÍSTICAS MECÁNICAS EN EL SENTIDO DE LA FIBRA DE LA MADERA

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS</th>
<th>MEDIA</th>
<th>DESVIACIÓN ESTANDAR</th>
<th>DESVIACIÓN TÍPICA</th>
<th>NUMERO DE ENSAYOS</th>
<th>INTERPRETACIÓN SEGÚN LA NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Compresión axial</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valor al 12%</td>
<td>$C_{12}$</td>
<td>407,49</td>
<td>90,58</td>
<td>90,43</td>
<td>301</td>
</tr>
<tr>
<td>cota de calidad</td>
<td>$C_{12}$</td>
<td>8,20</td>
<td>1,76</td>
<td>1,76</td>
<td>300</td>
</tr>
<tr>
<td>específica.</td>
<td>$C_{100D}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tracción paralela a la fibra</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valor al 12%</td>
<td>$U$</td>
<td>850,13</td>
<td>199,43</td>
<td>198,81</td>
<td>161</td>
</tr>
<tr>
<td><strong>Flexión Estática</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cota de rigidez</td>
<td>$C_r$</td>
<td>35,14</td>
<td>13,13</td>
<td>13,09</td>
<td>160</td>
</tr>
<tr>
<td>cota de flexión</td>
<td>$C_f$</td>
<td>17,13</td>
<td>3,92</td>
<td>3,91</td>
<td>160</td>
</tr>
<tr>
<td>cota de tenacidad</td>
<td>$C_t$</td>
<td>2,05</td>
<td>0,41</td>
<td>0,41</td>
<td>160</td>
</tr>
<tr>
<td><strong>Módulo de elasticidad</strong></td>
<td>E</td>
<td>88.316,05</td>
<td>27.993,41</td>
<td>27.877,5</td>
<td>121</td>
</tr>
<tr>
<td><strong>Flexión resistencia unitaria al choque</strong></td>
<td>K</td>
<td>0,38</td>
<td>0,19</td>
<td>0,19</td>
<td>132</td>
</tr>
<tr>
<td><strong>Dinámica:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cota dinámica</td>
<td>$K/D^2$</td>
<td>1,64</td>
<td>0,82</td>
<td>0,81</td>
<td>132</td>
</tr>
<tr>
<td><strong>Esfuerzo</strong></td>
<td>Radial</td>
<td>$Z$</td>
<td>108,45</td>
<td>18,71</td>
<td>18</td>
</tr>
<tr>
<td>cortante $Z$</td>
<td>Tangencial</td>
<td>$Z'$</td>
<td>111,89</td>
<td>29,13</td>
<td>28,35</td>
</tr>
</tbody>
</table>

**NOTA:** todas las tensiones vienen expresadas en Kg/cm².
<table>
<thead>
<tr>
<th>CARACTERISTICAS</th>
<th>MEDIA</th>
<th>DESVIACION ESTANDAR</th>
<th>DESVIACION TIPICA</th>
<th>NUMERO DE ENSAYOS</th>
<th>INTERPRETACION SEGUN LA NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Tracción resistencia unitaria.</td>
<td>R_H</td>
<td>8,36</td>
<td>2,21</td>
<td>110</td>
<td>Madera de calidad baja.</td>
</tr>
<tr>
<td>tangencial</td>
<td>C_e</td>
<td>0,17</td>
<td>0,07</td>
<td>110</td>
<td>Madera muy hendible o laminable.</td>
</tr>
<tr>
<td>b) radial</td>
<td>R'_H</td>
<td>13,62</td>
<td>5,65</td>
<td>102</td>
<td>Madera de calidad baja.</td>
</tr>
<tr>
<td>resistencia unitaria</td>
<td>C'_e</td>
<td>8,24</td>
<td>0,05</td>
<td>102</td>
<td>Madera medianamente hendible o laminable.</td>
</tr>
<tr>
<td>cota de laminabilidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Tracción resistencia unitaria.</td>
<td>H</td>
<td>17,96</td>
<td>4,74</td>
<td>152</td>
<td>Madera de calidad baja.</td>
</tr>
<tr>
<td>tangencial</td>
<td>C_a</td>
<td>0,36</td>
<td>0,097</td>
<td>152</td>
<td>Madera de mediana adherencia.</td>
</tr>
<tr>
<td>cota de adherencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) radial</td>
<td>H'_</td>
<td>18,69</td>
<td>5,05</td>
<td>134</td>
<td>Madera de baja calidad.</td>
</tr>
<tr>
<td>resistencia unitaria</td>
<td>C'_a</td>
<td>0,38</td>
<td>0,1</td>
<td>134</td>
<td>Madera de mediana adherencia.</td>
</tr>
<tr>
<td>cota de adherencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compresión perpendicular a las fibras</td>
<td>C'_</td>
<td>64,22</td>
<td>18,53</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

**NOTA:** todas las tensiones vienen expresadas en Kg/cm².
2.6. **Características tecnológicas.**

De acuerdo con los datos teóricos dados en las anteriores características, la tecnología del pino insignis es la siguiente:

**2.6.1. Lejición.** Como norma general, la madera de pino insignis presenta facilidad a la penetración por las lejías en el proceso de cocción, que le hace ser una especie tecnológicamente muy apta para la realización de este proceso.

**Lejición a lo ácido (pastas al bisulfito).** La característica más importante que se exige a la materia prima para la aplicación de éste proceso es la de poseer muy poca resina, ya que ésta queda insoluble en la fibra final. Por ello, la madera de pino insignis es una materia prima especialmente indicada para éste proceso. (Proceso prácticamente relegado en España).

De acuerdo con el estudio "Pinus insignis, crecimiento y producción en el Norte de España y aplicación a la elaboración de pastas de celulosa" la longitud rotura del papel obtenido a partir de la pasta es de alrededor de 10.140 m. (de abeto es de 6.340 m.), confirma la especial aptitud de esta especie a éste proceso tecnológico.

Si bien las características de resistencia de esta pasta son muy buenas, su apariencia de blancura deja mucho que desear, como consecuencia de la elevada proporción de nudos. Esto hace que, en gran porcentaje, la calidad de la pasta obtenida sea, principalmente, de segunda.

**Lejición a la base (pastas a la sosa o pastas al sulfato).** Las características que exige este proceso tecnológico a la materia prima son, principalmente, las siguientes:
da longitud de fibra larga, alto contenido en celulosa, facilidad de lejición, facilidad de blanqueo. El pino insignis proporciona un rendimiento normal de la operación, sin dificultades tecnológicas, debidas a su relativa blandura, sus especiales características de longitud de la fibra hace que la pasta tenga unas condiciones mecánicas excepcionales; por último, la blancura de su madera hace que las necesidades de reactivos para su blanqueo sean pequeñas, de hecho es la conífera española que menor consumo de cloro necesita.

2.6.2. Desfibrado. La escasa adherencia de las fibras puesto de relevancia en los resultados de características mecánicas transversales a la fibra (hienda y tracción), hace que la operación de desfibrado se realice fácilmente y con un pequeño consumo de energía.

Los tableros resultantes poseen unas características mecánicas elevadas, como consecuencia de la elevada esbeltez de las fibras 87,5 muy superior a la de cualquier otro pino de aprovechamiento en España. En cuanto a sus características superficiales, también son bastante destacables, por su blancura y por su relativa dureza, debida a la propia dureza de la madera.

El papel resultante de la pasta mecánica obtenida, también posee elevadas características mecánicas; sin embargo, pierde calidad en su aspecto, al producirse un moteado con alguna partícula obscura, precedente de los nudos.

Los rendimientos industriales de ésta operación son los siguientes:
Para 1 m3. de madera con corteza se obtiene:
- 450 Kg. de pasta mecánica seca.
- 0,475 m3. de tablero de fibras duro.
- 0,600 m3. de tablero de fibras de media densidad.

2.6.3. Astillado. Para la realización del astillado, juegan dos factores característicos de la madera: la dureza, en la penetración de la cuchilla, y la hienda, en el desgarro de la madera por la cuchilla. Al ser la madera de pino insignis medianamente dura y de fácil hienda, su astillado se realizará relativamente fácil, con consumo de energía mediano.

Las características de resistencia de los tableros de partículas de madera de pino insignis dependen fundamentalmente de las características de la propia madera, del tamaño y forma de las partículas y de la cola. En este sentido, los tableros obtenidos con esta madera poseen unas características medianas frente a los demás pinos. No obstante, existen otros factores que intervienen en la calidad del tablero, como es el caso del contenido de resinas de la madera, ya que ésta se interpone entre la partícula y la cola, debilitando su unión. Es por ello por lo que los tableros de partículas de pino insignis poseen una resistencia grande frente a otras maderas.

En cuanto al aspecto del tablero, es también muy bueno, debido a su blancura y a la ausencia de manchas de resina; no obstante, la elevada proporción de nudos produce un moteado de su superficie.
El rendimiento industrial de la fabricación de tableros de partículas con madera de pino insignis es la siguiente:

1 m³ de madera c/c. produce 0,65 m³ de tablero.

2.6.4. Características del desenrollo.

La elevada proporción de nudos de esta madera, hace que no se aplique para este proceso tecnológico, ya que el resultado sería la obtención de una chapa con abundantes agujeros procedentes de los nudos de madera.

El desenrollo en sí sería fácilmente realizable, e incluso su elevada elasticidad permitiría obtener una chapa continua con relativa facilidad.

2.6.5. Características del aserrado.

El aserrado de los troncos se debe realizar lo más rápidamente posible, dado que su disposición al ataque por los hongos, su relativa facilidad para secarse al aire y su elevada contracción volumétrica, provocaría la aparición de defectos de azulado y fendas.

La mayor o menor facilidad de penetración de las herramientas de corte en la madera viene determinado por su dureza. La relativa alta dureza del pino insignis hace recomendable que para el aserrado se utilicen sierras con ángulo de ataque no muy elevado y el paso muy corto, de forma que disminuyan los esfuerzos sobre los dientes, logrando una mejor calidad en el aserrado y una mayor dureza de las sierras.
A modo indicativo, en el cuadro n°. 16 se relaciona el ángulo de ataque "a" ángulo de afilado "b" y la profundidad del diente "p" en relación con la anchura de la cinta. (*)

**CUADRO N°. 16**

<table>
<thead>
<tr>
<th>CARACTERISTICAS DE LAS SIERRAS DE CINTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchura de la cinta (mm).</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>p (mm)</td>
</tr>
</tbody>
</table>

Respecto al paso, no se da una cifra indicativa, porque depende también de la velocidad de avance de la madera y de la velocidad de la cinta, aumentando con la primera y disminuyendo con la segunda.

La homogeneidad de los troncos, tanto en calidades como en dimensiones y forma y la elevada concentración de estos en un espacio relativamente pequeño, permitiría la instalación de líneas de aserrado totalmente automatizadas, de producción y rendimientos muy elevados. No obstante, dicha homogeneidad de los troncos permite que aún las unidades de aserrado más pequeñas puedan automatizarse con pequeña inversión y con notables beneficios en el rendimiento de su producción.

(*) Manual para el afilado y conservación de sierras de cinta y circulares. Ed. AITIM
El rendimiento del aserrado oscila alrededor del 50% de la madera en rollo con corteza, obteniendo como subproductos, alrededor del 9% de serrín y el resto residuos sólidos de los cuales, la mitad podrían aprovecharse para tablillas de envase u otro producto de pequeñas dimensiones.

2.6.6. Características del secado de la madera aserrada.

Como ya se indicó anteriormente, la disposición de esta madera al ataque de los hongos cromógenos, su elevada contracción volumétrica y su relativa facilidad por secarse al aire, aconsejan proceder al secado, inmediatamente después del aserrado, ya sea al aire libre o en condiciones de humedad, temperatura y velocidad del aire controladas.

- Secado al aire libre: Se realiza de forma relativamente rápida (*), no obstante, se recomienda un apilado de forma que se favorezca la buena circulación del aire, pues de lo contrario, la madera corre el riesgo de azularse. En este sentido, las pilas de madera deben presentar las siguientes características:

  - Orientación perpendicular a los vientos dominantes.
  - Sitúarse sobre un soporte rígido elevado al menos 50 cm. del suelo.
  - Separarse cada piso de madera mediante rastreles de al menos 3,5 cm. de altura y 25 de anchura. Dentro de un mismo piso los rastreles deben de ir distan

(*) Según se pudo constatar con opiniones de varios fabricantes.
ciados 90 cm. como máximo, de forma que no se produzca combamiento de la madera aserrada.

- Proteger la pila de la lluvia y el sol, mediante un tejadillo.

La duración del secado depende de las condiciones climáticas propias del lugar donde se realiza el secado, de la época del año, de la humedad inicial y final de la madera y del espesor de ésta. A nivel simplemente indicativo, madera de 12 a 18 mm. de espesor, necesita alrededor de 2 meses para alcanzar entre el 15 y el 18 % de humedad, cuando el secado se realiza durante los meses de primavera, verano o otoño, mientras que si se inicia a mediados de otoño, invierno, la madera no alcanzará ese grado de humedad hasta la primavera siguiente.

Por debajo del 13 ó 14 %, la madera es prácticamente imposible de secar, debiéndose realizar en condiciones de temperatura y humedad controlada.

-Secado en secaderos tradicionales. (Secado por temperatura).: La elevada contracción volumétrica de ésta madera, así como la abundancia de nudos, aconsejan realizar un secado relativamente cuidadoso para que el gradiente de humedad de la madera no sea excesivamente grande y así evitar las elevadas tensiones causantes de las fendas.

En base a estas consideraciones, las condiciones de humedad y temperatura del secadero deben tener en cuenta lo siguiente:

- La temperatura durante todo el proceso no debe ser excesivamente elevada, aun a costa de una mayor duración del secado.
- La humedad relativa del secadero debe corresponder a una humedad de equilibrio higroscópico, ligeramente inferior a la humedad que en ese momento posea la madera, sobre todo en las últimas fases del secado.

En los cuadros números 17 y 18 se dan las cédulas y tiempos aconsejables para el secado de la madera de pino insignis, en función del espesor, humedad inicial y final de la madera (*). Como se puede comprobar, la cédula europea es mucho más rigurosa, tanto en temperatura, como en humedad de equilibrio higroscópico, y por tanto de menor duración. La cedula americana es mucho más laboriosa y cuidadosa, para obtener una mejor calidad de la madera.

La rectitud de las fibras de la madera de pino insignis y la relativa igualdad entre los coeficientes de contracción tangencial y radial (relación 1,5) garantizan una ausencia de deformaciones durante el secado.

- Secado por deshumificación o bomba de calor: Este proceso de secado se adapta perfectamente a las características de la madera de pino insignis, ya que, por una parte, el secado se realiza mucho más lentamente que por calor y, por tanto, existen menos riesgos de que se produzcan fendas. Por otra parte, la relativa facilidad de esta madera a perder agua hace que sea posible secar la madera dentro de un tiempo razonable, a valores de condiciones de interior.

Así, madera de 50 mm. de espesor puede pasar del 60 al 10 % de humedad en aproxi-

(*) Según el Princes Rinsborough Laboratory y Forests Products Laboratory, Madison, respectivamente y publicado por ALTIM "Manual del Secado de la Madera".
<table>
<thead>
<tr>
<th>Fase</th>
<th>Humedad de la madera</th>
<th>Célula de secado para gruesos de hasta 4 cm.</th>
<th>Tiempos de secado según gruesos (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temperatura bulbo seco</td>
<td>Temperatura bulbo humedodo</td>
</tr>
<tr>
<td>1</td>
<td>50 %</td>
<td>71</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>50 - 30 %</td>
<td>76,5</td>
<td>68,5</td>
</tr>
<tr>
<td>3</td>
<td>30 - 20 %</td>
<td>82</td>
<td>70,5</td>
</tr>
<tr>
<td>4</td>
<td>20 - H final</td>
<td>88</td>
<td>65,5</td>
</tr>
</tbody>
</table>

(*) El tiempo en las fases 1 y 4 depende de la humedad inicial y final que se quiera obtener. Para dar una idea de los tiempos necesarios se ha supuesto una humedad inicial del 60% y una humedad final del 10%.

NOTA: No se ha incluido el programa propio para la realización del HOMOGENIZADO Y DEL ACONDICIONADO.
CUADRO N° 18

CEDULA AMERICANA DE SECADO, Y TIEMPOS EN HORAS NECESARIAS PARA CADA INTERVALO

<table>
<thead>
<tr>
<th>Fase</th>
<th>Humedad de la madera</th>
<th>Cedula de secado según distintos gruesos</th>
<th>Tiempos de secado según distintos gruesos (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hasta 5 cm. de grueso</td>
<td>De 6 a 10 cm. de grueso</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperatura bulbo seco</td>
<td>Temperatura bulbo húmedo</td>
</tr>
<tr>
<td>1</td>
<td>35 %</td>
<td>54,5</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>35-30 %</td>
<td>54,5</td>
<td>46,5</td>
</tr>
<tr>
<td>3</td>
<td>30-25 %</td>
<td>60</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>25-20 %</td>
<td>65,5</td>
<td>51,5</td>
</tr>
<tr>
<td>5</td>
<td>20-15 %</td>
<td>71</td>
<td>54,5</td>
</tr>
<tr>
<td>6</td>
<td>15-H final</td>
<td>71</td>
<td>43</td>
</tr>
</tbody>
</table>

(*) El tiempo en las fases 1 y 4 dependen de la humedad inicial y final que se quiera obtener.
Para dar una idea global de los tiempos necesarios, se ha supuesto una humedad inicial y final del 60 y 10 % respectivamente.

NOTA: No se ha incluido el programa propio de las operaciones del HOMOGENIZADO Y DEL ACONDICIONADO.
madamente 20 días. Para madera de 35 mm. de espesor, la duración del secado sería de alrededor de 13 días.

Dado que las necesidades de condensación del agua varían considerablemente de la primera fase del secado a la última, conviene que pueda regularse la capacidad de condensación del equipo deshumificador, ya que de lo contrario, podría producirse defectos de azulado o fenómenos de cementación, según si la capacidad de condensación es insuficiente o excesiva, respectivamente.

Por ello, conviene establecer varias fases durante el secado, de forma que al principio actue toda la capacidad del deshumificador, para después, de forma progresiva, ir perdiendo capacidad de condensación.

La calidad del secado es bastante buena, pues es difícil la aparición de fendas u otros defectos. El único defecto que se puede señalar es la irregularidad de los valores de la humedad final.

2.6.7. Tecnología de la unión.

La relativa dureza de esta madera hace que los clavos, tornillos y clavijas metálicas penetren con cierta dificultad, sobre todo si se compara con la de otros pinos de aprovechamiento en España. Es por ello aconsejable introducirlos después de un preta-ladrado de diámetro hasta 3/4 el diámetro del clavo o tornillo, para así evitar la aparición de fendas.

Si bien no se han realizado ensayos de arranque de tornillos y clavos, del conocimiento de su densidad se pueden sacar los siguientes valores aproximados.
Resistencia al arranque perpendicular a la fibra, en Kg. por mm. de penetración.

- En clavos: 0,82 x d.
- En tornillos: 2,39 x d.

siendo d el diámetro del clavo o tornillo.

La resistencia al arranque paralelo a la fibra es aproximadamente el 67 % de los valores anteriores.

En cuanto a las uniones por encolado, no se conoce antagonismo con ninguna de las colas existentes actualmente, siendo la calidad de la unión en general muy buena. Únicamente en los nudos se ha detectado ciertos problemas en la calidad de la unión que incluso quedan desencoladas.

2.6.8. Acabados.

La mayor o menor facilidad del cepillado, regruesado y moldeado depende fundamentalmente de la facilidad de penetración de las cuchillas, esto es de la dureza, y en menor medida de la hienda, por tanto, la madera de pino insignis se elabora en estas máquinas con mediana facilidad.

La calidad del acabado de estas máquinas es bastante buena, no suele aparecer re-pelo, sin embargo es frecuente la aparición de mordedura de la fibra alrededor de los nudos.

Si la superficie se destina a barnizar, es conveniente realizar un acabado más perfec-tico de su superficie, mediante su lijado.
El lijado debe empezarse con lija de grano 40, aumentando el grano en esta cantidad hasta la calidad que se desee. También puede operarse con 40, 60, 80 y 120 si se desea mayor calidad. Esta operación se realiza fácilmente, no produciéndose embotamientos, dada la escasez de resina de esta madera.

Las pinturas y barnices se adhieren bien, no existiendo incompatibilidad con los productos actuales. No obstante, dada la gran capacidad de absorción de esta madera, conviene aplicar previo al barnizado y pintado un tapaporos, que limite esta absorción. También conviene incorporar un tinte que dé más estabilidad al color de la madera, cuando esta debe barnizarse.

Estas dos últimas operaciones se pueden reunir en una sola, aplicando una masilla de protección ultravioleta, que a la vez hace de tapaporos. Esta masilla se aplica en una cantidad de alrededor de 40 gr/m², mediante cilindros de contacto.

2.6.9. Tratamiento.

Por una parte, la elevada porosidad de esta madera \((1 - \frac{p_0}{1,5}) = 0,69\); por otra parte, su alto contenido en celulosa (y por tanto el bajo contenido en lignina) y su escaso contenido en resina, hace que esta madera tenga elevada capacidad de absorción siendo relativamente fácil el tratamiento protector, sea cual fuere el sistema de aplicación elegido.
3.- TENSIONES BASICAS DE LA MADERA.

3.1.- CONCEPTO.

Para aplicar una pieza de madera en fines estructurales es necesario conocer la tensión de trabajo de esa pieza, definiéndose ésta, por la tensión que puede soportar de forma segura y permanente, sin deformarse más allá de los límites establecidos.

Idealmente esta tensión se obtendría sometiendo a las piezas estructurales, en sus dimensiones reales, a cargas reales y permanentes. Para llevar a cabo su cálculo, sería necesario realizar los numerosos ensayos que cubran los diferentes condiciones, tanto de las cargas (luces, dimensiones, tipos de carga y aplicación de ésta) como de la madera (defectos, humedad, etc...), que unido a la dificultad propia de los ensayos, hacen que el procedimiento sea virtualmente imposible de realizar.

Los dificultades anteriormente expuestas hacen que el procedimiento para su cálculo se realice a partir del conocimiento de la tensión básica y de los defectos de la madera, comprobando los resultados obtenidos mediante la realización de algunos ensayos en dimensiones estructurales.

La tensión básica es la tensión de trabajo de la pieza ideal libre de defectos. El método utilizado para su cálculo es el seguido por Sunley (1965) del Forest Products Research Laboratory, Princes Risborough y contenido en la norma "BS Code of practice CP 112" de 1967, basado en los resultados de los ensayos mecánicos sobre probetas de pequeñas dimensiones.

Obtenidos los resultados de los ensayos, la tensión básica se calcula, teniendo en cuenta los siguientes factores:
- Humedad.
- Variabilidad de los resultados obtenidos en los ensayos.
- Carga de larga duración.
- Garantía de que cualquiera que sean las condiciones de trabajo, las cargas no sobrepasen el límite elástico.
- Coeficiente de seguridad.

**Humedad**: La humedad de la madera, cuando está comprendida entre el estado anhídrico y el punto de saturación de las fibras, influye de manera notable en las características físicas y mecánicas de la madera. Así, de acuerdo con los datos reflejados en el Anexo no III la variación de las características mecánicas con la humedad son las siguientes:

Porcentaje de variación de las características mecánicas por cada grado de humedad:

- Flexión .................... 1,59 %
- Módulo de elasticidad ........... 1,49 %
- Esfuerzo cortante ............. 1,81 a 1,87 %
- Compresión axial .............. 1,94 %
- Compresión perpendicular a la fibra ................... 1,99 %

Por encima del punto de saturación de las fibras, las características mecánicas permanecen prácticamente constantes. Es por ello por lo que la tensión básica se debe calcular en función de un grado de humedad determinado, modificando el valor obtenido cuando la humedad de la pieza difiera de la humedad del ensayo.

En el presente estudio se analizarán las tensiones básicas para las humedades del 12% 18% y en estado verde.

**Variabilidad de los resultados obtenidos en los ensayos**: Las características físico mecánicas varían de forma notable entre individuos de la misma especie, o incluso como se verá posteriormente con la zona del árbol de donde provenga la madera, si es de rama o es del tronco y dentro del tronco si está a mayor o menor altura. Si se realiza un número
adecuado de ensayos, se obtendrá una serie de valores de las tensiones, cuyo diagrama de frecuencias se ajustará aproximadamente a la Campana de Gauss. Para fijar la tensión básica se debe tomar aquella tensión que nos garantice que un alto porcentaje de las piezas de esa madera van a resistir los esfuerzos.

Para el caso de flexión, módulo de elasticidad, tracción paralela a las fibras y esfuerzo cortante, el porcentaje que se aplica es del 99%. Para el caso de compresión perpendicular a la fibra, dado que la rotura no se produce de forma repentina con pérdida de sus cualidades de sustentación, hace que el porcentaje de seguridad que se aplique sea del 97,5%.

Duración de la carga: La duración de aplicación de la carga influye de manera notable en la magnitud de la carga de rotura de las piezas. Así, si una pieza cargada durante 5 minutos resiste 100 unidades, cargada durante 10 años resistiría solo 60 unidades, o durante 1 segundo, 125 unidades. Dado que los ensayos realizados en el laboratorio se realizan de una forma más bien rápida (alrededor de 3 minutos de duración de la carga) el cálculo de la tensión básica debe hacerse aplicando coeficientes de reducción a los valores obtenidos de los ensayos.

Garantía de que cualquiera que sean las condiciones de trabajo, las cargas no sobrepasen el límite elástico: Dado que los valores obtenidos en los ensayos de probetas se refieren al valor de la carga de rotura, la tensión básica debe obtenerse a partir de la carga correspondiente al límite elástico. Por ello, para su cálculo lo que se hace es aplicar un coeficiente de reducción a los valores obtenidos de los ensayos de las probetas hasta la carga de rotura.

Coeficiente de seguridad: Al igual que otros materiales estructurales, la tensión básica de la madera debe asumir los posibles errores en el diseño de la pieza, en su fabricación etc. Por ello, el procedimiento de cálculo seguido es aplicar un coeficiente reductor a los valores obtenidos en los ensayos de las probetas.
El procedimiento de cálculo seguido en el Código Ingles CP 112 engloba los tres coeficientes reductores debidos a la duración larga de la carga, al límite elástico y al coeficiente de seguridad en uno sólo cuyo valor, según el tipo de carga es el siguiente:

- Flexión, tracción paralela a las fibras y esfuerzo cortante: 2,25.
- Compresión perpendicular a la fibra: 1,20.
- Compresión paralela a las fibras: 1,40.
- Módulo de elasticidad: 1.

En resumen, el cálculo de la tensión básica se realiza a partir de los resultados $(T_i; H_i; C_i; Z_i; E_i)$ de los ensayos sobre probetas de pequeñas dimensiones, libres de defectos, a diferentes humedades aplicando las siguientes fórmulas:

Flexión estática

$$ \sigma = \overline{T} - \frac{2,33 \sigma}{2,25} $$

siendo $\sigma = $ desviación estándar

Tracción paralela a las fibras

$$ H = \frac{\overline{H} - 2,33 \overline{V_h}}{2,25} $$

Compresión perpendicular a la fibra

$$ C' = \frac{\overline{C'} - 1,96 \overline{V_t}}{1,2} $$

Esfuerzo cortante

$$ Z = \frac{\overline{Z} - 2,33 \overline{V_z}}{2,25} $$

Módulo de elasticidad medio

$$ E = \overline{E} $$

Módulo de elasticidad mínimo

$$ E_m = \frac{\overline{E} - 2,33 \overline{V_e}}{1,4} $$

Compresión paralela a las fibras

$$ C = \frac{\overline{C} - 2,33 \overline{V_t}}{1,4} $$
3.2. TENSIONES BÁSICAS.

3.2.1. Tensiones básicas en condiciones de interior. (humedad normal: 12%).

Aplicando las fórmulas anteriores a los resultados de los ensayos sobre las pruebas de pino insignis (cuadros n°s. 14 y 15), se obtienen los siguientes valores de tensiones básicas:

- Flexión paralela a las fibras .................... 170 Kg/cm².
- Tracción paralela a las fibras .................... 191 "
- Compresión paralela a las fibras ................ 140 "
- Compresión perpendicular a las fibras .......... 23 "
- Esfuerzo cortante .................................. 16 "
- Módulo de elasticidad medio .................... 88.000 "
- Módulo de elasticidad mínimo .................. 23.000 "

Para la obtención de la tensión básica correspondiente al esfuerzo cortante se ha aplicado como coeficiente reductor, debido a la variabilidad de los resultados, el correspondiente a la t de Student para los grados de libertad, propios de los ensayos realizados, en dirección radial y tangencial. El valor de la tensión básica final, es el correspondiente al valor mínimo de las dos direcciones consideradas.

3.2.2. Tensiones básicas en condiciones de exterior. (humedad 18 %).

Se han obtenido, a partir de las tensiones básicas, el 12 %, aplicándolas los coeficientes reductores debidos a la humedad, calculados en el Anexo n° 3. (Cuadros núme-
ros 38, 39, 40, 41 y 42).

Los valores que se obtienen son los siguientes:

- Flexión estática paralela a las fibras ............... 155 Kg/cm².
- Tracción paralela a las fibras ....................... 174 "
- Compresión paralela a las fibras ................... 123 "
- Compresión perpendicular a las fibras .............. 20 "
- Esfuerzo cortante .................................... 14 "
- Módulo de elasticidad medio ......................... 80,000 "
- Módulo de elasticidad mínimo ....................... 21,000 "

3.2.3. Tensiones básicas de la madera en verde.

Se han obtenido aplicando a las tensiones básicas el 12 %, los mismos coeficientes reductores que en el caso anterior, suponiendo que la humedad de la madera es de 35 % (humedad en el punto de saturación de la fibra).

Los valores que se obtienen son los siguientes:

- Flexión estática paralela a las fibras ............... 110 Kg/cm².
- Tracción paralela a las fibras ....................... 123 "
- Compresión paralela a las fibras ................... 77 "
- Compresión perpendicular a las fibras .............. 12 "
- Esfuerzo cortante .................................... 9 "
- Módulo de elasticidad medio ......................... 58,000 "
- Módulo de elasticidad mínimo ....................... 15,000 "
3.2.4. Clasificación.

De acuerdo con los valores de tensiones obtenidos, la madera de pino insignis puede clasificarse, en cuanto a características de resistencia mecánica, en el grupo "G1". (*)

(*) De acuerdo con la clasificación dada en el libro "Estructuras de madera" por Cesar Peraza Oramas, Ed. Escuela de la Edificación. Págs. 290-291.
3.3. - TENSIONES DE TRABAJO.

Como ya se definió anteriormente, la tensión básica es la tensión de trabajo de una pieza libre de defectos. La aplicación de madera libre de defectos, en la construcción es prácticamente imposible, lo normal es que la madera se vea afectada en menor o mayor medida por los mismos.

Los análisis de ensayos de resistencia de maderas, han demostrado que existe una relación entre el tamaño y posición de cualquier defecto y las propiedades de resistencia de la madera.

Estas relaciones constituyen el fundamento de las tablas de valores de los coeficientes de reducción de resistencia en función del tipo y tamaño del defecto y su posición en las piezas.

No es necesario recoger en este trabajo estas tablas, pues es un tema suficientemente estudiado y conocido; no obstante, se van a exponer unas ideas generales sobre la influencia de los defectos en la resistencia de la madera. (*)

- La inclinación de la fibra reduce la resistencia proporcionalmente a la inclinación.

La resistencia a la flexión o a la tracción no disminuye con una inclinación de 1:40; disminuye muy poco si la inclinación es de 1:20; pero queda reducida a casi la mitad cuando es de 1:8. La resistencia a la compresión paralela a la fibra apenas se reduce con la inclinación de 1:15, y se reduce casi a la mitad con una inclinación de 1:6. Los valores de la resistencia al esfuerzo cortante y a la compresión perpendicular a la fibra no se alteran por la inclinación de ésta. Con una inclinación

de la fibra limitada en consideración a la resistencia, el efecto en la rigidez es pequeño. La inclinación de la fibra en elementos constructivos sometidos a flexión —es más crítica en las zonas de mayor carga de tracción o compresión.

- Los nudos en las caras horizontales de las piezas sometidas a flexión o en cualquier cara de un pie derecho o columna, disminuyen la resistencia a la flexión, a la tracción y a la compresión, en la proporción que garde el tamaño del nudo con la anchura de la cara. Cuando ocupa la porción central de la altura de un elemento sometido a flexión es válida la misma proporción. La resistencia de una pieza sometida a flexión, con un nudo en la arista superior o inferior de una cara vertical, está en proporción del cuadrado de la altura (después de deducida la dimensión del nudo) al cuadrado de la altura total de la pieza. Existe mayor deformación proporcional de la fibra alrededor de los nudos grandes que de los pequeños, de manera que las anteriores reglas de proporcionalidad se conservan sólo para las caras estrechas de 15 cm. (6 pulgadas) a las anchas que no pasen de 30 cm. (12 pulgadas). Por encima de estos valores, el aumento de las dimensiones permisibles del nudo está en proporción con la raíz cuadrada del incremento de la anchura de la cara. Los nudos producen un efecto relativamente inapreciable en la resistencia al esfuerzo cortante y a la compresión perpendicular a la fibra. Se considera que los nudos huecos tienen el mismo efecto en la resistencia que los nudos normales.

- Las aceboiladuras, las grietas y las fendas reducen la resistencia al esfuerzo cortante horizontal de una madera sujeta a esfuerzo de flexión. Dado que a la mayor parte de tales elementos se aplican cargas distribuidas, el efecto de la resistencia al esfuerzo cortante se considera únicamente en los extremos de la pieza y en la parte de la sección transversal próxima al eje neutro, donde los esfuerzos de corte horizontales son máximos. En esta zona, la reducción de la resistencia al esfuerzo cortante, en madera húmeda, es función de la relación existente entre la disminución efectiva del área resistente al esfuerzo de corte y del área total horizontal compren
dida por una distancia equivalente a tres veces la dimensión vertical del madera
Si la madera está seca, la reducción neta de la resistencia al esfuerzo cortante es
algo menor, debido al aumento de dicha resistencia en el área restante.

- La gema normalmente admitida tiene poca influencia sobre la resistencia, pero a
currentemente se impone un límite para las maderas de construcción por razones de
aspecto, de superficie de apoyo o de clavado. Las cavidades de barrenillo o de
otro origen se califican según la cantidad de madera destruída, considerando el
número y situación. Las bolas de resina influyen poco sobre la resistencia, pero
la presencia de un gran número de éstas puede ser indicio de tendencia a la ace
bolladura.

- La pudrición afecta grandemente la resistencia, no pudiendo, en general, apre-
ciarse a simple vista. No se asignan coeficientes de resistencia al material afec
tado. Tal defecto no se permite, por lo regular, en las maderas de construcción
de calidad superior, aunque a veces se tolera, hasta cierto límite, en las clases
inferiores o para usos menos exigentes. Los materiales de densidad muy baja y los
que tienen roturas por compresión quedan excluidos de las clases de madera de
construcción.

Dado que también la clasificación de la calidad de la madera aserrada se reali-
en función del tipo y tamaño del defecto, existe una relación entre la clave de cali-
dad de la madera y el coeficiente reductor de la resistencia.

La norma UNE 56.525-72 "Clasificación de la madera aserrada de coníferas"
(Anexo nº 6) asigna a cada clase de calidad un coeficiente reductor de la resiste-
cia. Para el caso del pino insignis, y teniendo en cuenta los porcentajes de cali-
des obtenidas, los coeficientes reductores son los siguientes:
- Calidad III : Coeficiente de reducción 0,6.

- Calidad IV : Coeficiente de reducción 0,5.

- Calidad VI : A ésta calidad no se le asigna coeficiente reductor, dado que con los defectos propios de su clase no se pueden utilizar las piezas con fines de resistencia.
4. - APPLICACION DE LA MADERA EN FUNCION DE SUS CARACTERISTICAS.

4.1. - LA ELABORACION DE PASTAS Y SUS PERSPECTIVAS.

En el apartado 2.7 "Características tecnológicas" se indicaba la perfecta aptitud de esta madera para la elaboración de pastas, tanto por el procedimiento mecánico como por los procedimientos químicos, al bisulfito o al sulfato, resultando un producto de calidad excelente, sobre todo en lo que se restringe a características mecánicas, el mejor de cuantos coníferas se aprovechan en España.

Estas razones son las que impulsaron al desarrollo vertiginoso de sus repoblaciones, siendo hasta hoy día el principal destino de aplicación de su madera (70%).

No se tienen datos exactos sobre la evolución del consumo de pino insignis para pastas, no obstante, la evolución de la producción de éstas si puede dar una idea de su consumo.

En el cuadro n° 19 se da la evolución de la producción de pastas de madera en España en los últimos 20 años, según el Anuario de Estadística Agraria, que si bien, sus valores absolutos no reflejan la realidad de la producción sí indican la evolución de la misma y sus perspectivas.

**Cuadro n° 19**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastas mecánicas (x 1000 Tn)</td>
<td>73</td>
<td>146</td>
<td>159</td>
<td>197</td>
<td>181</td>
<td>184</td>
<td>215</td>
<td>240</td>
<td>186</td>
</tr>
<tr>
<td>Pastas químicas (x 1000 Tn)</td>
<td>176</td>
<td>230</td>
<td>427</td>
<td>583</td>
<td>693</td>
<td>777</td>
<td>883</td>
<td>898</td>
<td>925</td>
</tr>
<tr>
<td>Pastas semiquímicas (x 1000 Tn)</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>36</td>
<td>45</td>
<td>64</td>
<td>50</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>TOTAL</td>
<td>257</td>
<td>386</td>
<td>599</td>
<td>816</td>
<td>1009</td>
<td>1025</td>
<td>1148</td>
<td>1168</td>
<td>1144</td>
</tr>
</tbody>
</table>
La materia prima principal que nutre las fábricas de pastas mecánicas es la madera de pino insignis, por lo que todo lo que se refiere a la producción de pastas de puede hacer extensivo al consumo de madera de ésta especie. En el Cuadro se aprecia, como hasta 1973 la producción crece rápidamente, a un ritmo superior al 10 % anual para después mantenerse prácticamente constante, con ligeras fluctuaciones anuales.

De acuerdo con los datos reflejados en el apartado 1.4.4. el volumen de madera con destino a ésta industria se sitúa alrededor de 675.000 m$^3$.

En cuanto a la industria de pastas químicas, el estudio de la evolución del consumo de madera de pino insignis a partir de la producción es mucho más complejo que en el caso anterior, ya que son varias las especies que se utilizan, existiendo variaciones en los porcentajes de utilización de éstas especies. Así, mientras que hace una década, se fabrica al 50 % pasta de fibra corta y pasta de fibra larga, en la actualidad la proporción es del 75 al 85 % de fibra corta, frente al de 25 al 15 % de fibra larga.

La causa principal de esta tendencia estriba en el alto precio de las maderas de coníferas en fábrica, sobre todo si se compara con el resto de Europa y sobre todo con EE.UU y Canadá. Esto hace que se tienda a reducir el porcentaje de utilización de fibra larga en la fabricación de papel y a importar en vez de producir pasta de fibra larga.

Del análisis del cuadro n° 19 se aprecia como la producción de pastas químicas crece prácticamente de forma continuada desde 1964 a un ritmo de cerca del 12 % de incremento anual, si bien, en los últimos años con tendencia a estabilizarse.

El resultado, por una parte de la tendencia de reducción del consumo y por otra del incremento de la producción, parece ser negativa (*) en cuanto a consumo de

(*) De acuerdo con las opiniones de los industriales.
pino insignis, a no ser que cambien drásticamente los precios de la materia prima, o que suba el valor en pesetas el precio internacional de la pasta de fibra larga.
4.2. - LOS TABLEROS Y SUS PERSPECTIVAS.

4.2.1. - Tableros de fibras.

En el apartado 2.7. "Características tecnológicas" se indicaba la idoneidad de la madera de pino insignis para su aplicación en la elaboración de tableros de fibras, tanto por la facilidad de su proceso tecnológico como por las elevadas características mecánicas y de superficie que se obtiene del tablero.

El consumo de pino insignis con destino a la elaboración de tableros, es hoy día muy pequeño, dado que de las cinco fábricas existentes en España, sólo existe una que se encuentra próxima al área de implantación del pino insignis, consumiendo ésta madera de forma conjunta con otras especies.

La evolución de la producción de tableros de fibras en los últimos años es la siguiente:

En tableros de fibras duras existen 3 instalaciones de la empresa Tafisa que han producido de forma regular en el último decenio alrededor de 145.000 m³/año.

En tableros de fibras de densidad media existen 2 instalaciones, una en la provincia de Teruel, que desde 1977-78 lleva produciendo alrededor de 80.000 m³/año y la otra en la provincia de La Coruña, que desde 1980-81 produce unos 100.000 m³/año.

La tendencia de la producción de tableros es la siguiente:

En tableros de fibras duras, la estabilidad en la producción durante el último decenio parece ser el indicativo de la tendencia de producción. Esta tendencia solo podrá modificarse como consecuencia de un cambio en el crecimiento económico o
como resultado de una ampliación del mercado de sus aplicaciones, hoy día fundamentadas en el mercado del mueble.

El tablero de fibras de densidad media es un producto de reciente aplicación en el mercado europeo (la empresa INTAMASA fue la primera de Europa) con un mercado en fuerte expansión en donde sus posibilidades de aplicación no están todavía satisfechas. Ante éstas tendencias, las perspectivas de utilización de la madera de pino insignis para la fabricación de tableros de fibras son bastante optimistas, considerándose de suma importancia la realización de un estudio de mayor profundidad que confirme dichas perspectivas.

4.2.2.- Tableros de partículas.

Como ya se analizó anteriormente, la madera de pino insignis es perfectamente apta para su aplicación en la fabricación de tableros de partículas, resultando un producto de gran calidad, tanto en su aspecto como en sus características mecánicas.

El estudio de la evolución de su consumo y perspectivas es un tanto complicado, dado que la mayoría de las empresas se abastecen de varias especies de madera. Solo una empresa, situada en la provincia de Vizcaya (INAMA), se autoabastece únicamente a partir del pino insignis, el resto de las empresas situadas en su área de aprovechamiento, utilizan pino insignis con mezclas con otras maderas.

En el cuadro nº 20 se detalla la evolución de la capacidad de producción y la producción de tableros de partículas.
Cuadro n° 20

**EVOLUCION DE LA PRODUCCION Y CAPACIDAD DE PRODUCCION DE LOS TABLEROS DE PARTICULAS**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de fábricas</td>
<td>11</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>32</td>
<td>32</td>
<td>30</td>
<td>26</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Capacidad de producción (x 1000 m³)</td>
<td>200</td>
<td>1880</td>
<td>1950</td>
<td>2050</td>
<td>2150</td>
<td>2150</td>
<td>2020</td>
<td>1800</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
</tr>
<tr>
<td>Producción (x 1000 m³)</td>
<td>102</td>
<td>345</td>
<td>898</td>
<td>798</td>
<td>718</td>
<td>1199</td>
<td>1200</td>
<td>1350</td>
<td>1300</td>
<td>1300</td>
<td>1291</td>
</tr>
</tbody>
</table>

Fábricas instaladas en el área de aprovechamiento del pino insignis.

<table>
<thead>
<tr>
<th>Nº de fábricas</th>
<th>3</th>
<th>9</th>
<th>9</th>
<th>8</th>
<th>9</th>
<th>9</th>
<th>9</th>
<th>9</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de producción (x 1000 m³)</td>
<td>75</td>
<td>750</td>
<td>750</td>
<td>700</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Producción (x 1000 m³)</td>
<td>400</td>
<td>450</td>
<td>520</td>
<td>530</td>
<td>600</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Otras fábricas.

<table>
<thead>
<tr>
<th>Nº de fábricas</th>
<th>8</th>
<th>19</th>
<th>20</th>
<th>22</th>
<th>23</th>
<th>23</th>
<th>21</th>
<th>17</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de producción (x 1000 m³)</td>
<td>125</td>
<td>1,130</td>
<td>1,200</td>
<td>1,350</td>
<td>1,350</td>
<td>1,350</td>
<td>1,220</td>
<td>1,000</td>
<td>900</td>
</tr>
<tr>
<td>Producción (x 1000 m³)</td>
<td>799</td>
<td>750</td>
<td>830</td>
<td>770</td>
<td>700</td>
<td>650</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De las 23 fábricas que funcionaban en 1982, 3 se encuentran prácticamente paradas desde 1981 y 1 se ha cerrado durante 1983, con lo que la situación real de capacidad de producción es la siguiente:

- Número de fábricas dentro del área de aprovechamiento del pino insignis............. 7
- Capacidad de producción............. 675,000 m³/año.
- Número de fábricas fuera de área de aprovechamiento del pino insignis............. 12
- Capacidad de producción ........... 765,000 m³/año.
Se observa en el cuadro nº 20 como la evolución de la producción hasta el año 1975, fue creciente a un ritmo del 30% anual. Ante éstas perspectivas, se iniciaron nuevas instalaciones, aumentando la capacidad de producción hasta 1978 en ese porcentaje, mientras que, como consecuencia de la crisis económica, la demanda de producto se estabilizó, llegándose a una situación en la que la demanda era de un 65% de la producción.

Esta situación, obligó a los industriales a trabajar a un ritmo de un 60% de su capacidad, lo que sin llegar a dudas causó el cierre de numerosas empresas. Este cierre como se puede observar en el cuadro, afectó sobre todo a las empresas situadas fuera del área de aprovechamiento del pino insignis, no por razones propias al pino insignis, sino por una peor situación de la fábrica ante la materia prima y otras causas.

En la actualidad la capacidad de producción está situada alrededor de un 10% por encima de la demanda y no es de esperar nuevas modificaciones.

La evolución del consumo de pino insignis por ésta industria, suponiendo que en 1978 era de 122.100 m³ (vease apartado 1.4.4.) será aproximadamente, la estima da en el cuadro nº 21.

CUADRO nº 21

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo (x 1000 m³ c/c)</td>
<td>122.100</td>
<td>141.100</td>
<td>143.800</td>
<td>162.800</td>
<td>173.700</td>
</tr>
</tbody>
</table>

Se espera que en un intervalo medio de tiempo, el consumo de pino insignis se estabilizará alrededor de las 175.000 m³ c/c al año.
4.3.- LA MADERA DE SIERRA Y SUS PERSPECTIVAS.

4.3.1.- Aplicaciones actuales.

Si bien no se dispone de datos indicativos de los porcentajes de utilización de la madera de sierra de pino insignis, sí se puede decir que su mayor porcentaje se destina a tabla de encofrar, en menor medida envases y palets y por último en pequeñas cantidades se destina para carpintería, fundamentalmente como bastidor de las puertas planas. De forma un tanto esporádica se aplica en muebles, tanto en sus partes vistas como ocultas.

4.3.2.- Aspecto y calidades de la madera aserrada.

Con el fin de analizar los posibles destinos de la madera aserrada del pino insignis, se ha realizado un estudio de las características de presencia y calidad de la madera aserrada obteniéndose los siguientes resultados:

La madera aserrada de pino insignis, se caracteriza fundamentalmente por la abundancia de nudos, consecuencia de su exuberante ramaje, su fibra es recta, no siendo corriente la presencia de algún otro defecto.

Los nudos se presentan de una forma regularmente espaciada, 50 cm., su tamaño es grande, sobre todo si es sano, abundando también los nudos viscosos y saltadizos.

En el Anexo nº 4 se recoge la clasificación por calidades según la norma UNE 56.525 (véase Anexo nº 5) de una muestra de 85 tablas, obtenidas en las fábricas "LANA SDAD.COOP." y "MADERAS LEKEITIO S.A." obteniéndose los siguientes resultados:
CUADRO N° 22

CALIDADES DE MADERA ASERRADA

<table>
<thead>
<tr>
<th>Nº de muestras</th>
<th>III</th>
<th>2</th>
<th>porcentaje</th>
<th>2 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de muestras</td>
<td>IV</td>
<td>45</td>
<td></td>
<td>53 %</td>
</tr>
<tr>
<td>Nº de muestras</td>
<td>VI</td>
<td>38</td>
<td></td>
<td>45 %</td>
</tr>
<tr>
<td>TOTAL...........</td>
<td></td>
<td>85</td>
<td></td>
<td>100 %</td>
</tr>
</tbody>
</table>

No es de extrañar que en los porcentajes de calidades de madera exista una discontinuidad entre la madera de clase IV y la VI, ya que la única diferencia que presentan las calidades IV y V es el porcentaje de azulado y desviación de la fibra, defectos bastantes inusuales en ésta madera.

4.3.3.- Posibilidades de aplicación de la madera aserrada.

Teniendo en cuenta las calidades y sobre todo, los valores de las características físico mecánicas y de las tensiones básicas los destinos posibles de la madera de pino insignis serán los siguientes:

- Madera estructural: Su característica de madera medianamente nerviosa y sus altos valores obtenidos en las tensiones básicas hacen de ésta madera especialmente indicada para la construcción con fines estructurales, no obstante se deben tener en cuenta las siguientes consideraciones:

  - Si existen riesgos de ataque por agentes xilófagos, tanto hongos como insectos, la madera debe tratarse con productos protectores, acorde con el riesgo a que van a estar expuestos.
- La madera clasificada como de VI calidad no podrá aplicarse a éste destino sin un saneado previo de sus defectos.

- En cualquier caso, y debido a la merma de resistencia que producen los nudos, resulta aconsejable el saneado previo de la madera y su posterior unión mediante juntas dentadas.

- **Madera para carpintería:** Los valores obtenidos en las cotas de rigidez y flexión hacen de ésta madera propia para carpintería. El único inconveniente que presenta el pino insignis es el de su carácter de medianamente nervioso, que no aconseja su aplicación al caso un tanto infrecuente, en donde existan grandes variaciones de las condiciones de humedad relativa.

Sus notables defectos de aspecto, hacen que el tipo de carpintería al que se puede aplicar, es a la carpintería no vista.

Al igual que en el caso anterior, su aplicación en carpintería deberá tener en cuenta las siguientes consideraciones:

- Si existen riesgos de ataques por agentes xilófagos la madera deberá tratarse preventivamente con productos protectores, acorde con el riesgo a que va a estar expuesta.

  Si existe riesgo de humidificación por agua de una forma intermitente, conviene proteger la madera con productos repelentes al agua.

- La madera de calidad VI no podrá aplicarse a éste destino sin un saneado previo de sus defectos.

- En cualquier caso, los nudos no sanos deben ser sustituidos por piezas de madera.
- **Parques**: Este caso particular de carpintería es especialmente indicado para esta madera, primero por su dureza, una de las más duras de las coníferas aprovechadas en España, segundo porque la exigencia de medida de longitud del parquet es siempre mucho menor a la distancia entre nudos y por tanto, se puede realizar al seneado conjuntamente con dimensionamiento de las tabillas.

Al igual que en los casos anteriores es conveniente tratar la madera con protectores, en función de su utilización.

- **Envases de madera y palets**: La características de resistencia a la flexión dinámica de esta madera y por tanto, su buena disposición a resistir los choques violentos, la hacen muy indicada para este tipo de aplicación.

Si bien, mecánicamente es una madera muy apropiada para envases y palets, posee los inconvenientes siguientes:

- Densidad relativamente alta, que hace que el envase sea por sí mismo pesado.

- Predisposición a azularse (a no ser que se seque previamente la madera), perdiendo calidad de aspecto, imprescindible para el envasado de ciertos productos.

- **Traviesos**: Las características que se exigen a una madera para su aplicación en traviesas son las siguientes:

  - Resistencia al esfuerzo cortante perpendicular a las fibras.

  - Dureza.

  - Elasticidad.

  - Resistencia al arranque de tirafondos.

  - Durabilidad.
Como ya se ha visto anteriormente el pino insignis es medianamente duro a duro, medianamente elástico y de mediana resistencia al esfuerzo cortante. No se conoce su resistencia al arranque de tirofondos, pero a juzgar por su densidad, también debe ser mediano. Por último no posee durabilidad natural, pero mediante tratamiento protector se puede hacer muy durable.

En consecuencia, el pino insignis puede aplicarse perfectamente en traviesas.

- **Muebles**: Las buenas características mecánicas que en general presenta esta madera, su relativa facilidad de mecanizado, encolado y acabado hacen que se pueda aplicar perfectamente en la construcción de muebles.

Presenta como únicos defectos su carácter de medianamente nerviosa, y su aspecto, que hace que sus aplicaciones se restrinjan únicamente a las partes ocultas de muebles que vayan a situarse en condiciones de humedad relativa no muy variables.

4.3.4.- **Perspectivas de consumo de madera aserrada**.

En el cuadro n° 23, se establecen los datos de producción y consumo de madera aserrada en los últimos 20 años, destacándose en ellos lo referente a coníferas y a pino insignis. Todos estos datos se reflejan en el gráfico n° 4.

En el gráfico se puede observar cómo el consumo aparente de madera aserrada -total crece de forma continuada hasta 1973, para después mantenerse con grandes oscilaciones. Lo mismo se puede decir del consumo aparente de coníferas y de la producción total y de coníferas. No obstante cabe señalar los siguientes aspectos:

- Que el consumo de coníferas en relación con el total crece a medida que es mayor el crecimiento.
- Que la relación entre la producción nacional y el consumo aparente decrece a medida que es mayor el crecimiento.
<table>
<thead>
<tr>
<th></th>
<th>1.964</th>
<th>1.965</th>
<th>1.964</th>
<th>1.967</th>
<th>1.968</th>
<th>1.969</th>
<th>1.970</th>
<th>1.971</th>
<th>1.972</th>
<th>1.973</th>
<th>1.974</th>
<th>1.975</th>
<th>1.976</th>
<th>1.977</th>
<th>1.978</th>
<th>1.979</th>
<th>1.980</th>
<th>1.981</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comisión Caníñamarica</td>
<td></td>
</tr>
<tr>
<td>Producción total</td>
<td>1.778</td>
<td>1.808</td>
<td>1.916</td>
<td>1.934</td>
<td>1.987</td>
<td>1.915</td>
<td>2.153</td>
<td>2.268</td>
<td>2.488</td>
<td>2.553</td>
<td>2.592</td>
<td>2.275</td>
<td>2.518</td>
<td>2.245</td>
<td>2.183</td>
<td>2.838</td>
<td>2.136</td>
<td>2.387</td>
</tr>
<tr>
<td>- de coniferas</td>
<td>1.090</td>
<td>1.232</td>
<td>1.267</td>
<td>1.102</td>
<td>1.163</td>
<td>1.252</td>
<td>1.485</td>
<td>1.589</td>
<td>1.655</td>
<td>1.763</td>
<td>1.787</td>
<td>1.602</td>
<td>1.640</td>
<td>1.540</td>
<td>1.693</td>
<td>1.912</td>
<td>1.602</td>
<td>1.789</td>
</tr>
<tr>
<td>Importación total</td>
<td>598</td>
<td>770</td>
<td>759</td>
<td>788</td>
<td>872</td>
<td>1.031</td>
<td>942</td>
<td>949</td>
<td>1.182</td>
<td>1.453</td>
<td>1.421</td>
<td>1.421</td>
<td>1.547</td>
<td>1.240</td>
<td>1.207</td>
<td>1.340</td>
<td>1.213</td>
<td>956</td>
</tr>
<tr>
<td>- de coniferas</td>
<td>524</td>
<td>693</td>
<td>598</td>
<td>607</td>
<td>705</td>
<td>838</td>
<td>746</td>
<td>746</td>
<td>867</td>
<td>922</td>
<td>1.012</td>
<td>621</td>
<td>805</td>
<td>714</td>
<td>698</td>
<td>816</td>
<td>690</td>
<td>508</td>
</tr>
<tr>
<td>Exportación total</td>
<td>44</td>
<td>14</td>
<td>18</td>
<td>20</td>
<td>42</td>
<td>33</td>
<td>62</td>
<td>69</td>
<td>82</td>
<td>68</td>
<td>79</td>
<td>76</td>
<td>99</td>
<td>170</td>
<td>109</td>
<td>129</td>
<td>217</td>
<td>209</td>
</tr>
<tr>
<td>- de coniferas</td>
<td>34</td>
<td>34</td>
<td>18</td>
<td>18</td>
<td>42</td>
<td>33</td>
<td>41</td>
<td>67</td>
<td>81</td>
<td>68</td>
<td>78</td>
<td>44</td>
<td>90</td>
<td>161</td>
<td>98</td>
<td>124</td>
<td>208</td>
<td>197</td>
</tr>
<tr>
<td>- de coniferas</td>
<td>1.580</td>
<td>1.701</td>
<td>1.847</td>
<td>1.691</td>
<td>1.630</td>
<td>2.037</td>
<td>2.192</td>
<td>2.268</td>
<td>2.441</td>
<td>2.617</td>
<td>2.721</td>
<td>2.179</td>
<td>2.555</td>
<td>2.093</td>
<td>2.293</td>
<td>2.604</td>
<td>2.084</td>
<td>2.100</td>
</tr>
<tr>
<td>Relación consumo</td>
<td>0.68</td>
<td>0.72</td>
<td>0.69</td>
<td>0.74</td>
<td>0.70</td>
<td>0.63</td>
<td>0.72</td>
<td>0.72</td>
<td>0.68</td>
<td>0.64</td>
<td>0.60</td>
<td>0.69</td>
<td>0.62</td>
<td>0.53</td>
<td>0.60</td>
<td>0.44</td>
<td>0.40</td>
<td>0.67</td>
</tr>
<tr>
<td>Relación Produc. / Consumo</td>
<td>0.76</td>
<td>0.71</td>
<td>0.72</td>
<td>0.71</td>
<td>0.71</td>
<td>0.66</td>
<td>0.71</td>
<td>0.72</td>
<td>0.69</td>
<td>0.65</td>
<td>0.66</td>
<td>0.72</td>
<td>0.68</td>
<td>0.68</td>
<td>0.49</td>
<td>0.70</td>
<td>0.68</td>
<td>0.76</td>
</tr>
<tr>
<td>Relación Producción de coniferas</td>
<td>0.69</td>
<td>0.65</td>
<td>0.69</td>
<td>0.65</td>
<td>0.64</td>
<td>0.61</td>
<td>0.68</td>
<td>0.7</td>
<td>0.68</td>
<td>0.67</td>
<td>0.66</td>
<td>0.73</td>
<td>0.72</td>
<td>0.74</td>
<td>0.74</td>
<td>0.73</td>
<td>0.77</td>
<td>0.85</td>
</tr>
<tr>
<td>Consumo de pino insignis</td>
<td>S.D.</td>
<td>S.D.</td>
<td>S.D.</td>
<td>S.D.</td>
<td>S.D.</td>
<td>S.D.</td>
<td>197</td>
<td>213</td>
<td>300</td>
<td>327</td>
<td>293</td>
<td>255</td>
<td>258</td>
<td>239</td>
<td>203</td>
<td>310</td>
<td>352</td>
<td>S.D.</td>
</tr>
<tr>
<td>Veloc P. insignis en plz/m³</td>
<td>S.D.</td>
<td>S.D.</td>
<td>S.D.</td>
<td>S.D.</td>
<td>S.D.</td>
<td>S.D.</td>
<td>228</td>
<td>258</td>
<td>371</td>
<td>523</td>
<td>801</td>
<td>669</td>
<td>673</td>
<td>669</td>
<td>625</td>
<td>1.002</td>
<td>1.262</td>
<td>S.D.</td>
</tr>
</tbody>
</table>
Gráfico nº 4: EVOLUCION DEL CONSUMO DE MADERA ASERRADA

consumo aparente total

producción total

consumo aparente coníferas

producción coníferas

consumo p. insignis

AÑOS
Ambos aspectos se interpretan en el sentido de que cuando existen grandes fluctuaciones de la demanda se recurre a importaciones principalmente.

Existe una tendencia clara de crecimiento en el porcentaje de autoabastecimiento de madera aserrada de coníferas. Esta tendencia se interpreta como una mejora en el desarrollo tecnológico que permite una mayor aplicación de las maderas nacionales.

Si se examina la curva de evolución del consumo de pino insignis para sierra se observa como al igual que el consumo aparente, crece hasta 1973 para después retraerse hasta 1978, volviendo a crecer su consumo de forma vertiginosa, hasta el año 1980. No se dispone de una serie estadística para confirmar esta tendencia de crecimiento, pero por contraste directo con la industria, puede confirmarse éste optimismo.

En cuanto a la tendencia general de consumo de madera aserrada, la ECE/FAO establece una relación entre consumo aparente y Producto Nacional Bruto, observando un descenso de alrededor de un 20 % por década (en 1965 era 42,6 y en 1980 de sólo 26,5). Extrapolando este descenso a 1990 y suponiendo un crecimiento del PNB de entre 3,5 y 5,5 % anual, el consumo aparente de madera aserrada en ese año será de entre 4,3 y 5,2 millones de m³, (8,6 y 10,4 millones de m³ en rollo) lo que supone un aumento anual del consumo, de entre 2,4 % y 4,1 %.

De acuerdo con Don Joaquín Gonzalo Fernández Tomás en su tesis "Análisis Económico del Consumo Futuro de Madera Aserrada en España (1976)", estableció para ese mismo año un consumo de 10,254 millones de m³ de madera en rollo para sierra.

Dentro de ésta tendencia general de incremento del consumo aparente, parece ser la madera de coníferas la más beneficiada, dado que se prevee una ampliación del mercado de la madera aserrada en la construcción, sector que en España se encuentra muy por debajo de sus posibilidades, sobre todo si se compara con el resto de Europa.
En resumen, existe por una parte una tendencia general de aumento en el consumo aparente de madera aserrada, sobre todo en lo que se refiere a maderas de coníferas, y por otra parte hay una tendencia de autoabastecimiento de la madera aserrada de coníferas. Ambas tendencias afectan de una forma muy importante al pino insigne, lo que hace prever un aumento muy importante de su consumo para madera de sierra, confirmando de esta forma la tendencia ya iniciada en 1978. Por una parte sus excelentes cualidades mecánicas la hacen especialmente indicada para su uso en la construcción, y por otra parte, se presta perfectamente a la mejora de sus cualidades, mediante el saneado de sus nudos, lo que permitirá una mejora de sus aplicaciones en carpintería.
4.4. - OTRAS APLICACIONES.

La madera de pino insignis convenientemente tratada puede aplicarse en postes de líneas eléctricas y telefónicas, pudiendo cumplir tanto la normativa referente a medidas como a defectos (norma UNE 21.003).

En cuanto a medidas las calidades I, II y III definidas por I.Echevarría pueden aplicarse en los tipos I, II, III, IV, V y VI; la calidad IV a los tipos I, II y III, y la calidad V únicamente al tipo I.

En cuanto a calidades, los defectos que podrían limitar su utilización son los nudos, que no deben ser superiores a 1/4 del diámetro del poste donde estén situados, o superiores a 25 mm. en el caso de que no sean sanos. Así mismo, pueden originarse fendas demasiado profundas si su secado no se realiza cuidadosamente.

Igualmente, convenientemente tratada, la madera de pino insignis puede aplicarse en aperas de minas, postes para cercas, etc.
4.5. CONCLUSIONES

No parecen existir indicios de variación notable, a medio y largo plazo, de la madera de pino insignis con destino a la industria de desintegración, dado que, tanto la industria de celulosa como de tableros aglomerados, parecen estabilizar su consumo de madera. Únicamente se ha detectado una buena predisposición de esta madera para su aplicación en la fabricación de tableros de fibras de densidad media no obstante, debe confirmarse comercialmente esta posibilidad.

El exceso actual de oferta de esta madera sólo podrá asumida por la industria de sierra, en donde, en base a sus excelentes características, tanto físico-mecánica como tecnológicas, cabe sustituir un elevado porcentaje de madera de coníferas de importación, e incluso en aplicación de nuevos mercados, fundamentalmente el de la construcción estructural, en el que, hasta ahora, en España solo existen tímidos tentativos, mientras que en Europa existe un notable desarrollo.

Las perspectivas de mercado de la madera de sierra, se verían fuertemente impulsada, si por algún procedimiento se consiguiese aprovechar, de una forma más eficiente sus cualidades, gravemente afectadas por la abundancia, tamaño y estado de los nudos.

Dado el carácter principalmente tecnológico de este estudio, solo se han hecho referencias (que en todo caso deben ser objeto de análisis más profundo) a soluciones tecnológicas para los problemas derivados de los nudos. En cuanto a soluciones se viculturales, también en este estudio se ha significado la importancia que puede tener...
el turno en las características físico-mecánicas, sin considerar la mejora de calidad por disminución de la proporción de nudos como consecuencia de la edad.

Ya existen estudios serios en donde se analizan la influencia de los tratamientos selvícolas (espaciamiento, entresaca y poda) en la distribución, tamaño y estado de los nudos, no obstante estos estudios deberían actualizarse, sobre todo en el plano económico.

Por último, al igual que han realizado otros países, sería de sumo interés, la realización de estudios genéticos de forma a obtener una calidad y volumen de madera más acorde con el destino final de la madera.
5. CARACTERÍSTICAS FÍSICO-MECÁNICAS DEL PINUS RADIATA D. DON (PINO INSIGNIS) Y SU INFLUENCIA CON LA EDAD Y EL CRECIMIENTO.

5.1 - DESARROLLO DE LOS TRABAJOS.

5.1.1. Diseño de la muestra.

Si bien el principal objeto del trabajo es la determinación de las características físico-mecánicas de esta madera, también se pretende encontrar alguna correlación que ligue estas características con las de la edad y crecimiento del árbol. Es por esta causa, por lo que la unidad de muestreo fijada a priori en este trabajo es el árbol.

El número de muestras a tomar es el recomendado por la norma UNE 56 528 "Características físico-mecánicas de la madera. Preparación de probetas para ensayos" (Anexo n° 6) que utiliza la siguiente fórmula

\[ n_{\text{min}} = \frac{\gamma^2 \cdot t^2}{\rho^2} \]

siendo

\[ n_{\text{min}} = \text{número mínimo de probetas}. \]
\[ V = \text{coeficiente de variación de la característica considerada} \]
\[ t = \text{mitad de la longitud del intervalo de confianza expresado en múltiplos de la desviación típica.} \]
\[ P = \text{relación entre la desviación típica de la media aritmética y la media aritmética.} \]

Asimismo, la norma señala unos valores aproximados de \( V \) en función de la característica considerada y un valor de \( P \) del 5%. Dados estos, resultan los siguientes valores del número mínimo de probetas: (*)

- Humedad 3
- Peso específico 11
- Compresión 12
- Flexión estática 24
- Contracción volumétrica 27
- Dureza 31
- Tracción, esfuerzo cortante y módulo de elasticidad 43
- Contracción lineal 85
- Flexión dinámica 110

Dado que las dos últimas características no se consideran esenciales a los fines del trabajo, se fija como número mínimo de la muestra 43 árboles.

(*) Se fija como valor de \( t \) el porcentil (intervalo de confianza) del 90% de acuerdo con el informe de D. Carlos Baso López. Ed. Centro Regional de Enseñanzas, Investigaciones y Experiencias Forestales. 1983
5.1.2. Recogida de muestras.

Se tomaron 41 árboles de muestra, elegidos aleatoriamente, procedentes de las provincias de Vizcaya y Álava y situados en las zonas señaladas del Mapa N° 3. (Anexo n° 1).

De cada árbol elegido se tomaron los datos más característicos de su medio abiótico: Altitud, pendiente y orientación. No se tomaron los datos característicos del clima y suelo porque, dado el ámbito geográfico tan reducido de las muestras, estos se consideraron estrechamente ligados a los datos anteriores. El clima depende de la altitud y orientación, mientras que el suelo, fundamentalmente de la pendiente.

Asimismo, se tomaron los datos dosométricos más característicos de los árboles escogidos: Diámetro a la altura del pecho, altura total y altura maderable (punta delgada 8 cm), edad y anchura media de los anillos.

En el Anexo n° 1, se recogen los valores de las características del medio y dosométricas de cada unidad de muestra, así como los mismo valores agrupados en niveles para poderlos comparar con los relativos a las masas de pino insignis. Por último, se recogen las características dosométricas del árbol medio de las muestras, con los mismos fines que el anterior.

Si se comparan las características del medio y dosométricas de la muestra con las de las masas de pino insignis (véase apartado 1.3.) se aprecia la similitud de ambas y, por tanto, confirma la representatividad de la muestra.
5.1.3. Preparación de las probetas.

De cada árbol escogido, se tomaron dos trozas de un metro de longitud, cada una; la primera procedente de la base del tronco y la segunda del centro maderable del árbol.

De cada troza se sacaron una o varias probetas radiales, procedentes de las direcciones, norte, sur, este y oeste, obtenidas según el procedimiento operatorio señalado en la norma UNE 56 528 "Características físico-mecánicas de la madera. Preparación de probetas de ensayo". (Véase anexo nº 6).

Las probetas así obtenidas fueron marcadas con el número del árbol al que correspondía, con la letra A ó B, según si procedía de la troza base del árbol o de la central, con la letra indicativa de la dirección a que correspondía y, por último, al número de la probeta sacada en esa dirección.

Las probetas necesarias para la obtención del esfuerzo cortante fueron sacadas sin tener en cuenta más que el número del árbol y el tipo de troza.

Los ensayos principales se realizaron a la humedad "normal" de la madera (12 para lo cual se acondicionaron, previo a los ensayos, a la humedad del laboratorio. Asimismo, se reservaron algunas probetas para la realización de ensayos al 18 % y en "verde" (35 %) con el único objeto de sacar el coeficiente de variación de las características mecánica con la humedad.

Para acondicionar las probetas al 18 % de humedad se introdujeron en una cá
mara de acondicionamiento, manteniendo, hasta peso constante, las condiciones de humedad y temperatura siguientes:

Temperatura 25°C - Humedad relativa 85%.

Para acondicionar las probetas en "verde" se introdujeron durante 24 horas en agua, pasando seguidamente durante una semana a un recipiente hermético.

5.1.4. Ensayos.

Los ensayos se realizaron de acuerdo con los procedimientos señalados en las normas UNE siguientes (Véase Anexo nº 6) de determinación de las características físico-mecánicas:

UNE 56 531 77 - Características físico-mecánicas de la madera. Determinación del peso específico.
UNE 56 532 77 - Características físico-mecánicas de la madera. Determinación de la higroscopicidad.
UNE 56 533 77 - Características físico-mecánicas de la madera. Determinación de las contracciones lineales y volumétrica.
UNE 56 534 77 - Características físico-mecánicas de la madera. Determinación de la dureza.
UNE 56 535 77 - Características físico-mecánicas de la madera. Determinación de la resistencia a la compresión axial.
Dado que no existe norma española para la determinación del esfuerzo cortante, se estudió un método de realización del ensayo a partir de la normativa existente en otros países, considerándose como más idónea la norma americana ASTM D 143 - 52 (1952) Testing Small Clear Specimens of Timber, en base a la cual se elaboró el método descrito en el Anexo nº. 6, que es actualmente la base de la propuesta de norma UNE 56 543.

Las probetas utilizadas para la determinación del esfuerzo cortante fueron de 4 x 5 x 5 cm. en lugar de 5 x 5 x 6 cm. que señala la propuesta de norma, debido a que la máquina de carga disponible solo alcanza los 4.000 Kg., cifra que en algún caso pudiera ser rebasada con las probetas normales.

Por idénticas circunstancias, se estudió el método para la determinación de la compresión perpendicular a la fibra, que es actualmente la base de la propuesta de norma UNE 56 544, descrita en el Anexo nº. 6.
Para el cálculo de la tracción paralela a las fibras se utilizaron los valores obtenidos en el ensayo de flexión estática, previendo un desplazamiento de la fibra neutra hacia el borde inferior. (*)

El valor de la resistencia a la tracción obtenido de esta forma, es en muchos casos más exacto que el que se pueda obtener por la realización del ensayo directo de esta característica, dada la enorme influencia que puede tener sobre el resultado cualquiera presencia de defectos (inclinación de la fibra, nudo, corazón, fendas, etc.). Es, por ello, por lo que muchos autores (Kollman, Tecnología de la madera. Tomo II) o, incluso, normas de cálculo, aconsejan su cálculo a través del resultado obtenido en la resistencia a la flexión estática paralela a las fibras.

5.2. CARACTERÍSTICAS FISICO-MECÁNICAS.

5.2.1. Características al 12 % de humedad.

En el Anexo n° 2 se detallan los valores alcanzados en los ensayos por cada una de las probetas y para cada característica física-mecánica a la humedad aproximada del 12 %.

En los cuadros números 14 y 15 "Características físico-mecánicas" se resumen los valores contenidos en el Anexo n° 2, dando para cada característica los siguientes datos:

- Media.
- Desviación standard.
- Desviación típica.
- Número de ensayos.
- Interpretación del resultado.

En el cuadro n° 43 del Anexo n° 4, se resumen los valores de densidad para cada trozo y dirección del árbol.

5.2.2. Características al 18 % y en "verde" de la humedad.

Se obtienen a partir de los coeficientes de variación de las características de flexión, módulo de elasticidad, esfuerzo cortante, compresión axial y compresión axial y compresión perpendicular a las fibras.
Estos coeficientes de variación \( u \), se han obtenido a partir de las ecuaciones de las rectas de regresión que ajustan los valores de las características mecánicas señaladas ensayadas a diferentes grados de humedad.

Obtenido el coeficiente de variación "\( u \)" de la característica mecánica \( C \), el cálculo de esta a la humedad \( H \) se realiza aplicando la fórmula

\[
C_H = C_{12} \left[ 1 + (12 - H) u \right]
\]

siendo el valor de \( C_{12} \) : el valor de ésta a la humedad del 12 %.

En los cuadros números 38, 39, 40, 41 y 42 del Anexo III, se especifican los valores de las características mecánicas a diferentes grados de humedad, su recta de regresión y el coeficiente de variación con la humedad.
5.3 - ANÁLISIS DE LOS RESULTADOS Y CONCLUSIÓNES.

En este apartado se han tratado estadísticamente los resultados, con el fin de analizar los siguientes aspectos:

- Variación del comportamiento mecánico dentro de cada unidad de muestra.

- Variación del comportamiento mecánico de cada unidad de muestra con las características dosocráticas y del medio.

- Variación del comportamiento mecánico de la madera con el número de anillos.

Se ha elegido como característica física-mecánica: más representativa, la densidad, ya que existe una relación bastante constante entre densidad y resistencia mecánica. (*)

5.3.1. Variación del comportamiento mecánico dentro de cada unidad de muestra.

5.3.1.1. Influencia de la orientación respecto de los ejes cartesianos.

En el cuadro n° 43 del Anexo IV, se esquematizan los valores de densidad para cada unidad de muestra, según las diferentes trozas y direcciones.

Analizando la varianza, se obtienen los siguientes resultados:

Apuntes de clase de Tecnología de la Madera, por Cesar Peraza Oramas.
- Análisis de varianza de las trozas A

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>62</td>
<td>16.6131</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Media</td>
<td>1</td>
<td>16.36165</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Factor A</td>
<td>3</td>
<td>0.010387</td>
<td>0.0034623</td>
<td>0.68941</td>
</tr>
<tr>
<td>Error</td>
<td>58</td>
<td>0.24106</td>
<td>0.0050221</td>
<td>-</td>
</tr>
</tbody>
</table>

Valor de la F (3, 58, 0.01) tabular .................. 4,16

Lo que demuestra que no existe diferencia entre los resultados obtenidos según distintas direcciones.

- Análisis de varianza de las trozas B

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>31</td>
<td>6.5183</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Media</td>
<td>1</td>
<td>6.440545</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Factor A</td>
<td>3</td>
<td>0.007373</td>
<td>0.00245766</td>
<td>0.94</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>0.070382</td>
<td>0.00260674</td>
<td>-</td>
</tr>
</tbody>
</table>

Valor tabular de la F (3, 27, 0.01) .................. 4,60

Lo que confirma el resultado obtenido por la troza A, al resto del árbol.
5.3.1.2. Influencia de la orientación respecto de la de la pendiente.

En el cuadro n° 45 del Anexo IV se han ordenado los resultados según la dirección a favor o en contra de la pendiente, obteniéndose los siguientes resultados del análisis de la varianza.

- Análisis de la varianza en las trozas A

<table>
<thead>
<tr>
<th></th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>22</td>
<td>6,2654</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Media</td>
<td>1</td>
<td>6,1798</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Factor A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>0,0896</td>
<td>0,003428</td>
<td>-</td>
</tr>
</tbody>
</table>

Valor tabular de la F(1, 20, 0,01) .........................
Por lo que no existe diferencia entre resultados obtenidos.

- Análisis de varianza de las trozas B

<table>
<thead>
<tr>
<th></th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>10</td>
<td>1,9327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>1</td>
<td>1,90969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor A</td>
<td>1</td>
<td>0,00289</td>
<td>0,00289</td>
<td>1,15</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>0,02012</td>
<td>0,002515</td>
<td></td>
</tr>
</tbody>
</table>

Valor tabular de la F (1, 8, 0,01) ......................... 11,26

Lo que confirma también el resultado obtenido para la troza A.
5.3.1.3. Influencia de la posición en altura de las probetas.

A partir de los resultados de los ensayos para las trozas A (situadas en la base del fuste) y para las trozas B (situadas en la mitad del fuste maderable) recogidos en el cuadro n° 43 del Anexo IV, y analizada la varianza, se obtienen los siguientes resultados.

- Análisis de varianza.

<table>
<thead>
<tr>
<th></th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>93</td>
<td>23,1314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>1</td>
<td>22,7329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor A</td>
<td>1</td>
<td>0,06929</td>
<td>0,06929</td>
<td>19,15</td>
</tr>
<tr>
<td>Error</td>
<td>91</td>
<td>0,32920</td>
<td>0,00362</td>
<td></td>
</tr>
</tbody>
</table>

Valor tabular de la F (1, 91, 0,01) ................. 6,95

Al ser mayor la F obtenida en el análisis de varianza que la tabular, supone que los resultados obtenidos para las trozas A y B son significativamente diferentes, siendo mayor la densidad, cuanto más próxima esté la madera del fuste del suelo.

5.3.2. Variación del comportamiento mecánico de cada unidad de muestra con las características dasocráticas y del medio.

Dada la significativa diferencia obtenida entre los resultados de la troza A y B, el análisis de este punto se realizará independientemente con los valores de cada troza.
Asimismo, dada la escasez de muestras, los resultados se analizarán para un nivel de significación del 95 %.

Los datos correspondientes a la densidad figuran en el cuadro n° 43 del Anexo n° IV y los de las características dasocráticas y del medio en el cuadro n° 24 del Anexo n° 1.

5.3.2.1. Influencia de la calidad de la masa sobre la densidad.

Aplicando a los valores de altura y edad de la muestra las tablas de calidad de la masa de Echevarría, se obtienen las calidades representadas en el gráfico n° 5 del Anexo I. Como se observará en el gráfico, dado que la edad dadas para las muestras, era la correspondiente al número de anillos a la altura normal, se ha realizado una corrección gráfica de esta edad.

Obtenida la clasificación, el análisis de varianza presenta las siguientes características:

<table>
<thead>
<tr>
<th></th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>22</td>
<td>5,69575</td>
<td>0,012055</td>
<td>0,052927</td>
</tr>
<tr>
<td>Media</td>
<td>1</td>
<td>5,630768</td>
<td>0,00301375</td>
<td>0,97</td>
</tr>
<tr>
<td>Factor A</td>
<td>4</td>
<td>0,0030035</td>
<td>0,0030035</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>17</td>
<td>0,052927</td>
<td>0,0030035</td>
<td></td>
</tr>
</tbody>
</table>

Valor tabular de F (4, 17, 0,05) ...................... 2,96.

De donde se deduce que la calidad de la masa no influye significativamente sobre la variabilidad de la densidad.
5.3.2.2. Influencia de la edad sobre la densidad.

- Análisis de la varianza de la regresión

Para $X =$ Edad en años; $Y =$ densidad en gr/cm$^3$

$$Y = 0,432 + 0,0035 \, X$$

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>$F$</th>
<th>$F_{TABULAR}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>22</td>
<td>5,69575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regresion</td>
<td>2</td>
<td>5,64698</td>
<td>1.157,88</td>
<td>(2;20;0,05)= 3,49</td>
</tr>
<tr>
<td>$B_1=0$</td>
<td>1</td>
<td>5,37885</td>
<td>2.205,80</td>
<td>(1;20;0,05)=4,35</td>
</tr>
<tr>
<td>$B_2=0$</td>
<td>1</td>
<td>0,01621</td>
<td>6,65</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>0,04877</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2 = 0,25$ (Coeficiente de determinación)

Comparando los distintos valores de $F$ obtenidos en el Análisis de la Varianza y en las tablas, se deduce la significativa influencia de ambas variables.

Del coeficiente de determinación se deduce que la edad sólo explica el 25% de la variabilidad de la densidad.
5.3.2.3. Influencia de la cota de altitud de la situación de la muestra sobre la densidad.

- Análisis de la varianza de regresión.

\[ Y = 0,483 + \frac{9}{100.000} X \]

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>F</th>
<th>F_TABULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>22</td>
<td>5,69575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regresión</td>
<td>2</td>
<td>5,635299</td>
<td>932,20</td>
<td>(2;20;0,05) = 3,49</td>
</tr>
<tr>
<td>(B_1 = 0)</td>
<td>1</td>
<td>5,613079</td>
<td>1.857,06</td>
<td>(1;20;0,05) = 3,49</td>
</tr>
<tr>
<td>(B_2 = 0)</td>
<td>1</td>
<td>0,004531</td>
<td>1,50</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>0,060451</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ R^2 = 0,07 \]

El valor de F obtenido del análisis de la varianza, al ser menor al tabular, indica que no se puede asegurar la correlación entre ambas variables.

5.3.2.4. Influencia de la pendiente del terreno sobre la densidad.

De los valores obtenidos en el apartado 3.2.1., se deduce la escasa significancia de los valores de la pendiente sobre las características de la madera.
5.3.2.5. Conclusiones.

Solo se ha encontrado significancia con las características de la madera, la edad del árbol, lo que no quiere decir que no exista influencia de las otras variables sobre la calidad de la madera, sino que con la exigua muestra disponible y la no consideración de otros factores (forma de la copa, vientos dominantes, etc.) han podido ocultar su significancia estadística.

No se estima oportuno, dados los resultados obtenidos, realizar un análisis multivariante.

El hecho de que la edad influya en las características físico-mecánicas es de suma relevancia para el selvicultor, ya que a la hora de fijar el turno económico debe tener en cuenta la apreciación que se produce en la madera, a medida que la edad aumenta.

Asimismo debe tenerse en cuenta que la calidad en cuanto a defectos de la madera, también aumenta con la edad, dado que podado el árbol, ya sea natural o artificialmente, en los primeros años, la madera producida a partir de este hecho, carece como puede suponerse de nudos.

Ambas circunstancias son de suma importancia, que conjugadas, deben hacer variar drásticamente el turno hasta ahora utilizado, tendiéndolo a hacer apreciablemente más largo.

3.3. Variación de las características mecánicas con el número de anillos por cm.

La fácil apreciación del número de anillos, sugiere introducirllo en la clasificación...
de la madera por calidad, si naturalmente se demuestra, la correlación entre ambos factores.

Analizada la varianza con los datos del cuadro nº 27 del Anexo II, se obtienen los siguientes valores:

\[ y = 0.435 + 0.022 x \]

\(x\): número de anillos por cada 2 cm.

\(y\): densidad normal.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>F</th>
<th>(F_{\text{tabular}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>153</td>
<td>38,0989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regresión</td>
<td>2</td>
<td>37,58993</td>
<td>5576,05</td>
<td>(2, 151, 0,01) = 4,79</td>
</tr>
<tr>
<td>(B_1 = 0)</td>
<td>1</td>
<td>23,84674</td>
<td>7074,79</td>
<td></td>
</tr>
<tr>
<td>(B_2 = 0)</td>
<td>1</td>
<td>0,1060548</td>
<td>31,46</td>
<td>(1, 151, 0,01) = 6,63</td>
</tr>
<tr>
<td>Error</td>
<td>151</td>
<td>0,50897</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ R^2 = 0.17 \]

Si bien, es significativo a 99 %, el exiguio valor, tanto de coeficiente de regresión, como de la pendiente de la recta de regresión, hace poco aconsejable la introducción del número de anillos en la clasificación por calidades de la madera.
5.4. PROPUESTAS DE CLASIFICACION DE LA MADERA ASERRADA PARA CONSTRUCCION.

La homogeneidad de la calidad de la madera aserrada por una parte, y la escasa relevancia del resto de los defectos e incluso, como el caso del número de anillos, la poca importancia del defecto en la resistencia de la madera, aconsejan particularizar para ésta especie la norma de clasificación de la madera aserrada de construcción, lo que sin lugar a dudas facilitará su comercialización.

El texto de la propuesta es el siguiente:

1.-Objeto.

Esta norma tiene por objeto establecer una clasificación, por resistencia, para la madera aserrada de pino insignis en función de sus defectos, determinados por examen visual.

2.-Clasificación.

La madera de pino insignis para construcción se clasificará en una sola clase, correspondiente a un porcentaje mínimo de resistencia mecánica del 50 %, respecto de la tensión básica.

La madera que no cumpla con los mínimos establecidos, solo se podrán utilizar con funciones de resistencia, después del saneado de la pieza aserrada.

En el cuadro nº 1 se establece los defectos y sus medidas máximas relativas, que admite esta clase de madera.
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Características a medir</th>
<th>Medida relativa máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nudo (*)</td>
<td>Dimensión en cara</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>Dimensión en canto</td>
<td>1/3</td>
</tr>
<tr>
<td>Fenda</td>
<td>Profundidad</td>
<td>1/2</td>
</tr>
<tr>
<td>Aceboladura</td>
<td>-</td>
<td>No se admite</td>
</tr>
<tr>
<td>Gemas</td>
<td>-</td>
<td>1/4</td>
</tr>
<tr>
<td>Desviación de la fibra</td>
<td>Inclinación en la sección vertical</td>
<td>1/8</td>
</tr>
<tr>
<td>Azulado</td>
<td>-</td>
<td>25 %</td>
</tr>
<tr>
<td>Pudriciones</td>
<td>-</td>
<td>No se aceptan</td>
</tr>
<tr>
<td>Perforaciones de insectos</td>
<td>-</td>
<td>No se aceptan</td>
</tr>
<tr>
<td>Madera de reacción</td>
<td>-</td>
<td>No se acepta</td>
</tr>
<tr>
<td>Madera colapsada</td>
<td>-</td>
<td>No se acepta</td>
</tr>
</tbody>
</table>

(*) . El estado de los nudos es sin especificar, pudiendo ser sanos y adherentes o viélic podridos y sueltos.
3.- Procedimiento operatorio.

Inspeccionar los nudos que presenten cada tabla, tomando de todos ellos, para su medida, el más desfavorable, al objeto de clasificación de la presente norma.

En el caso de que las medidas resulten admisibles se comprobará visualmente, que el resto de los defectos se adaptan a lo especificado en el cuadro nº 1.

4.- Normas para consulta.

UNE 56.520.- Defectos y anomalías de la madera aserrada. Fendas y acebolladuras.
UNE 56.521.- Defectos y anomalías de la madera aserrada. Nudos.
UNE 56.522.- Defectos y anomalías de la madera aserrada. Gema.
UNE 56.523.- Medida de la desviación de las fibras en la madera aserrada.
UNE 56.524.- Medida de los crecimientos en la madera aserrada.
UNE 56.525.- Clasificación de la madera aserrada de construcción.
RESUMEN

El presente trabajo ha buscado presentar una panorámica general del aprovechamiento del pino insignis en España, para en base a ella, y con las posibilidades de transformación propias de la madera, poder programar un uso industrial que proporcione un máximo valor de la madera.

Para ello se ha dividido el estudio en cinco capítulos:

El primero presenta las características de las masas de pino insignis, su distribución, existencias, posibilidades, cortas y destinos actuales de la madera.

El segundo, es el capítulo principal objeto de esta tesis, en la que se describe detalladamente las características de la madera, para luego en base a ellas analizar los procesos de transformación tecnológica.

El capítulo tercero se centra en el cálculo de las tensiones básicas de la madera, imprescindibles para poder aplicar de forma racional la madera con fines estructurales.

El capítulo cuarto, analiza cada sector industrial de transformación de la madera, para que junto con los datos obtenidos en los anteriores capítulos, poder establecer las posibilidades de mercado de esta madera.

El estudio concluye con el capítulo quinto, en donde se describe el procedimiento de trabajo seguido para el establecimiento de las características físico-mecánicas, y se analizan los resultados obtenidos bajo los siguientes aspectos:

- Variabilidad de las características mecánicas, dentro de cada árbol.
- Influencia de las condiciones dasocráticas y del medio sobre las mecánicas.
- Relación entre las características físico-mecánicas y el número de anillos.
- Es el primer estudio de características físico-mecánicas con carácter de representabilidad estadística, que se realiza en España.

- Los resultados obtenidos son mucho mejores, desde el punto de vista de su aplicación, que los que se disponían hasta ahora. Como consecuencia se establecen nuevas posibilidades de aplicación de la madera.

- Es el primer estudio que se hace de las tensiones básicas de una madera de aprovechamiento en España.

- Se ha encontrado una correlación aceptable entre la edad del árbol, y las características físico-mecánicas de la madera, lo que sugiere que sea tenido en cuenta a la hora de establecer el turno económico de la especie.

- Por último, se propone un criterio de clasificación de la madera aserrada en función de sus defectos.
SUMMARY

This work tries to present a general panoramic to use the pine insignis in Spain and with the possibilities of transforming this wood to be able to program an industrial use which give a more value for this wood.

We have divided this work in five chapters.

The first presents the pine insignis characteristic in the forest, its distribution, stock, possibilities cutting and actual employment of the wood.

The second is the more important object of this thesis, in which we describe in detail the characteristic of this wood and then to analyze the process of technological transformation.

The third chapter studies the calculus of the basic tensions in the wood, indispensable to apply the wood in a rational way with a structural fines.

The fourth chapter analyzes each industrial sector of wood transformation and with the data obtained in the preceding chapters be able "to set up" the possibilities in the wood market.

The work ends with a chapter where is described the process followed for the establishment of the characteristics phisic mechanic and is analyzed the results obtained in the following aspects:

- Variability if the mechanic characteristics inside each tree.
- Influence of the forestry condition and also influence of medium over the mechanics characteristics.
- Relation between the phisic-mechanics characteristic and the number of rings. We could result the following aspects.
- It is the first study of the physic mechanical characteristics with a character of statistic representative which is done in Spain.

- The results obtained are best, from the point of view in its application, what we had until now. As a consequence are stabilised new possibilities for the application of this wood.

- It is the first study which is done in Spain about the basic tensions of the wood to make use of it.

- It is found an acceptable correlation between the age of the tree and the physic-mechanical characteristics of the wood, and this makes that is useful to have this present to fix the economic turn of the species.

- At last it is proposed a criterion to clasifie the sawwood as its defects are.
Le présent travail essaie présenter une panoramique générale de l'utilisation du p. insignis en Espagne pour programmer la transformation industrielle du bois, en tirant -le plus haut rendement.

Le rapport est divisé en cinq chapitres.

Le premier d'entre eux expose les caractéristiques de les mases de p. insignis, sa distribution géographique, existences, possibilités, coupes des bois, et destinations actuelles.

Le deuxième est le chapitre principal du sujet de cette tesis, on décrit les caractéristiques du bois pour analyser les procés de la transformation technologique.

Dans le troisième on fait le calcul des tensions basiques du bois, indispensables pour le pouvoir appliquer, aisonablement, structuralment.

Le quatrième fait l'analyse de chaque secteur de transformation industrielle, en établissant les possibilités du marché.

Le travail conclut en décrivant le procés suivi pour établir les caractéristiques - physico-mécaniques en analysant les resultats obtenus pour établir les suivants relations:

- Variation des caractéristiques mécaniques dedans de chaque arbre.

- Influence de les conditions desocratiques et du milieu sur les mécaniques.

- Rapport entre les caractéristiques physicomécaniques et le nombre d'anaus de croissance.
Points à rejaillir:

- C'est le premier étude des caractéristiques phisico-mécaniques avec caractére de représentativité statistique réalisé en Espagne.

- Les résultats obtenus sont beaucoup mieux, du point de vue d'application, que ces qu'on disposait jusqu'aujourd'hui. C'est pour ça qu'on peut établir nouuelles possibilités d'application du bois.

- C'est la première fois qu'on étudie les tensions basiques d'un bois qui est protifié dans l'Espagne.

- On a trouvé une corrélation acceptable entre l'âge de l'arbre et les caractéristiques physico-mécaniques du bois, avec laquelle il faut conter pour établir l'âge d'abattage de l'espèce.

- An fin on propose un critérium de classement du bois scie en fonction des ses défauts.
BIBLIOGRAFÍA CONSULTADA

- Pinus insignis, crecimiento y producción en el Norte de España y aplicación a la elaboración de pastas de celulosa, Ed. IFIE 1944.
- Tercera conferencia sobre tecnología de la madera, Ed. Servicio de la Madera 1954.
- Estudio de las maderas de coníferas españolas y de la zona norte de Marruecos, Ed. IFIE 1969.
- Utilización de las leñas de pino como materia prima celulósica, Ed. IFIE 1966.
- Características físico-mecánicas de las maderas españolas., Ed. IFIE 1967.
- The Structural Use of Timber., Ed. F.N. Spon Ltd. 1967.
- El aserrado en la fabricación de envases y embalajes, Ed. AITIM 1967.
- Cálculo de estructuras de madera. Ed. AITIM 1969.
- Inventario Forestal Nacional: Varias provincias, Ed. ICONA 1971/72
- Wood handbook, Ed. U.S. Department of Agriculture Forest Products Laboratory 1974.
- Proceso propuesto en la República Federal de Alemania para la determinación de las tensiones admisibles de la madera con el fin de contrastar la idoneidad de empleo de una madera en construcción, tanto bajo forma de madera sólida como de madera lamína. Por Carlos Baso López. Ed. Centro Regional de Enseñanzas, Investigaciones y Experiencias Forestales. 1983
- Working Stresses for Structural Softwoods.
- Tensiones básicas, Apuntes de Cátedra de Tecnología de la Madera.
- Basic Information for export of chilean woods, Ed. Conaf.
- Estadística Forestal de España, Ed. Ministerio de Agricultura/Diversos años.
- Anual Book of ASTM Standards, Volumen nº 04/09; Wood.
- Boletín de Información Técnica AITIM nº 33/1968 y 71/1975
ANEXO Nº 1

CARACTERÍSTICAS DE LAS MUESTRAS
Cuadro n° 24.- Características de cada unidad de muestra.

Cuadro n° 25.- Características de la muestra agrupadas en niveles.

Cuadro n° 26.- Características desométricas del árbol medio de las muestras.

Mapa n° 3 .- Situación geográfica de las muestras.

Gráfico n° 5.- Calidades de la muestra.

0000 O 0000
<table>
<thead>
<tr>
<th>No de muestra</th>
<th>Altitud</th>
<th>Pendiente</th>
<th>Orientacion</th>
<th>Caracteristicas del medio</th>
<th>Caracteristicas desometricas</th>
<th>Diametro</th>
<th>Edad</th>
<th>anillos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>180</td>
<td>25</td>
<td>E</td>
<td></td>
<td></td>
<td>21</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>190</td>
<td>32</td>
<td>E</td>
<td></td>
<td></td>
<td>24</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>260</td>
<td>22</td>
<td>E</td>
<td></td>
<td></td>
<td>18</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>245</td>
<td>31</td>
<td>E</td>
<td></td>
<td></td>
<td>13</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>340</td>
<td>10</td>
<td>N</td>
<td></td>
<td></td>
<td>13</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>325</td>
<td>26</td>
<td>E</td>
<td></td>
<td></td>
<td>19</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>275</td>
<td>13</td>
<td>E</td>
<td></td>
<td></td>
<td>13.5</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>535</td>
<td>5</td>
<td>S</td>
<td></td>
<td></td>
<td>25.5</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>1</td>
<td>S</td>
<td></td>
<td></td>
<td>24</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>375</td>
<td>40</td>
<td>S</td>
<td></td>
<td></td>
<td>12</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>370</td>
<td>33</td>
<td>N</td>
<td></td>
<td></td>
<td>14.5</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>285</td>
<td>19</td>
<td>S</td>
<td></td>
<td></td>
<td>15</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>385</td>
<td>15</td>
<td>S</td>
<td></td>
<td></td>
<td>14.5</td>
<td>9</td>
<td>19.5</td>
</tr>
<tr>
<td>14</td>
<td>450</td>
<td>10</td>
<td>S</td>
<td></td>
<td></td>
<td>15</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>570</td>
<td>3</td>
<td>S</td>
<td></td>
<td></td>
<td>18.5</td>
<td>17</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>375</td>
<td>25</td>
<td>S</td>
<td></td>
<td></td>
<td>21.5</td>
<td>19</td>
<td>34</td>
</tr>
<tr>
<td>17</td>
<td>460</td>
<td>19</td>
<td>O</td>
<td></td>
<td></td>
<td>10</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>18</td>
<td>500</td>
<td>17</td>
<td>E</td>
<td></td>
<td></td>
<td>20.5</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>370</td>
<td>12</td>
<td>S</td>
<td></td>
<td></td>
<td>17.5</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>6</td>
<td>E</td>
<td></td>
<td></td>
<td>15</td>
<td>11</td>
<td>31.5</td>
</tr>
<tr>
<td>21</td>
<td>60</td>
<td>43</td>
<td>E</td>
<td></td>
<td></td>
<td>24.5</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>60</td>
<td>22</td>
<td>E</td>
<td></td>
<td></td>
<td>19.5</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>70</td>
<td>38</td>
<td>E</td>
<td></td>
<td></td>
<td>23</td>
<td>20</td>
<td>27.5</td>
</tr>
<tr>
<td>24</td>
<td>70</td>
<td>35</td>
<td>E</td>
<td></td>
<td></td>
<td>16</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>25</td>
<td>75</td>
<td>25</td>
<td>S</td>
<td></td>
<td></td>
<td>21</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>26</td>
<td>150</td>
<td>42</td>
<td>S</td>
<td></td>
<td></td>
<td>21</td>
<td>18</td>
<td>24.15</td>
</tr>
<tr>
<td>27</td>
<td>135</td>
<td>36</td>
<td>E</td>
<td></td>
<td></td>
<td>18</td>
<td>15.5</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>110</td>
<td>35</td>
<td>E</td>
<td></td>
<td></td>
<td>23.5</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>29</td>
<td>100</td>
<td>36</td>
<td>E</td>
<td></td>
<td></td>
<td>18.5</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>21</td>
<td>E</td>
<td></td>
<td></td>
<td>15.5</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>31</td>
<td>85</td>
<td>15</td>
<td>E</td>
<td></td>
<td></td>
<td>18</td>
<td>15.5</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>635</td>
<td>3</td>
<td>E</td>
<td></td>
<td></td>
<td>26</td>
<td>21.5</td>
<td>34</td>
</tr>
<tr>
<td>33</td>
<td>230</td>
<td>1</td>
<td>S</td>
<td></td>
<td></td>
<td>20</td>
<td>16.3</td>
<td>21</td>
</tr>
<tr>
<td>34</td>
<td>230</td>
<td>2</td>
<td>N</td>
<td></td>
<td></td>
<td>26</td>
<td>22.5</td>
<td>37</td>
</tr>
<tr>
<td>35</td>
<td>185</td>
<td>22</td>
<td>S</td>
<td></td>
<td></td>
<td>26</td>
<td>22.9</td>
<td>37</td>
</tr>
<tr>
<td>36</td>
<td>170</td>
<td>33</td>
<td>S</td>
<td></td>
<td></td>
<td>26</td>
<td>23.8</td>
<td>21.3</td>
</tr>
<tr>
<td>37</td>
<td>175</td>
<td>33</td>
<td>O</td>
<td></td>
<td></td>
<td>23.8</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>38</td>
<td>210</td>
<td>27</td>
<td>O</td>
<td></td>
<td></td>
<td>21</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>39</td>
<td>205</td>
<td>13</td>
<td>O</td>
<td></td>
<td></td>
<td>23.6</td>
<td>21.1</td>
<td>38</td>
</tr>
<tr>
<td>40</td>
<td>195</td>
<td>19</td>
<td>S</td>
<td></td>
<td></td>
<td>29</td>
<td>27</td>
<td>47</td>
</tr>
<tr>
<td>41</td>
<td>190</td>
<td>17</td>
<td>S</td>
<td></td>
<td></td>
<td>31.75</td>
<td>28.65</td>
<td>49</td>
</tr>
</tbody>
</table>
CUADRO NO 25

DATOS CARACTERÍSTICOS DE LA MUESTRA AGRUPADOS EN NIVELES

<table>
<thead>
<tr>
<th>Altitud</th>
<th>frecuencia</th>
<th>porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 400 m.</td>
<td>34</td>
<td>83</td>
</tr>
<tr>
<td>De 400 a 800 m.</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pendiente</th>
<th>frecuencia</th>
<th>porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 19</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>De 20 a 39</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>De 40 a 59</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orientación</th>
<th>frecuencia</th>
<th>porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>N-OE</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>OE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-OE</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>S</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>S-E</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>N-E</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>
CUADRO Nº 25 (Continuación)

DATOS CARACTERISTICOS DE LA MUESTRA AGRUPADOS EN NIVELES

<table>
<thead>
<tr>
<th>Diámetro normal</th>
<th>frecuencia</th>
<th>porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasta 29</td>
<td>22</td>
<td>54</td>
</tr>
<tr>
<td>30 - 39</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>40 - 49</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>más de 50</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altura total</th>
<th>frecuencia</th>
<th>porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasta 14,5</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>15 - 19,5 m.</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>20 - 24,5 m.</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>más de 25 m.</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Número de anillos</th>
<th>frecuencia</th>
<th>porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos de 15-19</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>20-24</td>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>25-29</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>más de 30</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>100</td>
</tr>
</tbody>
</table>
CUADRO Nº 26

CARACTERÍSTICAS DASOMETRICAS DEL ARBOL MEDIO DE LA MUESTRA

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro normal</td>
<td>30,6 cm.</td>
</tr>
<tr>
<td>Diámetro normal sin corteza</td>
<td>25,6 cm.</td>
</tr>
<tr>
<td>Altura total</td>
<td>19,3 m.</td>
</tr>
<tr>
<td>Altura de fuste</td>
<td>16,9 m.</td>
</tr>
<tr>
<td>Número de anillos</td>
<td>19,4</td>
</tr>
<tr>
<td>Anchura media de los anillos</td>
<td>1,5</td>
</tr>
</tbody>
</table>
ANEXO NO 11

RESULTADO DE LOS ENSAYOS A DIFERENTES PROBETAS

A LA HUMEDAD NORMAL
Cuadro nº 27. - Peso específico, humedad, contracción volumétrica e higroscopicidad.
Cuadro nº 28. - Contracción volumétrica total y punto de saturación de las fibras.
Cuadro nº 29. - Contracción tangencia y radial.
Cuadro nº 30. - Dureza.
Cuadro nº 31. - Compresión axial.
Cuadro nº 32. - Flexión estática y módulo de elasticidad.
Cuadro nº 33. - Flexión dinámica.
Cuadro nº 34. - Hieida.
Cuadro nº 35. - Tracción perpendicular a las fibras.
Cuadro nº 36. - Esfuerzo cortante.
Cuadro nº 37. - Compresión perpendicular a la fibra.
<table>
<thead>
<tr>
<th>No de probete</th>
<th>No de alambres</th>
<th>$p_{12-D}$</th>
<th>$p_{12}$</th>
<th>$P_{h}$</th>
<th>$V_{0}$</th>
<th>$V_{h}$</th>
<th>$h_{i}$</th>
<th>$R_{equiv}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AN1</td>
<td>2</td>
<td>3.1</td>
<td>7.9</td>
<td>7.7</td>
<td>7.7</td>
<td>7.8</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>1AN2</td>
<td>3</td>
<td>3.8</td>
<td>7.9</td>
<td>7.9</td>
<td>7.6</td>
<td>8.1</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>1AN3</td>
<td>4</td>
<td>4.0</td>
<td>7.9</td>
<td>7.9</td>
<td>7.6</td>
<td>8.1</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>1AN4</td>
<td>5</td>
<td>4.1</td>
<td>7.9</td>
<td>7.9</td>
<td>7.6</td>
<td>8.1</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>1AE2</td>
<td>4</td>
<td>3.9</td>
<td>8.2</td>
<td>8.2</td>
<td>8.3</td>
<td>8.6</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1AE3</td>
<td>5</td>
<td>4.0</td>
<td>8.2</td>
<td>8.2</td>
<td>8.3</td>
<td>8.6</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1BE1</td>
<td>4</td>
<td>4.1</td>
<td>8.2</td>
<td>8.2</td>
<td>8.3</td>
<td>8.6</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1BE4</td>
<td>5</td>
<td>4.0</td>
<td>8.2</td>
<td>8.2</td>
<td>8.3</td>
<td>8.6</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>2AN1</td>
<td>1</td>
<td>3.1</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2AN2</td>
<td>2</td>
<td>3.4</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2AN3</td>
<td>3</td>
<td>3.7</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2AN4</td>
<td>4</td>
<td>4.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2AN5</td>
<td>5</td>
<td>4.3</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2AN6</td>
<td>6</td>
<td>4.6</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2AN7</td>
<td>7</td>
<td>4.9</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2AN8</td>
<td>8</td>
<td>5.2</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Nro. de</td>
<td>Nro de</td>
<td>V&lt;sub&gt;n&lt;/sub&gt;</td>
<td>P&lt;sub&gt;n&lt;/sub&gt;</td>
<td>H&lt;sub&gt;n&lt;/sub&gt;</td>
<td>% P&lt;sub&gt;n&lt;/sub&gt;</td>
<td>P&lt;sub&gt;0&lt;/sub&gt;</td>
<td>V&lt;sub&gt;0&lt;/sub&gt;</td>
<td>P&lt;sub&gt;12-D&lt;/sub&gt;</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>probetas arrolladas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2AN8</td>
<td>1</td>
<td>3,1</td>
<td>8,1</td>
<td>7,8</td>
<td>3,0</td>
<td>3,0</td>
<td>0,30</td>
<td>0,40</td>
</tr>
<tr>
<td>2AS1</td>
<td>1</td>
<td>3,2</td>
<td>8,0</td>
<td>7,8</td>
<td>3,0</td>
<td>3,0</td>
<td>0,30</td>
<td>0,40</td>
</tr>
<tr>
<td>2AE1</td>
<td>2</td>
<td>3,3</td>
<td>8,1</td>
<td>7,9</td>
<td>3,1</td>
<td>3,1</td>
<td>0,31</td>
<td>0,41</td>
</tr>
<tr>
<td>2AE1</td>
<td>2</td>
<td>3,4</td>
<td>8,1</td>
<td>7,9</td>
<td>3,1</td>
<td>3,1</td>
<td>0,31</td>
<td>0,41</td>
</tr>
<tr>
<td>2AE3</td>
<td>3</td>
<td>4,1</td>
<td>8,2</td>
<td>7,9</td>
<td>3,1</td>
<td>3,1</td>
<td>0,31</td>
<td>0,42</td>
</tr>
<tr>
<td>2AO2</td>
<td>3</td>
<td>4,1</td>
<td>8,2</td>
<td>7,9</td>
<td>3,1</td>
<td>3,1</td>
<td>0,31</td>
<td>0,42</td>
</tr>
<tr>
<td>2AO3</td>
<td>3</td>
<td>4,1</td>
<td>8,2</td>
<td>7,9</td>
<td>3,1</td>
<td>3,1</td>
<td>0,31</td>
<td>0,42</td>
</tr>
<tr>
<td>2BN1</td>
<td>2</td>
<td>2,7</td>
<td>7,9</td>
<td>7,8</td>
<td>2,5</td>
<td>7,8</td>
<td>0,38</td>
<td>0,40</td>
</tr>
<tr>
<td>2BE2</td>
<td>2</td>
<td>2,7</td>
<td>7,9</td>
<td>7,8</td>
<td>2,5</td>
<td>7,8</td>
<td>0,38</td>
<td>0,40</td>
</tr>
<tr>
<td>3AN1</td>
<td>1</td>
<td>3,4</td>
<td>7,9</td>
<td>7,8</td>
<td>2,5</td>
<td>7,8</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>3AS1</td>
<td>1</td>
<td>3,2</td>
<td>7,9</td>
<td>7,8</td>
<td>2,5</td>
<td>7,8</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>3AN2</td>
<td>1</td>
<td>3,4</td>
<td>7,9</td>
<td>7,8</td>
<td>2,5</td>
<td>7,8</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>3AE2</td>
<td>1</td>
<td>3,4</td>
<td>7,9</td>
<td>7,8</td>
<td>2,5</td>
<td>7,8</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>3AP1</td>
<td>1</td>
<td>4,6</td>
<td>7,9</td>
<td>7,6</td>
<td>2,5</td>
<td>7,6</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>3AP2</td>
<td>1</td>
<td>3,4</td>
<td>7,9</td>
<td>7,8</td>
<td>2,5</td>
<td>7,8</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>3AP3</td>
<td>1</td>
<td>4,6</td>
<td>7,9</td>
<td>7,6</td>
<td>2,5</td>
<td>7,6</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>3AP4</td>
<td>1</td>
<td>4,6</td>
<td>7,9</td>
<td>7,6</td>
<td>2,5</td>
<td>7,6</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>3AP5</td>
<td>1</td>
<td>4,6</td>
<td>7,9</td>
<td>7,6</td>
<td>2,5</td>
<td>7,6</td>
<td>0,38</td>
<td>0,43</td>
</tr>
<tr>
<td>Nº de probeta orillas</td>
<td>Nº de orillas</td>
<td>Ph</td>
<td>Vh</td>
<td>Vo</td>
<td>P0</td>
<td>H%</td>
<td>Ph</td>
<td>Pg</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>4AS1</td>
<td>3</td>
<td>4,8</td>
<td>8,2</td>
<td>7,9</td>
<td>4,4</td>
<td>9,1</td>
<td>0,57</td>
<td>0,56</td>
</tr>
<tr>
<td>4AE1</td>
<td>4</td>
<td>4,5</td>
<td>7,8</td>
<td>7,5</td>
<td>4,2</td>
<td>8,3</td>
<td>0,58</td>
<td>0,56</td>
</tr>
<tr>
<td>4AE1</td>
<td>5</td>
<td>4,5</td>
<td>7,8</td>
<td>7,5</td>
<td>4,2</td>
<td>7,4</td>
<td>0,57</td>
<td>0,56</td>
</tr>
<tr>
<td>4AO1</td>
<td>1</td>
<td>5,2</td>
<td>7,8</td>
<td>7,6</td>
<td>4,8</td>
<td>8,3</td>
<td>0,66</td>
<td>0,63</td>
</tr>
<tr>
<td>6BN2</td>
<td>2,5</td>
<td>3,8</td>
<td>7,9</td>
<td>7,5</td>
<td>3,5</td>
<td>8,6</td>
<td>0,48</td>
<td>0,47</td>
</tr>
<tr>
<td>6BN2</td>
<td>1</td>
<td>3,7</td>
<td>8,2</td>
<td>7,8</td>
<td>3,4</td>
<td>7,2</td>
<td>0,45</td>
<td>0,44</td>
</tr>
<tr>
<td>6BE2</td>
<td>1</td>
<td>3,0</td>
<td>7,9</td>
<td>7,6</td>
<td>2,7</td>
<td>9,1</td>
<td>0,38</td>
<td>0,36</td>
</tr>
<tr>
<td>6BO2</td>
<td>3</td>
<td>4,0</td>
<td>8,0</td>
<td>7,7</td>
<td>3,7</td>
<td>8,7</td>
<td>0,50</td>
<td>0,47</td>
</tr>
<tr>
<td>6BO4</td>
<td>3</td>
<td>3,9</td>
<td>8,0</td>
<td>7,6</td>
<td>3,6</td>
<td>9,3</td>
<td>0,49</td>
<td>0,46</td>
</tr>
<tr>
<td>6BO4</td>
<td>3</td>
<td>3,9</td>
<td>8,0</td>
<td>7,7</td>
<td>3,6</td>
<td>8,9</td>
<td>0,49</td>
<td>0,47</td>
</tr>
<tr>
<td>8AN2</td>
<td>2</td>
<td>3,9</td>
<td>7,5</td>
<td>7,2</td>
<td>3,7</td>
<td>6,3</td>
<td>0,52</td>
<td>0,51</td>
</tr>
<tr>
<td>8AN2</td>
<td>3</td>
<td>4,2</td>
<td>7,6</td>
<td>7,2</td>
<td>3,9</td>
<td>8,3</td>
<td>0,55</td>
<td>0,54</td>
</tr>
<tr>
<td>8AN3</td>
<td>1</td>
<td>3,9</td>
<td>7,6</td>
<td>7,3</td>
<td>3,6</td>
<td>8,3</td>
<td>0,51</td>
<td>0,49</td>
</tr>
<tr>
<td>8AN6</td>
<td>3</td>
<td>4,1</td>
<td>7,4</td>
<td>7,1</td>
<td>3,7</td>
<td>9,3</td>
<td>0,55</td>
<td>0,53</td>
</tr>
<tr>
<td>8AS2</td>
<td>2</td>
<td>4,3</td>
<td>8,2</td>
<td>7,8</td>
<td>4,0</td>
<td>8,0</td>
<td>0,53</td>
<td>0,51</td>
</tr>
<tr>
<td>8AS3</td>
<td>2,5</td>
<td>4,3</td>
<td>7,9</td>
<td>7,6</td>
<td>4,0</td>
<td>8,3</td>
<td>0,54</td>
<td>0,52</td>
</tr>
<tr>
<td>8AS2</td>
<td>2</td>
<td>4,3</td>
<td>8,2</td>
<td>7,9</td>
<td>3,9</td>
<td>9,0</td>
<td>0,52</td>
<td>0,50</td>
</tr>
<tr>
<td>8AS3</td>
<td>3</td>
<td>4,4</td>
<td>8,0</td>
<td>7,6</td>
<td>4,1</td>
<td>7,8</td>
<td>0,55;</td>
<td>0,53</td>
</tr>
<tr>
<td>8AS6</td>
<td>3</td>
<td>4,0</td>
<td>7,6;</td>
<td>7,3</td>
<td>3,7</td>
<td>8,4</td>
<td>0,53</td>
<td>0,51</td>
</tr>
</tbody>
</table>
CUADRO N° 27 : PESO ESPECIFICO p; HUMEDAD h; CONTRACCION VOLUMETRICA B,v; HIGROSCOPICIDAD hi

<table>
<thead>
<tr>
<th>N° de probeta arillas</th>
<th>PH</th>
<th>VH</th>
<th>VO</th>
<th>PO</th>
<th>P %</th>
<th>PH</th>
<th>P2</th>
<th>P12=D</th>
<th>B</th>
<th>V</th>
<th>hi</th>
<th>RsVh</th>
</tr>
</thead>
<tbody>
<tr>
<td>8AE2</td>
<td>3</td>
<td>4,1</td>
<td>7,9</td>
<td>7,5</td>
<td>3,7</td>
<td>8,6</td>
<td>0,51</td>
<td>0,49</td>
<td>0,52</td>
<td>4,2</td>
<td>0,5</td>
<td>2,6</td>
</tr>
<tr>
<td>8BN1</td>
<td>3</td>
<td>3,6</td>
<td>7,5</td>
<td>7,2</td>
<td>3,3</td>
<td>7,5</td>
<td>0,48</td>
<td>0,46</td>
<td>0,49</td>
<td>4,2</td>
<td>0,6</td>
<td>2,2</td>
</tr>
<tr>
<td>8BN2</td>
<td>6</td>
<td>4,1</td>
<td>7,7</td>
<td>7,4</td>
<td>3,8</td>
<td>7,9</td>
<td>0,53</td>
<td>0,51</td>
<td>0,54</td>
<td>4,7</td>
<td>0,6</td>
<td>2,2</td>
</tr>
<tr>
<td>8BN3</td>
<td>3</td>
<td>4,3</td>
<td>7,7</td>
<td>7,5</td>
<td>3,9</td>
<td>8,9</td>
<td>0,56</td>
<td>0,53</td>
<td>0,57</td>
<td>3,5</td>
<td>0,4</td>
<td>3,5</td>
</tr>
<tr>
<td>8BS2</td>
<td>2</td>
<td>3,5</td>
<td>8,0</td>
<td>7,7</td>
<td>3,3</td>
<td>8,2</td>
<td>0,44</td>
<td>0,43</td>
<td>0,45</td>
<td>4,2</td>
<td>0,5</td>
<td>2,2</td>
</tr>
<tr>
<td>8BE1</td>
<td>2</td>
<td>3,5</td>
<td>8,1</td>
<td>7,8</td>
<td>3,2</td>
<td>7,7</td>
<td>0,43</td>
<td>0,42</td>
<td>0,44</td>
<td>3,8</td>
<td>0,5</td>
<td>2,2</td>
</tr>
<tr>
<td>8BE2</td>
<td>6</td>
<td>4,3</td>
<td>8,1</td>
<td>7,8</td>
<td>4,0</td>
<td>7,5</td>
<td>0,55</td>
<td>0,51</td>
<td>0,54</td>
<td>3,9</td>
<td>0,5</td>
<td>2,6</td>
</tr>
<tr>
<td>8BE3</td>
<td>5</td>
<td>4,2</td>
<td>8,0</td>
<td>7,7</td>
<td>3,9</td>
<td>8,2</td>
<td>0,52</td>
<td>0,50</td>
<td>0,53</td>
<td>4,5</td>
<td>0,5</td>
<td>2,4</td>
</tr>
<tr>
<td>8BE6</td>
<td>4</td>
<td>4,0</td>
<td>8,2</td>
<td>7,7</td>
<td>3,8</td>
<td>7,1</td>
<td>0,50</td>
<td>0,49</td>
<td>0,50</td>
<td>5,4</td>
<td>0,8</td>
<td>1,2</td>
</tr>
<tr>
<td>8BE6</td>
<td>4</td>
<td>4,0</td>
<td>8,1</td>
<td>7,8</td>
<td>3,7</td>
<td>8,0</td>
<td>0,50</td>
<td>0,48</td>
<td>0,51</td>
<td>3,8</td>
<td>0,5</td>
<td>2,7</td>
</tr>
<tr>
<td>8BO1</td>
<td>1</td>
<td>3,2</td>
<td>8,2</td>
<td>8,0</td>
<td>3,0</td>
<td>7,7</td>
<td>0,39</td>
<td>0,37</td>
<td>0,40</td>
<td>2,9</td>
<td>0,3</td>
<td>2,5</td>
</tr>
<tr>
<td>11AS2</td>
<td>3</td>
<td>3,9</td>
<td>7,6</td>
<td>7,3</td>
<td>3,6</td>
<td>8,3</td>
<td>0,51</td>
<td>0,50</td>
<td>0,52</td>
<td>4,7</td>
<td>0,5</td>
<td>2,3</td>
</tr>
<tr>
<td>11AE2</td>
<td>2</td>
<td>4,2</td>
<td>7,8</td>
<td>7,6</td>
<td>3,9</td>
<td>8,2</td>
<td>0,53</td>
<td>0,51</td>
<td>0,54</td>
<td>3,7</td>
<td>0,4</td>
<td>3,0</td>
</tr>
<tr>
<td>11AO1</td>
<td>1</td>
<td>3,6</td>
<td>7,7</td>
<td>7,4</td>
<td>3,3</td>
<td>9,1</td>
<td>0,47</td>
<td>0,45</td>
<td>0,48</td>
<td>4,5</td>
<td>0,5</td>
<td>2,4</td>
</tr>
<tr>
<td>11AO2</td>
<td>3</td>
<td>4,1</td>
<td>7,6</td>
<td>7,3</td>
<td>3,8</td>
<td>7,0</td>
<td>0,54</td>
<td>0,52</td>
<td>0,55</td>
<td>3,5</td>
<td>0,5</td>
<td>2,8</td>
</tr>
<tr>
<td>11AO3</td>
<td>2</td>
<td>4,2</td>
<td>7,5</td>
<td>7,2</td>
<td>3,9</td>
<td>8,7</td>
<td>0,57</td>
<td>0,54</td>
<td>0,58</td>
<td>3,5</td>
<td>0,4</td>
<td>3,5</td>
</tr>
<tr>
<td>13AS2</td>
<td>1</td>
<td>4,0</td>
<td>8,1</td>
<td>7,7</td>
<td>3,6</td>
<td>9,6</td>
<td>0,50</td>
<td>0,47</td>
<td>0,51</td>
<td>4,1</td>
<td>0,4</td>
<td>2,9</td>
</tr>
<tr>
<td>14AN2</td>
<td>1</td>
<td>4,0</td>
<td>8,2</td>
<td>7,9</td>
<td>3,8</td>
<td>5,8</td>
<td>0,49</td>
<td>0,48</td>
<td>0,50</td>
<td>3,7</td>
<td>0,6</td>
<td>1,8</td>
</tr>
<tr>
<td>16AE2</td>
<td>2</td>
<td>3,8</td>
<td>7,9</td>
<td>7,6</td>
<td>3,5</td>
<td>7,9</td>
<td>0,48</td>
<td>0,47</td>
<td>0,49</td>
<td>4,6</td>
<td>0,6</td>
<td>2,1</td>
</tr>
<tr>
<td>N° de probeta orillas</td>
<td>Nº de probetas</td>
<td>P_h</td>
<td>V_h</td>
<td>V_o</td>
<td>P_e</td>
<td>H %</td>
<td>P_h</td>
<td>P_e</td>
<td>$\int_{12}^{D}$</td>
<td>B</td>
<td>V</td>
<td>hi</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16AE3</td>
<td>1</td>
<td>3,2</td>
<td>7,8</td>
<td>7,5</td>
<td>2,8</td>
<td>8,5</td>
<td>0,41</td>
<td>0,38</td>
<td>0,42</td>
<td>3,6</td>
<td>0,5</td>
<td>2,2</td>
</tr>
<tr>
<td>17AS5</td>
<td>4</td>
<td>3,9</td>
<td>7,3</td>
<td>7,2</td>
<td>3,3</td>
<td>16,6</td>
<td>0,54</td>
<td>0,47</td>
<td>0,52</td>
<td>1,4</td>
<td>0,1</td>
<td>4,7</td>
</tr>
<tr>
<td>17AS9</td>
<td>2</td>
<td>3,7</td>
<td>7,4</td>
<td>7,1</td>
<td>3,2</td>
<td>17,1</td>
<td>0,50</td>
<td>0,45</td>
<td>0,48</td>
<td>4,5</td>
<td>0,3</td>
<td>3,5</td>
</tr>
<tr>
<td>17AE8</td>
<td>3</td>
<td>3,3</td>
<td>7,5</td>
<td>7,2</td>
<td>2,9</td>
<td>14,6</td>
<td>0,44</td>
<td>0,40</td>
<td>0,43</td>
<td>4,7</td>
<td>0,3</td>
<td>2,9</td>
</tr>
<tr>
<td>21AN4</td>
<td>3</td>
<td>3,8</td>
<td>7,6;</td>
<td>7,4</td>
<td>3,2</td>
<td>20,6</td>
<td>0,50</td>
<td>0,43</td>
<td>0,46</td>
<td>3,2</td>
<td>0,2</td>
<td>3,9</td>
</tr>
<tr>
<td>21AE1</td>
<td>5</td>
<td>3,9</td>
<td>7,8</td>
<td>7,5</td>
<td>3,4</td>
<td>14,7</td>
<td>0,50</td>
<td>0,45</td>
<td>0,49</td>
<td>4,3</td>
<td>0,3</td>
<td>3,5</td>
</tr>
<tr>
<td>21AE1</td>
<td>3</td>
<td>3,8</td>
<td>7,7</td>
<td>7,2</td>
<td>3,4</td>
<td>14,2</td>
<td>0,50</td>
<td>0,47</td>
<td>0,49</td>
<td>7,2</td>
<td>0,5</td>
<td>2,4</td>
</tr>
<tr>
<td>21AO1</td>
<td>4</td>
<td>4,1</td>
<td>7,5</td>
<td>7,2</td>
<td>3,6</td>
<td>13,9</td>
<td>0,55</td>
<td>0,50</td>
<td>0,54</td>
<td>4,2</td>
<td>0,3</td>
<td>3,8</td>
</tr>
<tr>
<td>21AO3</td>
<td>4</td>
<td>3,6</td>
<td>7,3</td>
<td>7,1</td>
<td>3,2</td>
<td>13,5</td>
<td>0,49</td>
<td>0,45</td>
<td>0,48</td>
<td>3,5</td>
<td>0,3</td>
<td>3,6</td>
</tr>
<tr>
<td>21AO3</td>
<td>2</td>
<td>3,5</td>
<td>7,6</td>
<td>7,1</td>
<td>3,0</td>
<td>16,7</td>
<td>0,46</td>
<td>0,42</td>
<td>0,45</td>
<td>6,6</td>
<td>0,4</td>
<td>2,7</td>
</tr>
<tr>
<td>22AN4</td>
<td>3</td>
<td>3,7</td>
<td>7,7</td>
<td>7,2</td>
<td>3,4</td>
<td>8,8</td>
<td>0,48</td>
<td>0,47</td>
<td>0,48</td>
<td>6,5</td>
<td>0,7</td>
<td>1,3</td>
</tr>
<tr>
<td>22AN5</td>
<td>1</td>
<td>3,7</td>
<td>7,8</td>
<td>7,4</td>
<td>3,4</td>
<td>7,2</td>
<td>0,47</td>
<td>0,46</td>
<td>0,48</td>
<td>5,1</td>
<td>0,7</td>
<td>1,4</td>
</tr>
<tr>
<td>23BO2</td>
<td>3</td>
<td>3,5</td>
<td>7,6</td>
<td>7,2</td>
<td>3,1</td>
<td>14,5</td>
<td>0,47</td>
<td>0,43</td>
<td>0,46</td>
<td>6,7</td>
<td>0,5</td>
<td>2,5</td>
</tr>
<tr>
<td>23BO3</td>
<td>3</td>
<td>4,0</td>
<td>7,6</td>
<td>7,2</td>
<td>3,5</td>
<td>14,3</td>
<td>0,53</td>
<td>0,49</td>
<td>0,52</td>
<td>5,7</td>
<td>0,4</td>
<td>3,1</td>
</tr>
<tr>
<td>25AN1</td>
<td>4</td>
<td>4,0</td>
<td>7,5</td>
<td>7,0</td>
<td>3,5</td>
<td>14,3</td>
<td>0,53</td>
<td>0,50</td>
<td>0,52</td>
<td>8,0</td>
<td>0,6</td>
<td>2,3</td>
</tr>
<tr>
<td>25AN1</td>
<td>2</td>
<td>4,1</td>
<td>7,4</td>
<td>7,3</td>
<td>3,6</td>
<td>13,3</td>
<td>0,55</td>
<td>0,49</td>
<td>0,54</td>
<td>1,0</td>
<td>0,1</td>
<td>10,0</td>
</tr>
<tr>
<td>25AN2</td>
<td>2</td>
<td>3,5</td>
<td>7,7</td>
<td>7,1</td>
<td>3,1</td>
<td>14,7</td>
<td>0,45</td>
<td>0,43</td>
<td>0,45</td>
<td>9,6</td>
<td>0,6</td>
<td>1,5</td>
</tr>
<tr>
<td>27BN1</td>
<td>3</td>
<td>4,1</td>
<td>7,7</td>
<td>7,4</td>
<td>3,6</td>
<td>14,1</td>
<td>0,53</td>
<td>0,48</td>
<td>0,52</td>
<td>3,6</td>
<td>0,3</td>
<td>3,9</td>
</tr>
<tr>
<td>27BS1</td>
<td>2</td>
<td>4,1</td>
<td>7,3</td>
<td>7,2</td>
<td>3,5</td>
<td>15,5</td>
<td>0,56</td>
<td>0,49</td>
<td>0,54</td>
<td>10,0</td>
<td>0,5</td>
<td>0,50</td>
</tr>
</tbody>
</table>
CUADRO Nº 27: PESO ESPECÍFICO $p$; HUMEDAD $h$; CONTRACCION VOLUMETRICA $b,v$; HIGROSCOPICIDAD $h_i$

<table>
<thead>
<tr>
<th>Nº de probeta o rincas</th>
<th>Nº de probeta o rincas</th>
<th>$V_h$</th>
<th>$V_o$</th>
<th>$P_o$</th>
<th>$H$ %</th>
<th>$P_h$</th>
<th>$P_12$=D</th>
<th>$B$</th>
<th>$V$</th>
<th>$h_i$</th>
<th>$R_{svh}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>27BS2</td>
<td>2</td>
<td>3,8</td>
<td>7,8</td>
<td>7,2</td>
<td>3,3</td>
<td>15,8</td>
<td>0,49</td>
<td>0,48</td>
<td>8,6</td>
<td>0,5</td>
<td>2,2</td>
</tr>
<tr>
<td>27BS2</td>
<td>2</td>
<td>3,8</td>
<td>7,8</td>
<td>7,2</td>
<td>3,3</td>
<td>14,9</td>
<td>0,49</td>
<td>0,47</td>
<td>9,3</td>
<td>0,6</td>
<td>1,8</td>
</tr>
<tr>
<td>27BO2</td>
<td>2</td>
<td>3,5</td>
<td>7,6</td>
<td>7,3</td>
<td>3,9</td>
<td>15,1</td>
<td>0,46</td>
<td>0,42</td>
<td>4,4</td>
<td>0,3</td>
<td>3,2</td>
</tr>
<tr>
<td>28AS5</td>
<td>3</td>
<td>4,0</td>
<td>7,8</td>
<td>7,4</td>
<td>3,7</td>
<td>8,4</td>
<td>0,52</td>
<td>0,50</td>
<td>4,7</td>
<td>0,6</td>
<td>2,3</td>
</tr>
<tr>
<td>28AO3</td>
<td>3</td>
<td>4,5</td>
<td>7,9</td>
<td>7,6</td>
<td>4,2</td>
<td>7,1</td>
<td>0,57</td>
<td>0,55</td>
<td>0,58</td>
<td>4,2</td>
<td>0,6</td>
</tr>
<tr>
<td>28BN2</td>
<td>1</td>
<td>3,4</td>
<td>7,4</td>
<td>7,1</td>
<td>3,2</td>
<td>7,5</td>
<td>0,47</td>
<td>0,45</td>
<td>3,7</td>
<td>0,4</td>
<td>2,4</td>
</tr>
<tr>
<td>28BN3</td>
<td>3</td>
<td>3,8</td>
<td>7,5</td>
<td>7,2</td>
<td>3,5</td>
<td>8,6</td>
<td>0,51</td>
<td>0,49</td>
<td>0,52</td>
<td>4,2</td>
<td>0,5</td>
</tr>
<tr>
<td>30AN2</td>
<td>3</td>
<td>3,8</td>
<td>7,3</td>
<td>6,8</td>
<td>3,3</td>
<td>14,4</td>
<td>0,52</td>
<td>0,49</td>
<td>0,51</td>
<td>7,3</td>
<td>0,5</td>
</tr>
<tr>
<td>30AN2</td>
<td>4</td>
<td>4,3</td>
<td>7,3</td>
<td>7,2</td>
<td>3,7</td>
<td>15,3</td>
<td>0,60</td>
<td>0,52</td>
<td>0,57</td>
<td>1,9</td>
<td>0,1</td>
</tr>
<tr>
<td>30AN3</td>
<td>2</td>
<td>3,4</td>
<td>7,3</td>
<td>7,2</td>
<td>3,0</td>
<td>15,2</td>
<td>0,46</td>
<td>0,41</td>
<td>0,45</td>
<td>1,5</td>
<td>0,1</td>
</tr>
<tr>
<td>31AO2</td>
<td>2</td>
<td>3,3</td>
<td>7,8</td>
<td>7,2</td>
<td>2,8</td>
<td>15,2</td>
<td>0,42</td>
<td>0,40</td>
<td>0,41</td>
<td>8,6</td>
<td>0,5</td>
</tr>
<tr>
<td>32AN2</td>
<td>5</td>
<td>5,1</td>
<td>8,1</td>
<td>7,6</td>
<td>4,6</td>
<td>9,1</td>
<td>0,63</td>
<td>0,61</td>
<td>0,63</td>
<td>6,1</td>
<td>0,7</td>
</tr>
<tr>
<td>32AE2</td>
<td>3</td>
<td>4,8</td>
<td>8,0</td>
<td>7,7</td>
<td>4,4</td>
<td>9,6</td>
<td>0,60</td>
<td>0,57</td>
<td>0,61</td>
<td>3,9</td>
<td>0,4</td>
</tr>
<tr>
<td>32AO3</td>
<td>5</td>
<td>4,2</td>
<td>7,7</td>
<td>7,4</td>
<td>3,9</td>
<td>8,2</td>
<td>0,54</td>
<td>0,52</td>
<td>0,55</td>
<td>3,9</td>
<td>0,5</td>
</tr>
<tr>
<td>32BS6</td>
<td>3</td>
<td>4,5</td>
<td>8,3</td>
<td>8,0</td>
<td>4,2</td>
<td>8,3</td>
<td>0,55</td>
<td>0,53</td>
<td>0,56</td>
<td>4,5</td>
<td>0,5</td>
</tr>
<tr>
<td>32BE6</td>
<td>3</td>
<td>3,7</td>
<td>7,9</td>
<td>7,6</td>
<td>3,4</td>
<td>7,5</td>
<td>0,47</td>
<td>0,45</td>
<td>0,48</td>
<td>3,9</td>
<td>0,5</td>
</tr>
<tr>
<td>32BO1</td>
<td>3,5</td>
<td>4,2</td>
<td>8,1</td>
<td>7,8</td>
<td>3,9</td>
<td>8,8</td>
<td>0,52</td>
<td>0,49</td>
<td>0,53</td>
<td>3,1</td>
<td>0,3</td>
</tr>
<tr>
<td>32BO2</td>
<td>3</td>
<td>4,0</td>
<td>7,9</td>
<td>7,6</td>
<td>3,7</td>
<td>8,1</td>
<td>0,51</td>
<td>0,49</td>
<td>0,52</td>
<td>4,2</td>
<td>0,5</td>
</tr>
<tr>
<td>32BO3</td>
<td>3,5</td>
<td>3,7</td>
<td>7,2</td>
<td>7,6</td>
<td>3,4</td>
<td>8,0</td>
<td>0,46</td>
<td>0,41</td>
<td>0,47</td>
<td>4,0</td>
<td>0,5</td>
</tr>
<tr>
<td>N° de</td>
<td>V₀</td>
<td>P₀</td>
<td>H %</td>
<td>P₁₂</td>
<td>P₂₁</td>
<td>V</td>
<td>B</td>
<td>h₁</td>
<td>Rₛ/ν</td>
<td>P₁₂=D</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>33AN1</td>
<td>2</td>
<td>4,4</td>
<td>7,9</td>
<td>7,5</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
<td>0,55</td>
<td>0,56</td>
<td>0,53</td>
</tr>
<tr>
<td>33AN2</td>
<td>7</td>
<td>4,6</td>
<td>8,2</td>
<td>7,9</td>
<td>4,2</td>
<td>9,0</td>
<td>0,56</td>
<td>0,56</td>
<td>0,54</td>
<td>0,54</td>
<td>0,57</td>
</tr>
<tr>
<td>33AO2</td>
<td>4</td>
<td>4,7</td>
<td>8,0</td>
<td>7,6</td>
<td>4,4</td>
<td>7,5</td>
<td>0,59</td>
<td>0,59</td>
<td>0,57</td>
<td>0,57</td>
<td>0,57</td>
</tr>
<tr>
<td>378N1</td>
<td>3</td>
<td>3,4</td>
<td>7,7</td>
<td>7,7</td>
<td>3,3</td>
<td>9,1</td>
<td>0,47</td>
<td>0,47</td>
<td>0,45</td>
<td>0,45</td>
<td>0,45</td>
</tr>
<tr>
<td>378N2</td>
<td>2</td>
<td>3,2</td>
<td>7,3</td>
<td>7,4</td>
<td>2,9</td>
<td>16,0</td>
<td>0,16</td>
<td>0,16</td>
<td>0,42</td>
<td>0,42</td>
<td>0,42</td>
</tr>
<tr>
<td>38N1</td>
<td>4</td>
<td>3,6</td>
<td>7,7</td>
<td>7,3</td>
<td>2,8</td>
<td>14,7</td>
<td>0,44</td>
<td>0,44</td>
<td>0,39</td>
<td>0,39</td>
<td>0,39</td>
</tr>
<tr>
<td>38N2</td>
<td>2</td>
<td>3,2</td>
<td>7,1</td>
<td>7,1</td>
<td>2,7</td>
<td>14,8</td>
<td>0,42</td>
<td>0,42</td>
<td>0,38</td>
<td>0,38</td>
<td>0,38</td>
</tr>
<tr>
<td>38E1</td>
<td>1</td>
<td>3,1</td>
<td>7,4</td>
<td>7,1</td>
<td>2,7</td>
<td>14,8</td>
<td>0,42</td>
<td>0,42</td>
<td>0,38</td>
<td>0,38</td>
<td>0,38</td>
</tr>
<tr>
<td>38AO4</td>
<td>4</td>
<td>3,6</td>
<td>7,5</td>
<td>7,0</td>
<td>3,1</td>
<td>15,9</td>
<td>0,48</td>
<td>0,48</td>
<td>0,45</td>
<td>0,45</td>
<td>0,45</td>
</tr>
<tr>
<td>38BO2</td>
<td>2</td>
<td>3,2</td>
<td>7,3</td>
<td>7,4</td>
<td>2,6</td>
<td>13,2</td>
<td>0,39</td>
<td>0,39</td>
<td>0,38</td>
<td>0,38</td>
<td>0,38</td>
</tr>
<tr>
<td>38BO1</td>
<td>2</td>
<td>3,0</td>
<td>7,7</td>
<td>7,7</td>
<td>2,6</td>
<td>13,3</td>
<td>0,40</td>
<td>0,40</td>
<td>0,37</td>
<td>0,37</td>
<td>0,37</td>
</tr>
<tr>
<td>39AS4</td>
<td>1</td>
<td>3,2</td>
<td>7,7</td>
<td>7,3</td>
<td>2,9</td>
<td>14,4</td>
<td>0,43</td>
<td>0,43</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>39AE3</td>
<td>2</td>
<td>3,1</td>
<td>7,7</td>
<td>7,3</td>
<td>2,8</td>
<td>14,4</td>
<td>0,43</td>
<td>0,43</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>39AO1</td>
<td>3</td>
<td>4,6</td>
<td>8,0</td>
<td>7,0</td>
<td>3,1</td>
<td>15,9</td>
<td>0,48</td>
<td>0,48</td>
<td>0,45</td>
<td>0,45</td>
<td>0,45</td>
</tr>
<tr>
<td>39BO3</td>
<td>3</td>
<td>3,7</td>
<td>8,4</td>
<td>7,4</td>
<td>2,6</td>
<td>13,2</td>
<td>0,39</td>
<td>0,39</td>
<td>0,38</td>
<td>0,38</td>
<td>0,38</td>
</tr>
<tr>
<td>40S3</td>
<td>1</td>
<td>3,2</td>
<td>7,7</td>
<td>7,7</td>
<td>2,7</td>
<td>14,4</td>
<td>0,43</td>
<td>0,43</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>40E4</td>
<td>2</td>
<td>3,5</td>
<td>4,6</td>
<td>7,9</td>
<td>3,0</td>
<td>14,7</td>
<td>0,59</td>
<td>0,59</td>
<td>0,57</td>
<td>0,57</td>
<td>0,57</td>
</tr>
<tr>
<td>41AS2</td>
<td>2</td>
<td>4,6</td>
<td>7,9</td>
<td>7,5</td>
<td>4,3</td>
<td>8,6</td>
<td>0,59</td>
<td>0,59</td>
<td>0,57</td>
<td>0,57</td>
<td>0,57</td>
</tr>
</tbody>
</table>
CUADRO Nº 27: PESO ESPECÍFICO \( p \); HUMEDAD \( h \); CONTRACCION VOLUMETRICA \( B,V \); HIGROSCOPICIDAD \( h_i \)

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>Nº de canillas</th>
<th>( P_h )</th>
<th>( V_h )</th>
<th>( V_o )</th>
<th>( P_o )</th>
<th>( H % )</th>
<th>( P_h )</th>
<th>( P_2 )</th>
<th>( P_{12} = D )</th>
<th>( B )</th>
<th>( V )</th>
<th>( h_i )</th>
<th>( R_{svh} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>41AS3</td>
<td>1.5</td>
<td>4.4</td>
<td>7.9</td>
<td>7.7</td>
<td>4.1</td>
<td>7.6</td>
<td>0.59</td>
<td>0.53</td>
<td>0.60</td>
<td>3.4</td>
<td>0.4</td>
<td>3.3</td>
<td>0.52</td>
</tr>
</tbody>
</table>
CUADRO N° 28 : CONTRACCIÓN VOLUMETRICA, B Y PUNTO DE SATURACIÓN DE LAS FIBRAS S

<table>
<thead>
<tr>
<th>de beta</th>
<th>$V_s$</th>
<th>$V_o$</th>
<th>$B$</th>
<th>$S$</th>
<th>Nº de probeta</th>
<th>$V_s$</th>
<th>$V_o$</th>
<th>$B$</th>
<th>$S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9119'9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3AN2</td>
<td>9256'8</td>
<td>7762'1</td>
<td>19'26</td>
<td>40'29</td>
</tr>
<tr>
<td>8930'1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3AN3</td>
<td>9365'7</td>
<td>8062'3</td>
<td>16'42</td>
<td>34'35</td>
</tr>
<tr>
<td>9252'1</td>
<td>8103'5</td>
<td>14'17</td>
<td>29'64</td>
<td></td>
<td>3AS1</td>
<td>9422'2</td>
<td>7966'6</td>
<td>18'27</td>
<td>38'22</td>
</tr>
<tr>
<td>9640'9</td>
<td>8043'5</td>
<td>19'86</td>
<td>41'55</td>
<td></td>
<td>3AE1</td>
<td>9027'9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9303'6</td>
<td>7876'3</td>
<td>18'12</td>
<td>37'91</td>
<td></td>
<td>3AE2</td>
<td>9441'1</td>
<td>8272'1</td>
<td>14'13</td>
<td>29'56</td>
</tr>
<tr>
<td>9811'1</td>
<td>8000'1</td>
<td>22'64</td>
<td>47'36</td>
<td></td>
<td>3AO1</td>
<td>9435'6</td>
<td>7880'1</td>
<td>19'74</td>
<td>41'29</td>
</tr>
<tr>
<td>9448'1</td>
<td>7847'6</td>
<td>20'37</td>
<td>42'65</td>
<td></td>
<td>4AN4</td>
<td>9146'7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9448'7</td>
<td>8068'3</td>
<td>17'11</td>
<td>35'79</td>
<td></td>
<td>4AS1</td>
<td>9489'9</td>
<td>8102'5</td>
<td>17'12</td>
<td>35'81</td>
</tr>
<tr>
<td>9209'6</td>
<td>8107'4</td>
<td>13'59</td>
<td>28'43</td>
<td></td>
<td>4AO1</td>
<td>9140'5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9146'1</td>
<td>7882'6</td>
<td>16'03</td>
<td>33'53</td>
<td></td>
<td>4AO5</td>
<td>9299'3</td>
<td>8246'4</td>
<td>12'74</td>
<td>26'65</td>
</tr>
<tr>
<td>8693'7</td>
<td>7873'7</td>
<td>10'41</td>
<td>21'78</td>
<td></td>
<td>6BO3</td>
<td>9203'4</td>
<td>7956'5</td>
<td>15'67</td>
<td>32'78</td>
</tr>
<tr>
<td>9271'7</td>
<td>7939'9</td>
<td>16'77</td>
<td>35'06</td>
<td></td>
<td>8AN6</td>
<td>8657'7</td>
<td>7346'5</td>
<td>17'85</td>
<td>37'34</td>
</tr>
<tr>
<td>9042'9</td>
<td>8010'6</td>
<td>12'89</td>
<td>26'96</td>
<td></td>
<td>8AS6</td>
<td>9391'1</td>
<td>8104'2</td>
<td>15'93</td>
<td>33'32</td>
</tr>
<tr>
<td>8916'8</td>
<td>7729'5</td>
<td>15'36</td>
<td>32'13</td>
<td></td>
<td>8AO2</td>
<td>9208'5</td>
<td>8044'3</td>
<td>14'47</td>
<td>30'27</td>
</tr>
<tr>
<td>9302'5</td>
<td>8062'2</td>
<td>15'39</td>
<td>32'19</td>
<td></td>
<td>8BN1</td>
<td>9230'2</td>
<td>8414'3</td>
<td>9'70</td>
<td>20'29</td>
</tr>
<tr>
<td>8721'9</td>
<td>8065'5</td>
<td>8'14</td>
<td>17'03</td>
<td></td>
<td>8BS1</td>
<td>9430'6</td>
<td>8033'9</td>
<td>17'38</td>
<td>36'36</td>
</tr>
<tr>
<td>9490'9</td>
<td>8142'9</td>
<td>16'55</td>
<td>34'62</td>
<td></td>
<td>8BS3</td>
<td>9247'1</td>
<td>8072'5</td>
<td>14'55</td>
<td>30'43</td>
</tr>
<tr>
<td>9392'2</td>
<td>7989'1</td>
<td>17'56</td>
<td>36'74</td>
<td></td>
<td>8BS31</td>
<td>8918'9</td>
<td>7690'6</td>
<td>15'97</td>
<td>33'41</td>
</tr>
<tr>
<td>9324'9</td>
<td>8007'8</td>
<td>16'45</td>
<td>34'41</td>
<td></td>
<td>8BE1</td>
<td>9336'9</td>
<td>8049'6</td>
<td>15'99</td>
<td>33'45</td>
</tr>
</tbody>
</table>
CUADRO Nº 28: CONTRACCION VOLUMETRICA, B Y PUNTO DE SATURACION DE LAS FIBRAS S

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>V_s</th>
<th>V_g</th>
<th>B</th>
<th>S</th>
<th>Nº de probeta</th>
<th>V_s</th>
<th>V_g</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>8BE6</td>
<td>9533'7</td>
<td>7903'1</td>
<td>20'63</td>
<td>43'15</td>
<td>28AE1</td>
<td>8998'4</td>
<td>7529'5</td>
<td>19'51</td>
</tr>
<tr>
<td>11AS2</td>
<td>9184'6</td>
<td>8162'8</td>
<td>12'52</td>
<td>26'19</td>
<td>28AO1</td>
<td>9609'6</td>
<td>7505'1</td>
<td>28'04</td>
</tr>
<tr>
<td>11AO2</td>
<td>9167'4</td>
<td>7775'8</td>
<td>17'90</td>
<td>37'44</td>
<td>28BN1</td>
<td>8609'3</td>
<td>7764'4</td>
<td>10'88</td>
</tr>
<tr>
<td>13AN1</td>
<td>9578'7</td>
<td>8136'2</td>
<td>17'73</td>
<td>37'09</td>
<td>28BS1</td>
<td>9261'9</td>
<td>8087'6</td>
<td>14'52</td>
</tr>
<tr>
<td>13AS1</td>
<td>9110'1</td>
<td>7697'6</td>
<td>18'35</td>
<td>38'39</td>
<td>28BS1_1</td>
<td>9168'1</td>
<td>8098'3</td>
<td>13'21</td>
</tr>
<tr>
<td>14AN1</td>
<td>9371'8</td>
<td>8255'2</td>
<td>13'53</td>
<td>28'30</td>
<td>28BE1</td>
<td>9384'5</td>
<td>7945'4</td>
<td>18'11</td>
</tr>
<tr>
<td>14AO1</td>
<td>8929'5</td>
<td>8224'1</td>
<td>13'88</td>
<td>29'04</td>
<td>32AN4</td>
<td>9000'7</td>
<td>7663'1</td>
<td>17'46</td>
</tr>
<tr>
<td>16AN1</td>
<td>8903'6</td>
<td>8384'8</td>
<td>17'14</td>
<td>14'94</td>
<td>32AN5</td>
<td>9531'7</td>
<td>7946'4</td>
<td>19'95</td>
</tr>
<tr>
<td>16AS3</td>
<td>8866'7</td>
<td>7326'1</td>
<td>21'30</td>
<td>44'56</td>
<td>32AE3</td>
<td>9547'5</td>
<td>7848'5</td>
<td>16'09</td>
</tr>
<tr>
<td>16AE3</td>
<td>9369'9</td>
<td>7835'1</td>
<td>19'84</td>
<td>41'50</td>
<td>32BN1</td>
<td>9490'4</td>
<td>7743'6</td>
<td>22'56</td>
</tr>
<tr>
<td>16AO3</td>
<td>9392'8</td>
<td>8069'8</td>
<td>16'39</td>
<td>34'28</td>
<td>32BS1</td>
<td>9180'1</td>
<td>7958'7</td>
<td>15'35</td>
</tr>
<tr>
<td>16BN2</td>
<td>9404'9</td>
<td>7965'3</td>
<td>19'08</td>
<td>39'91</td>
<td>32BS6</td>
<td>9138'0</td>
<td>7908'9</td>
<td>15'54</td>
</tr>
<tr>
<td>18AN2</td>
<td>9486'7</td>
<td>7973'7</td>
<td>18'98</td>
<td>39'71</td>
<td>32BO3</td>
<td>9540'8</td>
<td>7921'9</td>
<td>21'97</td>
</tr>
<tr>
<td>22AN3</td>
<td>9531'9</td>
<td>7989'7</td>
<td>20'69</td>
<td>43'28</td>
<td>33AN1</td>
<td>9218'8</td>
<td>7822'6</td>
<td>17'85</td>
</tr>
<tr>
<td>22AE2</td>
<td>9372'9</td>
<td>8043'9</td>
<td>16'52</td>
<td>34'56</td>
<td>33AS7</td>
<td>9476'1</td>
<td>8000'7</td>
<td>18'44</td>
</tr>
<tr>
<td>22AO1</td>
<td>9132'5</td>
<td>7800'1</td>
<td>17'08</td>
<td>35'73</td>
<td>33AE2</td>
<td>9170'1</td>
<td>7691'3</td>
<td>19'23</td>
</tr>
<tr>
<td>22AO2</td>
<td>9102'2</td>
<td>7714'4</td>
<td>17'99</td>
<td>37'63</td>
<td>33AO2</td>
<td>9562'6</td>
<td>7905'6</td>
<td>20'96</td>
</tr>
<tr>
<td>28AN3</td>
<td>9299'6</td>
<td>8139'5</td>
<td>14'25</td>
<td>29'81</td>
<td>33BN1</td>
<td>9098'2</td>
<td>7946'4</td>
<td>15'64</td>
</tr>
<tr>
<td>28AS2</td>
<td>9236'4</td>
<td>7617'5</td>
<td>21'25</td>
<td>44'45</td>
<td>33BO3</td>
<td>9342'9</td>
<td>7943'4</td>
<td>17'62</td>
</tr>
<tr>
<td>Beto</td>
<td>V_s</td>
<td>V_g</td>
<td>B</td>
<td>S</td>
<td>Nº de probeta</td>
<td>V_s</td>
<td>V_g</td>
<td>B</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>9027'6</td>
<td>7567'9</td>
<td>19'29</td>
<td>40'35</td>
<td>41801</td>
<td>9093'2</td>
<td>8158'3</td>
<td>11'46</td>
</tr>
<tr>
<td>3</td>
<td>9365'5</td>
<td>7908'6</td>
<td>18'42</td>
<td>38'53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9448'2</td>
<td>7663'9</td>
<td>23'28</td>
<td>48'70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9847'9</td>
<td>8246'1</td>
<td>19'43</td>
<td>40'65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9287'2</td>
<td>7895'5</td>
<td>17'63</td>
<td>36'88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9231'2</td>
<td>8053'6</td>
<td>14'62</td>
<td>30'58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9853'2</td>
<td>7867'6</td>
<td>25'24</td>
<td>52'80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8568'4</td>
<td>8002'5</td>
<td>7'07</td>
<td>14'80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8926'6</td>
<td>7822'6</td>
<td>14'11</td>
<td>29'52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9263'5</td>
<td>8104'5</td>
<td>14'30</td>
<td>29'91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8993'3</td>
<td>7999'3</td>
<td>12'43</td>
<td>26'00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9596'9</td>
<td>8015'1</td>
<td>19'74</td>
<td>41'29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9458'6</td>
<td>8195'8</td>
<td>15'41</td>
<td>32'24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9096'1</td>
<td>8033'9</td>
<td>13'22</td>
<td>27'65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9131'4</td>
<td>7898'4</td>
<td>15'66</td>
<td>32'76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8986'9</td>
<td>7850'4</td>
<td>14'48</td>
<td>30'29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8367'6</td>
<td>7907'3</td>
<td>5'82</td>
<td>12'17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9199'8</td>
<td>8152'2</td>
<td>12'84</td>
<td>26'86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9456'3</td>
<td>8180'7</td>
<td>15'59</td>
<td>32'61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUADRO Nº 29 : CONTRACCION LINEAL

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>DIMENSIONES PARA H = 0 %</th>
<th>CONTRAC. TGAL.</th>
<th>CONTRAC. RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PARA H = 0 %</td>
<td>Total B_tg</td>
<td>Unitario V_tg</td>
</tr>
<tr>
<td></td>
<td>Tang. T_{rg} Radial R_s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1AN3</td>
<td>21,5 20,7</td>
<td>19,7 19,9</td>
<td>9,5 0,26</td>
</tr>
<tr>
<td>1AN5</td>
<td>21,6 21,1</td>
<td>20,4 20,4</td>
<td>5,6 0,17</td>
</tr>
<tr>
<td>1AS2</td>
<td>21,6 21,5</td>
<td>19,8 20,1</td>
<td>8,8 0,26</td>
</tr>
<tr>
<td>1AS5</td>
<td>21,3 20,9</td>
<td>20,4 20,6</td>
<td>4,3 0,13</td>
</tr>
<tr>
<td>1AE1</td>
<td>21,6 20,9</td>
<td>19,7 20,0</td>
<td>9,6 0,30</td>
</tr>
<tr>
<td>1AO1</td>
<td>21,8 21,1</td>
<td>19,8 19,7</td>
<td>10,8 0,32</td>
</tr>
<tr>
<td>1AO2</td>
<td>21,8 21,1</td>
<td>19,7 19,7</td>
<td>10,4 0,31</td>
</tr>
<tr>
<td>1AO2_2</td>
<td>21,4 21,0</td>
<td>20,1 19,7</td>
<td>6,5 0,19</td>
</tr>
<tr>
<td>1BN1</td>
<td>21,6 21,0</td>
<td>19,8 19,8</td>
<td>9,0 0,26</td>
</tr>
<tr>
<td>1BN2</td>
<td>21,4 20,7</td>
<td>19,7 19,7</td>
<td>8,3 0,25</td>
</tr>
<tr>
<td>1BS1</td>
<td>21,5 20,5</td>
<td>19,7 19,7</td>
<td>8,6 0,26</td>
</tr>
<tr>
<td>1BE3</td>
<td>20,9 20,3</td>
<td>19,6 19,7</td>
<td>6,4 0,19</td>
</tr>
<tr>
<td>2AN1</td>
<td>21,0 20,2</td>
<td>20,2 19,8</td>
<td>4,1 0,10</td>
</tr>
<tr>
<td>2AN2</td>
<td>21,4 20,9</td>
<td>19,4 19,8</td>
<td>10,1 0,30</td>
</tr>
<tr>
<td>2AN3</td>
<td>21,5 20,6</td>
<td>19,8 19,6</td>
<td>8,6 0,25</td>
</tr>
<tr>
<td>2AN6</td>
<td>21,2 20,8</td>
<td>19,5 19,7</td>
<td>8,3 0,24</td>
</tr>
<tr>
<td>2AS1</td>
<td>21,0 20,9</td>
<td>20,0 20,6</td>
<td>5,2 0,15</td>
</tr>
<tr>
<td>2AS2</td>
<td>21,4 21,0</td>
<td>20,0 19,8</td>
<td>7,4 0,22</td>
</tr>
<tr>
<td>2AO3</td>
<td>20,7 20,3</td>
<td>19,7 19,8</td>
<td>5,0 0,15</td>
</tr>
<tr>
<td>N°</td>
<td>DIMENSIONES</td>
<td>CONTRAC. TG CAL</td>
<td>CONTRAC. RADIAL</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>PARA H 30%</td>
<td>Total B&lt;sub&gt;tg&lt;/sub&gt;</td>
<td>Total B&lt;sub&gt;r&lt;/sub&gt;</td>
</tr>
<tr>
<td></td>
<td>PARA H = 0%</td>
<td>Unitaria V&lt;sub&gt;tg&lt;/sub&gt;</td>
<td>Unitaria V&lt;sub&gt;r&lt;/sub&gt;</td>
</tr>
<tr>
<td></td>
<td>Tang. T&lt;sub&gt;gs&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Tang. T&lt;sub&gt;go&lt;/sub&gt;</td>
</tr>
<tr>
<td>1</td>
<td>20,5</td>
<td>20,8</td>
<td>20,0</td>
</tr>
<tr>
<td>2</td>
<td>21,0</td>
<td>20,7</td>
<td>20,1</td>
</tr>
<tr>
<td>2</td>
<td>21,0</td>
<td>20,3</td>
<td>20,0</td>
</tr>
<tr>
<td>2</td>
<td>20,6</td>
<td>20,3</td>
<td>20,3</td>
</tr>
<tr>
<td>2</td>
<td>21,4</td>
<td>21,0</td>
<td>19,6</td>
</tr>
<tr>
<td>2</td>
<td>21,7</td>
<td>20,9</td>
<td>19,9</td>
</tr>
<tr>
<td>2</td>
<td>21,6</td>
<td>20,7</td>
<td>20,3</td>
</tr>
<tr>
<td>2</td>
<td>21,3</td>
<td>20,7</td>
<td>19,9</td>
</tr>
<tr>
<td>2</td>
<td>21,2</td>
<td>20,7</td>
<td>20,0</td>
</tr>
<tr>
<td>2</td>
<td>21,7</td>
<td>20,5</td>
<td>19,7</td>
</tr>
<tr>
<td>2</td>
<td>21,2</td>
<td>20,6</td>
<td>19,9</td>
</tr>
<tr>
<td>1</td>
<td>21,3</td>
<td>20,9</td>
<td>20,0</td>
</tr>
<tr>
<td>1</td>
<td>21,4</td>
<td>20,8</td>
<td>20,3</td>
</tr>
<tr>
<td>2</td>
<td>21,5</td>
<td>20,9</td>
<td>19,7</td>
</tr>
<tr>
<td>1</td>
<td>21,6</td>
<td>20,8</td>
<td>20,0</td>
</tr>
<tr>
<td>1</td>
<td>21,3</td>
<td>20,8</td>
<td>19,9</td>
</tr>
<tr>
<td>2</td>
<td>21,0</td>
<td>20,9</td>
<td>20,1</td>
</tr>
<tr>
<td>2</td>
<td>21,6</td>
<td>20,9</td>
<td>20,1</td>
</tr>
<tr>
<td>2</td>
<td>21,5</td>
<td>20,8</td>
<td>19,6</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>DIMENSIONES PARA H 30 %</td>
<td>DIMENSIONES PARA H = 0 %</td>
<td>CONTRAC. TGCAL.</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Tang. T&lt;sub&gt;gs&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Tang. T&lt;sub&gt;go&lt;/sub&gt;</td>
</tr>
<tr>
<td>4AN1</td>
<td>20,9</td>
<td>20,8</td>
<td>19,6</td>
</tr>
<tr>
<td>4AS1</td>
<td>21,9</td>
<td>21,3</td>
<td>19,8</td>
</tr>
<tr>
<td>4AO1</td>
<td>21,3</td>
<td>20,9</td>
<td>19,8</td>
</tr>
<tr>
<td>4AO5</td>
<td>21,3</td>
<td>20,9</td>
<td>19,8</td>
</tr>
<tr>
<td>6BN1</td>
<td>21,2</td>
<td>20,7</td>
<td>20,2</td>
</tr>
<tr>
<td>6BN1&lt;sub&gt;2&lt;/sub&gt;</td>
<td>21,4</td>
<td>20,6</td>
<td>20,3</td>
</tr>
<tr>
<td>6BE1</td>
<td>21,7</td>
<td>21,2</td>
<td>20,2</td>
</tr>
<tr>
<td>6BO2</td>
<td>21,3</td>
<td>20,3</td>
<td>20,1</td>
</tr>
<tr>
<td>6BO3</td>
<td>20,8</td>
<td>21,1</td>
<td>19,5</td>
</tr>
<tr>
<td>8AN2</td>
<td>20,9</td>
<td>20,1</td>
<td>19,4</td>
</tr>
<tr>
<td>8AN3</td>
<td>20,8</td>
<td>20,1</td>
<td>19,9</td>
</tr>
<tr>
<td>8AN4</td>
<td>21,3</td>
<td>20,1</td>
<td>19,7</td>
</tr>
<tr>
<td>8AN3&lt;sub&gt;2&lt;/sub&gt;</td>
<td>20,8</td>
<td>20,0</td>
<td>19,5</td>
</tr>
<tr>
<td>8AN4&lt;sub&gt;2&lt;/sub&gt;</td>
<td>21,3</td>
<td>20,1</td>
<td>19,7</td>
</tr>
<tr>
<td>8AN5</td>
<td>20,7</td>
<td>20,3</td>
<td>19,2</td>
</tr>
<tr>
<td>8AN6&lt;sub&gt;2&lt;/sub&gt;</td>
<td>20,4</td>
<td>20,2</td>
<td>19,7</td>
</tr>
<tr>
<td>8AS1&lt;sub&gt;2&lt;/sub&gt;</td>
<td>21,8</td>
<td>21,3</td>
<td>20,3</td>
</tr>
<tr>
<td>8AS4</td>
<td>21,6</td>
<td>21,1</td>
<td>20,3</td>
</tr>
</tbody>
</table>
CUADRO N° 29 : CONTRACCIÓN LINEAL

<table>
<thead>
<tr>
<th>de</th>
<th>DIMENSIONES</th>
<th>CONTRAC. TGCAL.</th>
<th>CONTRAC. RADIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ta</td>
<td>PARA H = 30%</td>
<td>PARA H = 0%</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Tang. T&lt;sub&gt;gs&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Tang. T&lt;sub&gt;go&lt;/sub&gt;</td>
</tr>
<tr>
<td>0</td>
<td>21'4</td>
<td>21'8</td>
<td>20'0</td>
</tr>
<tr>
<td>1</td>
<td>21'3</td>
<td>20'4</td>
<td>20'3</td>
</tr>
<tr>
<td>2</td>
<td>21'5</td>
<td>21'1</td>
<td>19'6</td>
</tr>
<tr>
<td>3</td>
<td>21'3</td>
<td>21'1</td>
<td>19'7</td>
</tr>
<tr>
<td>4</td>
<td>20'3</td>
<td>20'0</td>
<td>19'2</td>
</tr>
<tr>
<td>5</td>
<td>21'1</td>
<td>20'5</td>
<td>19'9</td>
</tr>
<tr>
<td>6</td>
<td>21'6</td>
<td>21'0</td>
<td>20'1</td>
</tr>
<tr>
<td>7</td>
<td>21'1</td>
<td>20'5</td>
<td>20'3</td>
</tr>
<tr>
<td>8</td>
<td>20'8</td>
<td>20'8</td>
<td>19'5</td>
</tr>
<tr>
<td>9</td>
<td>21'9</td>
<td>20'6</td>
<td>20'2</td>
</tr>
<tr>
<td>10</td>
<td>20'8</td>
<td>21'1</td>
<td>19'0</td>
</tr>
<tr>
<td>11</td>
<td>20'7</td>
<td>20'7</td>
<td>19'5</td>
</tr>
<tr>
<td>12</td>
<td>20'6</td>
<td>21'1</td>
<td>19'3</td>
</tr>
<tr>
<td>13</td>
<td>21'5</td>
<td>20'9</td>
<td>19'9</td>
</tr>
<tr>
<td>14</td>
<td>21'2</td>
<td>20'3</td>
<td>20'2</td>
</tr>
<tr>
<td>15</td>
<td>20'9</td>
<td>20'8</td>
<td>19'7</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>21'1</td>
<td>19'8</td>
</tr>
<tr>
<td>17</td>
<td>21'7</td>
<td>21'0</td>
<td>19'7</td>
</tr>
<tr>
<td>18</td>
<td>21'5</td>
<td>20'8</td>
<td>19'9</td>
</tr>
</tbody>
</table>
CUADRO Nº 29 : CONTRACCIÓN LINEAL

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>DIMENSIONES</th>
<th>CONTRAC. TGCal.</th>
<th>CONTRAC. RA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PARA H 30%</td>
<td>PARA H 0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tang. T&lt;sub&gt;gs&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Tang. T&lt;sub&gt;go&lt;/sub&gt;</td>
</tr>
<tr>
<td>8B01</td>
<td>21'0</td>
<td>20'8</td>
<td>19'8</td>
</tr>
<tr>
<td>8B02</td>
<td>21'8</td>
<td>21'3</td>
<td>20'4</td>
</tr>
<tr>
<td>11A52</td>
<td>21'1</td>
<td>20'6</td>
<td>20'4</td>
</tr>
<tr>
<td>11AE1</td>
<td>20'8</td>
<td>20'9</td>
<td>19'8</td>
</tr>
<tr>
<td>11A02</td>
<td>21'2</td>
<td>20'7</td>
<td>19'6</td>
</tr>
<tr>
<td>13AN1</td>
<td>21'6</td>
<td>21'2</td>
<td>19'9</td>
</tr>
<tr>
<td>13AN1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>21'6</td>
<td>21'2</td>
<td>20'2</td>
</tr>
<tr>
<td>13A51</td>
<td>20'6</td>
<td>21'2</td>
<td>19'1</td>
</tr>
<tr>
<td>14AN1</td>
<td>21'5</td>
<td>20'6</td>
<td>19'9</td>
</tr>
<tr>
<td>14A01</td>
<td>20'8</td>
<td>20'6</td>
<td>19'9</td>
</tr>
<tr>
<td>16AN1</td>
<td>21'2</td>
<td>21'5</td>
<td>20'3</td>
</tr>
<tr>
<td>16A03</td>
<td>21'3</td>
<td>20'4</td>
<td>19'5</td>
</tr>
<tr>
<td>16AE3</td>
<td>21'3</td>
<td>20'4</td>
<td>19'5</td>
</tr>
<tr>
<td>16A03</td>
<td>21'2</td>
<td>20'8</td>
<td>19'9</td>
</tr>
<tr>
<td>16BN2</td>
<td>21'6</td>
<td>20'9</td>
<td>19'8</td>
</tr>
<tr>
<td>17ANS</td>
<td>20'1</td>
<td>20'4</td>
<td>19'4</td>
</tr>
<tr>
<td>17AS2</td>
<td>20'6</td>
<td>20'3</td>
<td>19'3</td>
</tr>
<tr>
<td>17AS10</td>
<td>20'2</td>
<td>20'4</td>
<td>19'4</td>
</tr>
<tr>
<td>17AE6</td>
<td>20'3</td>
<td>20'3</td>
<td>19'4</td>
</tr>
</tbody>
</table>
CUADRO N° 29: CONTRACCION LINEAL

<table>
<thead>
<tr>
<th>de</th>
<th>PARA H</th>
<th>PARA H = 0</th>
<th>CONTRAC. TG CAL.</th>
<th>CONTRAC. RADIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total B&lt;sub&gt;tg&lt;/sub&gt;</td>
<td>Unitaria V&lt;sub&gt;tg&lt;/sub&gt;</td>
</tr>
<tr>
<td></td>
<td>Tang.T&lt;sub&gt;gs&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Tang.T&lt;sub&gt;go&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;o&lt;/sub&gt;</td>
</tr>
<tr>
<td>4</td>
<td>21'7</td>
<td>20'7</td>
<td>19'7</td>
<td>19'8</td>
</tr>
<tr>
<td>4</td>
<td>20'4</td>
<td>20'0</td>
<td>19'1</td>
<td>19'3</td>
</tr>
<tr>
<td>4</td>
<td>21'0</td>
<td>20'6</td>
<td>19'5</td>
<td>19'9</td>
</tr>
<tr>
<td>4</td>
<td>20'6</td>
<td>20'4</td>
<td>19'4</td>
<td>19'8</td>
</tr>
<tr>
<td>4</td>
<td>20'7</td>
<td>20'3</td>
<td>19'3</td>
<td>19'2</td>
</tr>
<tr>
<td>4</td>
<td>20'2</td>
<td>20'4</td>
<td>19'2</td>
<td>19'3</td>
</tr>
<tr>
<td>4</td>
<td>20'4</td>
<td>20'2</td>
<td>19'9</td>
<td>19'6</td>
</tr>
<tr>
<td>4</td>
<td>21'4</td>
<td>21'1</td>
<td>19'5</td>
<td>19'7</td>
</tr>
<tr>
<td>7</td>
<td>20'5</td>
<td>20'7</td>
<td>19'9</td>
<td>20'0</td>
</tr>
<tr>
<td>1</td>
<td>21'3</td>
<td>20'6</td>
<td>19'9</td>
<td>19'6</td>
</tr>
<tr>
<td>1</td>
<td>21'1</td>
<td>20'3</td>
<td>19'8</td>
<td>19'0</td>
</tr>
<tr>
<td>1</td>
<td>21'1</td>
<td>20'7</td>
<td>19'3</td>
<td>19'4</td>
</tr>
<tr>
<td>1</td>
<td>20'4</td>
<td>20'0</td>
<td>19'7</td>
<td>18'9</td>
</tr>
<tr>
<td>1</td>
<td>20'8</td>
<td>20'3</td>
<td>19'1</td>
<td>19'3</td>
</tr>
<tr>
<td>1</td>
<td>20'8</td>
<td>19'6</td>
<td>19'1</td>
<td>18'3</td>
</tr>
<tr>
<td>1</td>
<td>20'6</td>
<td>20'2</td>
<td>18'9</td>
<td>19'3</td>
</tr>
<tr>
<td>1</td>
<td>21'0</td>
<td>20'2</td>
<td>19'5</td>
<td>19'4</td>
</tr>
<tr>
<td>1</td>
<td>20'3</td>
<td>19'8</td>
<td>19'1</td>
<td>19'3</td>
</tr>
<tr>
<td>1</td>
<td>20'8</td>
<td>20'6</td>
<td>19'3</td>
<td>19'6</td>
</tr>
</tbody>
</table>
CUADRO N° 29 : CONTRACCIÓN LINEAL

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>DIMENSIONES PARA H 30 %</th>
<th>PARA H = 0 %</th>
<th>CONTRAC. TGCAL.</th>
<th>CONTRAC. RAJ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tang. Tgs</td>
<td>Radial Rtg</td>
<td>Tang. Tgo</td>
<td>Radial Rtg</td>
</tr>
<tr>
<td>27B1</td>
<td>20'5</td>
<td>20'3</td>
<td>19'3</td>
<td>19'6</td>
</tr>
<tr>
<td>27BS1</td>
<td>20'7</td>
<td>20'4</td>
<td>19'4</td>
<td>19'5</td>
</tr>
<tr>
<td>27BS2</td>
<td>20'6</td>
<td>19'9</td>
<td>19'5</td>
<td>19'3</td>
</tr>
<tr>
<td>27BO2</td>
<td>20'4</td>
<td>20'1</td>
<td>19'4</td>
<td>19'2</td>
</tr>
<tr>
<td>28AN3</td>
<td>21'7</td>
<td>21'1</td>
<td>19'9</td>
<td>20'0</td>
</tr>
<tr>
<td>28AS2</td>
<td>21'3</td>
<td>21'1</td>
<td>19'3</td>
<td>19'6</td>
</tr>
<tr>
<td>28AS6</td>
<td>21'1</td>
<td>21'0</td>
<td>19'8</td>
<td>20'2</td>
</tr>
<tr>
<td>28AE1</td>
<td>21'3</td>
<td>20'4</td>
<td>19'6</td>
<td>19'6</td>
</tr>
<tr>
<td>28AO1</td>
<td>21'7</td>
<td>21'2</td>
<td>19'6</td>
<td>19'9</td>
</tr>
<tr>
<td>28BN1</td>
<td>20'4</td>
<td>20'3</td>
<td>19'3</td>
<td>19'5</td>
</tr>
<tr>
<td>28BS1</td>
<td>21'7</td>
<td>20'1</td>
<td>20'0</td>
<td>19'8</td>
</tr>
<tr>
<td>28BS1,2</td>
<td>21'7</td>
<td>20'6</td>
<td>20'0</td>
<td>19'6</td>
</tr>
<tr>
<td>28BE1</td>
<td>21'7</td>
<td>20'7</td>
<td>19'8</td>
<td>19'7</td>
</tr>
<tr>
<td>30AN2</td>
<td>21'2</td>
<td>20'4</td>
<td>19'2</td>
<td>19'3</td>
</tr>
<tr>
<td>30AN2,1</td>
<td>20'4</td>
<td>20'3</td>
<td>19'2</td>
<td>19'7</td>
</tr>
<tr>
<td>30AN3</td>
<td>20'4</td>
<td>20'0</td>
<td>19'0</td>
<td>19'2</td>
</tr>
<tr>
<td>30AS1</td>
<td>20'1</td>
<td>20'6</td>
<td>18'9</td>
<td>19'6</td>
</tr>
<tr>
<td>31A02</td>
<td>20'6</td>
<td>20'6</td>
<td>19'5</td>
<td>19'7</td>
</tr>
<tr>
<td>31AN3</td>
<td>21'2</td>
<td>20'8</td>
<td>19'5</td>
<td>19'8</td>
</tr>
</tbody>
</table>
CUADRO Nº 29: CONTRACCION LINEAL

<table>
<thead>
<tr>
<th>De</th>
<th>DIMENSIONES</th>
<th>CONTRAC. TG CAL.</th>
<th>CONTRAC. RADIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PARA H = 30%</td>
<td>PARA H = 0%</td>
<td>Total B&lt;sub&gt;tg&lt;/sub&gt;</td>
</tr>
<tr>
<td></td>
<td>Tang. T&lt;sub&gt;gs&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Tang. T&lt;sub&gt;go&lt;/sub&gt;</td>
</tr>
<tr>
<td>N4</td>
<td>21.1</td>
<td>20.4</td>
<td>19.6</td>
</tr>
<tr>
<td>N5</td>
<td>21.8</td>
<td>20.9</td>
<td>19.5</td>
</tr>
<tr>
<td>E2</td>
<td>22.2</td>
<td>21.3</td>
<td>19.7</td>
</tr>
<tr>
<td>N1</td>
<td>20.9</td>
<td>20.9</td>
<td>19.6</td>
</tr>
<tr>
<td>N1</td>
<td>21.3</td>
<td>21.4</td>
<td>19.2</td>
</tr>
<tr>
<td>N6</td>
<td>20.5</td>
<td>20.8</td>
<td>19.1</td>
</tr>
<tr>
<td>S5</td>
<td>21.5</td>
<td>20.4</td>
<td>20.0</td>
</tr>
<tr>
<td>S6</td>
<td>21.7</td>
<td>20.9</td>
<td>19.6</td>
</tr>
<tr>
<td>E2</td>
<td>21.0</td>
<td>20.9</td>
<td>19.7</td>
</tr>
<tr>
<td>O3</td>
<td>21.2</td>
<td>21.0</td>
<td>19.4</td>
</tr>
<tr>
<td>N1</td>
<td>21.6</td>
<td>20.6</td>
<td>19.6</td>
</tr>
<tr>
<td>S7</td>
<td>21.6</td>
<td>21.0</td>
<td>19.6</td>
</tr>
<tr>
<td>E2</td>
<td>21.6</td>
<td>20.5</td>
<td>19.5</td>
</tr>
<tr>
<td>O2</td>
<td>21.5</td>
<td>20.9</td>
<td>19.5</td>
</tr>
<tr>
<td>N1</td>
<td>20.9</td>
<td>20.7</td>
<td>19.7</td>
</tr>
<tr>
<td>O3</td>
<td>21.6</td>
<td>21.1</td>
<td>19.8</td>
</tr>
<tr>
<td>S1</td>
<td>21.3</td>
<td>20.9</td>
<td>19.5</td>
</tr>
<tr>
<td>E3</td>
<td>21.3</td>
<td>21.3</td>
<td>19.8</td>
</tr>
<tr>
<td>O1</td>
<td>21.6</td>
<td>20.9</td>
<td>19.5</td>
</tr>
</tbody>
</table>
CUADRO N° 29: CONTRACCION LINEAL

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>DIMENSIONES</th>
<th>CONTRAC. TG/CA</th>
<th>CONTRAC. RA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PARA H = 30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARA H = 0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tang. T&lt;sub&gt;tg&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Tang. T&lt;sub&gt;go&lt;/sub&gt;</td>
<td>Radial R&lt;sub&gt;o&lt;/sub&gt;</td>
</tr>
<tr>
<td>37A04</td>
<td>21.8</td>
<td>20.3</td>
<td>19.9</td>
</tr>
<tr>
<td>37B02</td>
<td>21.5</td>
<td>21.0</td>
<td>19.7</td>
</tr>
<tr>
<td>38A1</td>
<td>19.7</td>
<td>20.8</td>
<td>18.8</td>
</tr>
<tr>
<td>38E2</td>
<td>20.4</td>
<td>20.2</td>
<td>19.3</td>
</tr>
<tr>
<td>38E2&lt;sub&gt;1&lt;/sub&gt;</td>
<td>21.0</td>
<td>20.8</td>
<td>20.4</td>
</tr>
<tr>
<td>38B1</td>
<td>20.2</td>
<td>20.1</td>
<td>18.8</td>
</tr>
<tr>
<td>38B02</td>
<td>20.7</td>
<td>20.3</td>
<td>19.6</td>
</tr>
<tr>
<td>38B04</td>
<td>20.9</td>
<td>20.3</td>
<td>19.2</td>
</tr>
<tr>
<td>39A4</td>
<td>21.3</td>
<td>20.5</td>
<td>19.9</td>
</tr>
<tr>
<td>39A51</td>
<td>21.8</td>
<td>21.3</td>
<td>19.7</td>
</tr>
<tr>
<td>39AE2</td>
<td>20.3</td>
<td>20.5</td>
<td>19.4</td>
</tr>
<tr>
<td>39A02</td>
<td>21.2</td>
<td>20.6</td>
<td>19.9</td>
</tr>
<tr>
<td>39BS1</td>
<td>21.3</td>
<td>20.9</td>
<td>19.8</td>
</tr>
<tr>
<td>39BE2</td>
<td>21.4</td>
<td>21.1</td>
<td>19.8</td>
</tr>
<tr>
<td>39BE2&lt;sub&gt;1&lt;/sub&gt;</td>
<td>21.1</td>
<td>21.0</td>
<td>19.8</td>
</tr>
<tr>
<td>39B04</td>
<td>21.8</td>
<td>21.1</td>
<td>19.9</td>
</tr>
<tr>
<td>40S3</td>
<td>20.3</td>
<td>19.9</td>
<td>19.3</td>
</tr>
<tr>
<td>40AE4</td>
<td>20.1</td>
<td>20.1</td>
<td>19.0</td>
</tr>
<tr>
<td>41AN1</td>
<td>21.8</td>
<td>20.7</td>
<td>20.3</td>
</tr>
</tbody>
</table>
CUADRO N° 29 : CONTRACCIÓN LINEAL

<table>
<thead>
<tr>
<th>de</th>
<th>DIMENSIONES PARA H 30 %</th>
<th>DIMENSIONES PARA H = 0 %</th>
<th>CONTRAC. TG/CA</th>
<th>CONTRAC. RADIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tang. Tgs</td>
<td>Radial R_s</td>
<td>Tang. Tgo</td>
<td>Radial R_o</td>
</tr>
<tr>
<td>N1</td>
<td>21'6</td>
<td>20'7</td>
<td>20'3</td>
<td>19'8</td>
</tr>
<tr>
<td>N5</td>
<td>21'5</td>
<td>20'9</td>
<td>19'9</td>
<td>19'8</td>
</tr>
<tr>
<td>G3</td>
<td>21'3</td>
<td>20'8</td>
<td>19'6</td>
<td>19'8</td>
</tr>
<tr>
<td>G3</td>
<td>21'1</td>
<td>19'7</td>
<td>19'9</td>
<td>19'4</td>
</tr>
<tr>
<td>Q4</td>
<td>21'4</td>
<td>20'7</td>
<td>19'7</td>
<td>19'5</td>
</tr>
<tr>
<td>J7</td>
<td>21'2</td>
<td>20'4</td>
<td>19'7</td>
<td>19'6</td>
</tr>
<tr>
<td>G2</td>
<td>21'3</td>
<td>20'5</td>
<td>20'3</td>
<td>19'9</td>
</tr>
<tr>
<td>J2</td>
<td>21'9</td>
<td>20'8</td>
<td>19'9</td>
<td>20'1</td>
</tr>
<tr>
<td>01</td>
<td>21'0</td>
<td>21'0</td>
<td>20'3</td>
<td>19'7</td>
</tr>
<tr>
<td>N° de probeta</td>
<td>N° de ranillas</td>
<td>TANGENCIAL</td>
<td>RADIAL</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f (mm)</td>
<td>N = 1/f</td>
<td>C&lt;sub&gt;d&lt;/sub&gt; = N / P&lt;sub&gt;H&lt;/sub&gt;</td>
</tr>
<tr>
<td>1AN2</td>
<td></td>
<td>0.35</td>
<td>2.8</td>
<td>11.67</td>
</tr>
<tr>
<td>1AE1</td>
<td></td>
<td>0.44</td>
<td>2.2</td>
<td>9.17</td>
</tr>
<tr>
<td>1AD1</td>
<td></td>
<td>0.32</td>
<td>3.1</td>
<td>12.92</td>
</tr>
<tr>
<td>1AD2</td>
<td></td>
<td>0.60</td>
<td>1.62</td>
<td>6.75</td>
</tr>
<tr>
<td>1BN1</td>
<td></td>
<td>0.69</td>
<td>1.45</td>
<td>6.04</td>
</tr>
<tr>
<td>1BE3</td>
<td></td>
<td>0.54</td>
<td>1.85</td>
<td>7.71</td>
</tr>
<tr>
<td>1BE4</td>
<td></td>
<td>0.85</td>
<td>1.16</td>
<td>4.83</td>
</tr>
<tr>
<td>1B02</td>
<td></td>
<td>0.51</td>
<td>1.9</td>
<td>7.5</td>
</tr>
<tr>
<td>2AN3</td>
<td></td>
<td>0.35</td>
<td>2.8</td>
<td>11.67</td>
</tr>
<tr>
<td>2AN5</td>
<td></td>
<td>0.61</td>
<td>1.62</td>
<td>6.75</td>
</tr>
<tr>
<td>2AN7</td>
<td></td>
<td>0.41</td>
<td>2.4</td>
<td>10</td>
</tr>
<tr>
<td>2AE2</td>
<td></td>
<td>0.51</td>
<td>1.9</td>
<td>7.92</td>
</tr>
<tr>
<td>2AD2</td>
<td></td>
<td>0.47</td>
<td>2.1</td>
<td>8.75</td>
</tr>
<tr>
<td>2BN2</td>
<td></td>
<td>1.04</td>
<td>0.95</td>
<td>3.96</td>
</tr>
<tr>
<td>2BS1</td>
<td></td>
<td>0.85</td>
<td>1.16</td>
<td>4.83</td>
</tr>
<tr>
<td>2BE1</td>
<td></td>
<td>1.04</td>
<td>0.95</td>
<td>3.96</td>
</tr>
<tr>
<td>2B01</td>
<td></td>
<td>0.85</td>
<td>1.16</td>
<td>4.83</td>
</tr>
<tr>
<td>2B02</td>
<td></td>
<td>0.57</td>
<td>1.75</td>
<td>7.29</td>
</tr>
<tr>
<td>3AN2</td>
<td></td>
<td>0.21</td>
<td>4.7</td>
<td>19.58</td>
</tr>
<tr>
<td>Nº de</td>
<td>TANGENCIAL</td>
<td>RADIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de</td>
<td>( f (\text{mm}) )</td>
<td>( N = \frac{1}{f} )</td>
<td>( C_d = \frac{N}{P_h^2} )</td>
<td>( f (\text{mm}) )</td>
</tr>
<tr>
<td>43</td>
<td>0.41</td>
<td>2.4</td>
<td>10</td>
<td>0.41</td>
</tr>
<tr>
<td>44</td>
<td>0.30</td>
<td>3.3</td>
<td>13.75</td>
<td>0.23</td>
</tr>
<tr>
<td>45</td>
<td>0.51</td>
<td>1.9</td>
<td>7.92</td>
<td>0.54</td>
</tr>
<tr>
<td>51</td>
<td>0.47</td>
<td>2.1</td>
<td>8.75</td>
<td>0.25</td>
</tr>
<tr>
<td>52</td>
<td>0.35</td>
<td>2.8</td>
<td>11.67</td>
<td>0.17</td>
</tr>
<tr>
<td>53</td>
<td>0.35</td>
<td>2.8</td>
<td>11.67</td>
<td>0.25</td>
</tr>
<tr>
<td>54</td>
<td>0.19</td>
<td>5.1</td>
<td>21.25</td>
<td>0.08</td>
</tr>
<tr>
<td>55</td>
<td>0.30</td>
<td>3.3</td>
<td>13.75</td>
<td>0.39</td>
</tr>
<tr>
<td>56</td>
<td>0.30</td>
<td>3.3</td>
<td>13.75</td>
<td>0.21</td>
</tr>
<tr>
<td>57</td>
<td>0.54</td>
<td>1.85</td>
<td>7.75</td>
<td>0.35</td>
</tr>
<tr>
<td>61</td>
<td>0.35</td>
<td>2.8</td>
<td>11.67</td>
<td>0.41</td>
</tr>
<tr>
<td>62</td>
<td>0.17</td>
<td>5.9</td>
<td>24.58</td>
<td>0.17</td>
</tr>
<tr>
<td>63</td>
<td>0.30</td>
<td>3.3</td>
<td>13.75</td>
<td>0.25</td>
</tr>
<tr>
<td>64</td>
<td>0.30</td>
<td>3.3</td>
<td>13.75</td>
<td>0.21</td>
</tr>
<tr>
<td>65</td>
<td>0.41</td>
<td>2.4</td>
<td>10</td>
<td>0.30</td>
</tr>
<tr>
<td>66</td>
<td>0.41</td>
<td>2.4</td>
<td>10</td>
<td>0.30</td>
</tr>
<tr>
<td>67</td>
<td>0.30</td>
<td>3.3</td>
<td>13.75</td>
<td>0.25</td>
</tr>
<tr>
<td>68</td>
<td>0.25</td>
<td>3.9</td>
<td>16.25</td>
<td>0.17</td>
</tr>
<tr>
<td>1</td>
<td>1.49</td>
<td>0.67</td>
<td>2.88</td>
<td>1.25</td>
</tr>
</tbody>
</table>
CUADRO N° 30: DUREZA

<table>
<thead>
<tr>
<th>Nº de probeta / Nº de arillos</th>
<th>TANGENCIAL</th>
<th>RADIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( f ) (mm)</td>
<td>( \frac{1}{f} )</td>
</tr>
<tr>
<td>11AS1</td>
<td>0'35</td>
<td>2'8</td>
</tr>
<tr>
<td>11AO1</td>
<td>0'35</td>
<td>2'8</td>
</tr>
<tr>
<td>11A03</td>
<td>0'30</td>
<td>3'3</td>
</tr>
<tr>
<td>13A01</td>
<td>0'35</td>
<td>2'8</td>
</tr>
<tr>
<td>14A02</td>
<td>0'35</td>
<td>2'8</td>
</tr>
<tr>
<td>16AN2</td>
<td>0'21</td>
<td>4'7</td>
</tr>
<tr>
<td>16AS1</td>
<td>0'47</td>
<td>2'1</td>
</tr>
<tr>
<td>16AS2</td>
<td>0'61</td>
<td>1'62</td>
</tr>
<tr>
<td>16AE1</td>
<td>0'41</td>
<td>2'4</td>
</tr>
<tr>
<td>16AE1</td>
<td>0'61</td>
<td>1'62</td>
</tr>
<tr>
<td>16AE2</td>
<td>0'41</td>
<td>2'4</td>
</tr>
<tr>
<td>16AE3</td>
<td>0'47</td>
<td>2'1</td>
</tr>
<tr>
<td>16A02</td>
<td>0'41</td>
<td>2'4</td>
</tr>
<tr>
<td>16A03</td>
<td>0'54</td>
<td>1'85</td>
</tr>
<tr>
<td>17AN5</td>
<td>0'54</td>
<td>1'85</td>
</tr>
<tr>
<td>17NS2</td>
<td>0'41</td>
<td>2'4</td>
</tr>
<tr>
<td>17AS9</td>
<td>0'54</td>
<td>1'85</td>
</tr>
<tr>
<td>17AS10</td>
<td>0'54</td>
<td>1'85</td>
</tr>
<tr>
<td>17AE8</td>
<td>0'41</td>
<td>2'4</td>
</tr>
<tr>
<td>Nº de Setas</td>
<td>TANGENCIAL</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>f (mm)</td>
<td>N = 1/f</td>
<td>C_d = N/p²</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
<td>1.62</td>
</tr>
<tr>
<td>3</td>
<td>0.69</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>0.54</td>
<td>1.85</td>
</tr>
<tr>
<td>2</td>
<td>0.21</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>0.35</td>
<td>2.6</td>
</tr>
<tr>
<td>6</td>
<td>0.255</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td>2.6</td>
</tr>
<tr>
<td>7</td>
<td>0.30</td>
<td>3.3</td>
</tr>
<tr>
<td>8</td>
<td>0.35</td>
<td>2.6</td>
</tr>
<tr>
<td>9</td>
<td>0.35</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>0.69</td>
<td>1.45</td>
</tr>
<tr>
<td>1</td>
<td>0.52</td>
<td>1.9</td>
</tr>
<tr>
<td>1</td>
<td>0.69</td>
<td>1.45</td>
</tr>
<tr>
<td>1</td>
<td>0.13</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>0.21</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>0.21</td>
<td>4.7</td>
</tr>
<tr>
<td>2</td>
<td>0.21</td>
<td>4.7</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Nº de canillas</td>
<td>TANGENCIAL</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f ) (mm)</td>
</tr>
<tr>
<td>28A01</td>
<td></td>
<td>0'21</td>
</tr>
<tr>
<td>28A02</td>
<td></td>
<td>0'25</td>
</tr>
<tr>
<td>28BN2</td>
<td></td>
<td>0'54</td>
</tr>
<tr>
<td>28BN3</td>
<td></td>
<td>0'30</td>
</tr>
<tr>
<td>28BS1</td>
<td></td>
<td>0'51</td>
</tr>
<tr>
<td>28BE1</td>
<td>2</td>
<td>0'69</td>
</tr>
<tr>
<td>28BE2</td>
<td></td>
<td>0'35</td>
</tr>
<tr>
<td>28B02</td>
<td></td>
<td>0'30</td>
</tr>
<tr>
<td>28B03</td>
<td></td>
<td>0'41</td>
</tr>
<tr>
<td>28B04</td>
<td></td>
<td>0'30</td>
</tr>
<tr>
<td>30AN3</td>
<td>2</td>
<td>0'61</td>
</tr>
<tr>
<td>30B02</td>
<td>1'5</td>
<td>1'04</td>
</tr>
<tr>
<td>31AN3</td>
<td>2</td>
<td>0'41</td>
</tr>
<tr>
<td>31A02</td>
<td>2</td>
<td>0'85</td>
</tr>
<tr>
<td>32AN3</td>
<td></td>
<td>0'21</td>
</tr>
<tr>
<td>32AN5</td>
<td></td>
<td>0'21</td>
</tr>
<tr>
<td>32AE2</td>
<td></td>
<td>0'17</td>
</tr>
<tr>
<td>32AE4</td>
<td></td>
<td>0'17</td>
</tr>
<tr>
<td>32A04</td>
<td></td>
<td>0'30</td>
</tr>
</tbody>
</table>

\( C_d = N / p^2 \)
<table>
<thead>
<tr>
<th>N° de Petraillas</th>
<th>TANGENCIAL</th>
<th></th>
<th></th>
<th>RADIAL</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f (mm)</td>
<td>N = 1/f</td>
<td>C_d = N/p^2_h</td>
<td>f (mm)</td>
<td>N = 1/d</td>
<td>C_d = N/p^2_h</td>
</tr>
<tr>
<td>N1</td>
<td>0'35</td>
<td>2'8</td>
<td>11'67</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
</tr>
<tr>
<td>S4</td>
<td>0'30</td>
<td>3'3</td>
<td>13'75</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
</tr>
<tr>
<td>S5</td>
<td>0'25</td>
<td>3'9</td>
<td>16'25</td>
<td>0'25</td>
<td>3'9</td>
<td>16'25</td>
</tr>
<tr>
<td>S6</td>
<td>0'30</td>
<td>3'3</td>
<td>13'75</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
</tr>
<tr>
<td>S5</td>
<td>0'35</td>
<td>2'8</td>
<td>11'67</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
</tr>
<tr>
<td>S2</td>
<td>0'30</td>
<td>3'3</td>
<td>13'75</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
</tr>
<tr>
<td>N1</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
<td>0'17</td>
<td>5'9</td>
<td>22'58</td>
</tr>
<tr>
<td>S6</td>
<td>0'30</td>
<td>3'3</td>
<td>13'75</td>
<td>0'13</td>
<td>7'5</td>
<td>31'25</td>
</tr>
<tr>
<td>S1</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
<td>0'10</td>
<td>9'7</td>
<td>40'42</td>
</tr>
<tr>
<td>S1</td>
<td>0'35</td>
<td>2'8</td>
<td>11'67</td>
<td>0'13</td>
<td>7'5</td>
<td>31'25</td>
</tr>
<tr>
<td>S</td>
<td>0'41</td>
<td>2'4</td>
<td>10</td>
<td>0'17</td>
<td>5'9</td>
<td>24'58</td>
</tr>
<tr>
<td>N2</td>
<td>0'54</td>
<td>1'85</td>
<td>7'71</td>
<td>0'54</td>
<td>1'85</td>
<td>7'71</td>
</tr>
<tr>
<td>S3</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
<td>0'35</td>
<td>2'8</td>
<td>11'67</td>
</tr>
<tr>
<td>S2</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
<td>0'21</td>
<td>4'7</td>
<td>19'58</td>
</tr>
<tr>
<td>N2</td>
<td>0'17</td>
<td>5'9</td>
<td>24'58</td>
<td>0'13</td>
<td>7'5</td>
<td>31'25</td>
</tr>
<tr>
<td>C3</td>
<td>0'18</td>
<td>5'4</td>
<td>20'5</td>
<td>0'17</td>
<td>5'9</td>
<td>24'58</td>
</tr>
<tr>
<td>D1</td>
<td>0'14</td>
<td>6'7</td>
<td>27'92</td>
<td>0'17</td>
<td>5'9</td>
<td>24'58</td>
</tr>
<tr>
<td>D1</td>
<td>0'30</td>
<td>3'3</td>
<td>13'75</td>
<td>0'35</td>
<td>2'8</td>
<td>11'67</td>
</tr>
<tr>
<td>S</td>
<td>0'85</td>
<td>1'16</td>
<td>4'99</td>
<td>0'81</td>
<td>1'6</td>
<td>4'99</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Nº de ranillas</td>
<td>TANGENCIAL</td>
<td>RADIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f (mm)</td>
<td>N = $\frac{1}{f}$</td>
<td>$C_d = \frac{N}{P_h}$</td>
<td>f (mm)</td>
<td>$N = \frac{1}{d}$</td>
<td>$C_d = f$</td>
<td></td>
</tr>
<tr>
<td>39AN4</td>
<td>0.51</td>
<td>1.9</td>
<td>7.92</td>
<td>0.39</td>
<td>2.6</td>
<td>10</td>
</tr>
<tr>
<td>39AS2</td>
<td>0.17</td>
<td>5.9</td>
<td>24.58</td>
<td>0.35</td>
<td>2.8</td>
<td>11</td>
</tr>
<tr>
<td>39AE3</td>
<td>0.39</td>
<td>2.6</td>
<td>10.83</td>
<td>0.19</td>
<td>5.1</td>
<td>21</td>
</tr>
<tr>
<td>39AO3</td>
<td>0.31</td>
<td>3.2</td>
<td>13.33</td>
<td>0.23</td>
<td>4.3</td>
<td>17</td>
</tr>
<tr>
<td>39BO2</td>
<td>0.46</td>
<td>2.2</td>
<td>9.17</td>
<td>0.35</td>
<td>2.8</td>
<td>11</td>
</tr>
<tr>
<td>41AN1</td>
<td>0.35</td>
<td>2.8</td>
<td>11.67</td>
<td>0.29</td>
<td>3.4</td>
<td>14</td>
</tr>
<tr>
<td>41AN4</td>
<td>0.14</td>
<td>7.1</td>
<td>29.58</td>
<td>0.19</td>
<td>5.1</td>
<td>21</td>
</tr>
<tr>
<td>41AN8</td>
<td>0.21</td>
<td>4.7</td>
<td>19.58</td>
<td>0.13</td>
<td>7.5</td>
<td>31</td>
</tr>
<tr>
<td>41AS2</td>
<td>0.21</td>
<td>4.7</td>
<td>19.58</td>
<td>0.19</td>
<td>5.1</td>
<td>21</td>
</tr>
<tr>
<td>41AS4</td>
<td>0.54</td>
<td>6.7</td>
<td>26.67</td>
<td>0.07</td>
<td>13.3</td>
<td>55</td>
</tr>
<tr>
<td>41AE1</td>
<td>0.14</td>
<td>6.7</td>
<td>27.92</td>
<td>0.19</td>
<td>5.1</td>
<td>21</td>
</tr>
<tr>
<td>41AE5</td>
<td>0.19</td>
<td>5.1</td>
<td>21.25</td>
<td>0.21</td>
<td>4.7</td>
<td>19</td>
</tr>
<tr>
<td>41AO4</td>
<td>0.22</td>
<td>4.4</td>
<td>18.33</td>
<td>0.14</td>
<td>6.7</td>
<td>27</td>
</tr>
<tr>
<td>41AO5</td>
<td>0.21</td>
<td>4.7</td>
<td>19.58</td>
<td>0.17</td>
<td>5.6</td>
<td>23</td>
</tr>
<tr>
<td>41BN3</td>
<td>0.39</td>
<td>11.8</td>
<td>49.17</td>
<td>0.30</td>
<td>3.3</td>
<td>13</td>
</tr>
<tr>
<td>41BS3</td>
<td>0.30</td>
<td>3.3</td>
<td>13.75</td>
<td>0.13</td>
<td>7.5</td>
<td>31</td>
</tr>
<tr>
<td>41BE3</td>
<td>0.39</td>
<td>2.6</td>
<td>10.83</td>
<td>0.35</td>
<td>2.8</td>
<td>11</td>
</tr>
<tr>
<td>41BO2</td>
<td>0.47</td>
<td>2.1</td>
<td>8.75</td>
<td>0.41</td>
<td>2.4</td>
<td>10</td>
</tr>
<tr>
<td>No de Probel</td>
<td>No de anillos</td>
<td>Carga P (kg)</td>
<td>C_h</td>
<td>H %</td>
<td>C_12</td>
<td>Cota esdática</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1500</td>
<td>375</td>
<td>9,11</td>
<td>332</td>
<td>6,60</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1425</td>
<td>356,2</td>
<td>10,34</td>
<td>333</td>
<td>6,62</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2356</td>
<td>589,5</td>
<td>8,92</td>
<td>517</td>
<td>10,23</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2415</td>
<td>603,75</td>
<td>8,92</td>
<td>530</td>
<td>10,46</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2335</td>
<td>563,75</td>
<td>8,48</td>
<td>502</td>
<td>9,70</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2020</td>
<td>505</td>
<td>8,54</td>
<td>435</td>
<td>8,68</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2230</td>
<td>557,5</td>
<td>9,09</td>
<td>493</td>
<td>9,86</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1643</td>
<td>410,75</td>
<td>8,42</td>
<td>352</td>
<td>7,60</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2270</td>
<td>567,5</td>
<td>9,09</td>
<td>500</td>
<td>9,94</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2276</td>
<td>569,5</td>
<td>8,18</td>
<td>482</td>
<td>9,56</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>2400</td>
<td>600</td>
<td>8,73</td>
<td>521</td>
<td>10,38</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>2100</td>
<td>525</td>
<td>9,09</td>
<td>464</td>
<td>9,23</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>2305</td>
<td>576,2</td>
<td>8,44</td>
<td>494</td>
<td>9,64</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1870</td>
<td>467,5</td>
<td>8,37</td>
<td>400</td>
<td>7,96</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>2100</td>
<td>545</td>
<td>8,33</td>
<td>465</td>
<td>9,25</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>2140</td>
<td>535</td>
<td>8,73</td>
<td>465</td>
<td>9,26</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>1530</td>
<td>382,5</td>
<td>9,09</td>
<td>330</td>
<td>6,73</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>1840</td>
<td>460</td>
<td>8,46</td>
<td>395</td>
<td>7,06</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>1460</td>
<td>370</td>
<td>7,92</td>
<td>310</td>
<td>6,16</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>1745</td>
<td>436,25</td>
<td>8,65</td>
<td>378</td>
<td>7,52</td>
</tr>
<tr>
<td>№ de</td>
<td>№ de</td>
<td>Carga</td>
<td>$C_h$</td>
<td>$H %$</td>
<td>$C_{12}$</td>
<td>Cota</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>proba</td>
<td>anilla</td>
<td>P(kg)</td>
<td></td>
<td></td>
<td></td>
<td>estética</td>
</tr>
<tr>
<td>2AN7</td>
<td>2</td>
<td>2105</td>
<td>526</td>
<td>9,1</td>
<td>465</td>
<td>9,3</td>
</tr>
<tr>
<td>2AN8</td>
<td>1</td>
<td>1315</td>
<td>329</td>
<td>8,4</td>
<td>281</td>
<td>6,0</td>
</tr>
<tr>
<td>2AN9</td>
<td>1</td>
<td>1365</td>
<td>341</td>
<td>9,0</td>
<td>300</td>
<td>6,0</td>
</tr>
<tr>
<td>2AS1</td>
<td>2</td>
<td>1305</td>
<td>326</td>
<td>8,8</td>
<td>284</td>
<td>5,6</td>
</tr>
<tr>
<td>2AS2</td>
<td>2</td>
<td>1310</td>
<td>327</td>
<td>8,6</td>
<td>282</td>
<td>5,7</td>
</tr>
<tr>
<td>2AS3</td>
<td>3</td>
<td>1740</td>
<td>435</td>
<td>8,7</td>
<td>377</td>
<td>8,6</td>
</tr>
<tr>
<td>2AS2</td>
<td>2</td>
<td>1685</td>
<td>421</td>
<td>8,6</td>
<td>365</td>
<td>7,3</td>
</tr>
<tr>
<td>2AE1</td>
<td>2</td>
<td>1190</td>
<td>297</td>
<td>8,4</td>
<td>255</td>
<td>7,1</td>
</tr>
<tr>
<td>2AE1</td>
<td>3</td>
<td>2165</td>
<td>541</td>
<td>9,0</td>
<td>475</td>
<td>9,5</td>
</tr>
<tr>
<td>2AE2</td>
<td>3</td>
<td>1165</td>
<td>541</td>
<td>9,1</td>
<td>468</td>
<td>9,5</td>
</tr>
<tr>
<td>2AO1</td>
<td>2</td>
<td>1232</td>
<td>308</td>
<td>9,7</td>
<td>268</td>
<td>5,3</td>
</tr>
<tr>
<td>2AO1</td>
<td>2</td>
<td>1200</td>
<td>300</td>
<td>8,1</td>
<td>253</td>
<td>5,0</td>
</tr>
<tr>
<td>2AO2</td>
<td>5</td>
<td>2230</td>
<td>558</td>
<td>8,6</td>
<td>482</td>
<td>9,6</td>
</tr>
<tr>
<td>2AO2</td>
<td>5</td>
<td>2140</td>
<td>535</td>
<td>8,7</td>
<td>465</td>
<td>9,2</td>
</tr>
<tr>
<td>2AO3</td>
<td>2</td>
<td>1500</td>
<td>375</td>
<td>8,4</td>
<td>321</td>
<td>6,4</td>
</tr>
<tr>
<td>2AO3</td>
<td>2</td>
<td>1470</td>
<td>367</td>
<td>8,2</td>
<td>312</td>
<td>6,2</td>
</tr>
<tr>
<td>2B02</td>
<td>1</td>
<td>1665</td>
<td>465</td>
<td>8,0</td>
<td>391</td>
<td>7,8</td>
</tr>
<tr>
<td>2BN1</td>
<td>1</td>
<td>1320</td>
<td>330</td>
<td>8,8</td>
<td>288</td>
<td>5,6</td>
</tr>
<tr>
<td>2BN2</td>
<td>2</td>
<td>1230</td>
<td>308</td>
<td>8,7</td>
<td>266</td>
<td>5,3</td>
</tr>
</tbody>
</table>
CUADRO N° 31 : COMPRESION AXIAL

<table>
<thead>
<tr>
<th>N° de</th>
<th>Carga</th>
<th>C_h</th>
<th>H %</th>
<th>C_12</th>
<th>Cota</th>
<th>N° de</th>
<th>Carga</th>
<th>C_h</th>
<th>H %</th>
<th>C_12</th>
<th>Cota</th>
</tr>
</thead>
<tbody>
<tr>
<td>anillos</td>
<td>(P(kg))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>probet</td>
<td>(P(kg))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2245</td>
<td>561</td>
<td>8,5</td>
<td>484</td>
<td>9,7</td>
<td>8A01</td>
<td>2</td>
<td>1760</td>
<td>440</td>
<td>8,8</td>
<td>383</td>
</tr>
<tr>
<td>5</td>
<td>2360</td>
<td>590</td>
<td>8,1</td>
<td>499</td>
<td>9,9</td>
<td>8A02</td>
<td>4</td>
<td>2150</td>
<td>537</td>
<td>9,2</td>
<td>479</td>
</tr>
<tr>
<td>3</td>
<td>2315</td>
<td>579</td>
<td>8,5</td>
<td>499</td>
<td>9,9</td>
<td>8A03</td>
<td>5</td>
<td>2510</td>
<td>628</td>
<td>8,5</td>
<td>539</td>
</tr>
<tr>
<td>3</td>
<td>2070</td>
<td>517</td>
<td>7,9</td>
<td>432</td>
<td>8,6</td>
<td>8BN1</td>
<td>2,5</td>
<td>1940</td>
<td>485</td>
<td>8,5</td>
<td>417</td>
</tr>
<tr>
<td>2</td>
<td>2350</td>
<td>587</td>
<td>8,6</td>
<td>507</td>
<td>10,1</td>
<td>8BN2</td>
<td>6</td>
<td>2450</td>
<td>612</td>
<td>8,8</td>
<td>535</td>
</tr>
<tr>
<td>2</td>
<td>1415</td>
<td>354</td>
<td>8,4</td>
<td>303</td>
<td>6,0</td>
<td>8BN3</td>
<td>5</td>
<td>2290</td>
<td>573</td>
<td>8,4</td>
<td>490</td>
</tr>
<tr>
<td>4</td>
<td>2325</td>
<td>581</td>
<td>8,1</td>
<td>491</td>
<td>9,8</td>
<td>8BS1</td>
<td>2</td>
<td>1700</td>
<td>425</td>
<td>9,0</td>
<td>375</td>
</tr>
<tr>
<td>3</td>
<td>2050</td>
<td>512</td>
<td>8,0</td>
<td>431</td>
<td>8,6</td>
<td>8BS2</td>
<td>1,5</td>
<td>1360</td>
<td>340</td>
<td>9,0</td>
<td>299</td>
</tr>
<tr>
<td>2</td>
<td>1485</td>
<td>371</td>
<td>8,2</td>
<td>320</td>
<td>6,4</td>
<td>8BE1</td>
<td>2</td>
<td>1620</td>
<td>405</td>
<td>7,8</td>
<td>337</td>
</tr>
<tr>
<td>3</td>
<td>2150</td>
<td>537</td>
<td>8,8</td>
<td>468</td>
<td>9,3</td>
<td>8BE3</td>
<td>5</td>
<td>2390</td>
<td>597</td>
<td>8,7</td>
<td>519</td>
</tr>
<tr>
<td>4</td>
<td>1865</td>
<td>466</td>
<td>6,5</td>
<td>364</td>
<td>7,2</td>
<td>8BE6</td>
<td>4</td>
<td>2100</td>
<td>525</td>
<td>8,7</td>
<td>456</td>
</tr>
<tr>
<td>2</td>
<td>1900</td>
<td>475</td>
<td>8,6</td>
<td>410</td>
<td>8,2</td>
<td>8BO1</td>
<td>2</td>
<td>1480</td>
<td>370</td>
<td>8,0</td>
<td>311</td>
</tr>
<tr>
<td>5</td>
<td>2070</td>
<td>517</td>
<td>8,6</td>
<td>447</td>
<td>8,9</td>
<td>8BO2</td>
<td>3</td>
<td>1980</td>
<td>495</td>
<td>8,2</td>
<td>419</td>
</tr>
<tr>
<td>1</td>
<td>1470</td>
<td>350</td>
<td>10,0</td>
<td>330</td>
<td>_</td>
<td>10AN2</td>
<td>1</td>
<td>1050</td>
<td>262</td>
<td>13,4</td>
<td>277</td>
</tr>
<tr>
<td>6</td>
<td>2490</td>
<td>622</td>
<td>9,0</td>
<td>547</td>
<td>10,9</td>
<td>10AS1</td>
<td>1</td>
<td>1300</td>
<td>325</td>
<td>13,1</td>
<td>340</td>
</tr>
<tr>
<td>5</td>
<td>2060</td>
<td>650</td>
<td>9,1</td>
<td>574</td>
<td>11,4</td>
<td>10AO1</td>
<td>2</td>
<td>1120</td>
<td>280</td>
<td>14,4</td>
<td>307</td>
</tr>
<tr>
<td>3</td>
<td>2235</td>
<td>559</td>
<td>9,5</td>
<td>502</td>
<td>10,0</td>
<td>11AN1</td>
<td>2</td>
<td>1400</td>
<td>350</td>
<td>8,6</td>
<td>303</td>
</tr>
<tr>
<td>2</td>
<td>1960</td>
<td>465</td>
<td>10,3</td>
<td>404</td>
<td>8,1</td>
<td>11AS1</td>
<td>2</td>
<td>1690</td>
<td>422</td>
<td>8,7</td>
<td>368</td>
</tr>
<tr>
<td>2</td>
<td>1760</td>
<td>440</td>
<td>9,2</td>
<td>390</td>
<td>7,8</td>
<td>11AS2</td>
<td>3</td>
<td>1520</td>
<td>380</td>
<td>9,0</td>
<td>335</td>
</tr>
<tr>
<td>8</td>
<td>2200</td>
<td>550</td>
<td>9,0</td>
<td>485</td>
<td>9,6</td>
<td>11AE1</td>
<td>2</td>
<td>1400</td>
<td>350</td>
<td>9,1</td>
<td>309</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Nº de anillos</td>
<td>Carga P(kg)</td>
<td>Cᵢ/n</td>
<td>H %</td>
<td>C₁₂</td>
<td>Cota estética</td>
<td>Nº de probeta</td>
<td>Nº de anillos</td>
<td>Carga P(kg)</td>
<td>Cᵢ/n</td>
<td>H %</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>11AE2</td>
<td>3</td>
<td>1590</td>
<td>377</td>
<td>8,8</td>
<td>329</td>
<td>6,5</td>
<td>17AN5</td>
<td>3</td>
<td>1300</td>
<td>325</td>
<td>13,6</td>
</tr>
<tr>
<td>11A03</td>
<td>3</td>
<td>1690</td>
<td>423</td>
<td>8,8</td>
<td>369</td>
<td>7,3</td>
<td>17AS1</td>
<td>3</td>
<td>970</td>
<td>243</td>
<td>14,3</td>
</tr>
<tr>
<td>13AN1</td>
<td>3</td>
<td>1780</td>
<td>445</td>
<td>9,3</td>
<td>398</td>
<td>7,9</td>
<td>17AS1</td>
<td>2</td>
<td>990</td>
<td>245</td>
<td>14,3</td>
</tr>
<tr>
<td>13AN2</td>
<td>3</td>
<td>1790</td>
<td>447</td>
<td>9,1</td>
<td>395</td>
<td>7,9</td>
<td>17AS2</td>
<td>3</td>
<td>905</td>
<td>296</td>
<td>15,0</td>
</tr>
<tr>
<td>13AS1</td>
<td>3,5</td>
<td>1730</td>
<td>433</td>
<td>8,6</td>
<td>373</td>
<td>7,4</td>
<td>17AS2</td>
<td>2</td>
<td>1160</td>
<td>290</td>
<td>15,3</td>
</tr>
<tr>
<td>13AS2</td>
<td>3</td>
<td>1670</td>
<td>418</td>
<td>8,8</td>
<td>364</td>
<td>7,2</td>
<td>17AS9</td>
<td>2</td>
<td>965</td>
<td>241</td>
<td>15,7</td>
</tr>
<tr>
<td>13A02</td>
<td>2</td>
<td>1410</td>
<td>352</td>
<td>9,3</td>
<td>315</td>
<td>6,3</td>
<td>17AS10</td>
<td>1</td>
<td>1010</td>
<td>253</td>
<td>14,6</td>
</tr>
<tr>
<td>13A03</td>
<td>3</td>
<td>2000</td>
<td>500</td>
<td>8,8</td>
<td>436</td>
<td>8,7</td>
<td>17AE2</td>
<td>1,5</td>
<td>1070</td>
<td>268</td>
<td>15,8</td>
</tr>
<tr>
<td>14AN2</td>
<td>2</td>
<td>1810</td>
<td>452</td>
<td>8,6</td>
<td>391</td>
<td>7,8</td>
<td>17AE3</td>
<td>4</td>
<td>1320</td>
<td>330</td>
<td>15,3</td>
</tr>
<tr>
<td>14AE2</td>
<td>2</td>
<td>1720</td>
<td>430</td>
<td>8,8</td>
<td>375</td>
<td>7,5</td>
<td>17AE7</td>
<td>1</td>
<td>850</td>
<td>212</td>
<td>16,2</td>
</tr>
<tr>
<td>14A01</td>
<td>2</td>
<td>1450</td>
<td>363</td>
<td>8,4</td>
<td>311</td>
<td>6,8</td>
<td>17AE8</td>
<td>3</td>
<td>1020</td>
<td>255</td>
<td>17,1</td>
</tr>
<tr>
<td>14A02</td>
<td>2</td>
<td>1230</td>
<td>307</td>
<td>8,0</td>
<td>259</td>
<td>5,2</td>
<td>21AN1</td>
<td>3</td>
<td>1425</td>
<td>356</td>
<td>14,0</td>
</tr>
<tr>
<td>16AN1</td>
<td>2</td>
<td>1340</td>
<td>335</td>
<td>8,2</td>
<td>283</td>
<td>5,6</td>
<td>21AN2</td>
<td>4</td>
<td>1815</td>
<td>454</td>
<td>10,0</td>
</tr>
<tr>
<td>16AN2</td>
<td>2</td>
<td>1550</td>
<td>397</td>
<td>8,8</td>
<td>337</td>
<td>6,7</td>
<td>21AN4</td>
<td>3</td>
<td>1280</td>
<td>320</td>
<td>15,1</td>
</tr>
<tr>
<td>16AS1</td>
<td>3</td>
<td>1430</td>
<td>358</td>
<td>9,1</td>
<td>316</td>
<td>6,3</td>
<td>21AE1</td>
<td>3</td>
<td>1310</td>
<td>328</td>
<td>13,5</td>
</tr>
<tr>
<td>16AS3</td>
<td>2</td>
<td>2000</td>
<td>500</td>
<td>8,3</td>
<td>427</td>
<td>8,5</td>
<td>21AE3</td>
<td>4</td>
<td>1720</td>
<td>430</td>
<td>13,8</td>
</tr>
<tr>
<td>16AE2</td>
<td>3</td>
<td>1890</td>
<td>473</td>
<td>8,6</td>
<td>409</td>
<td>8,1</td>
<td>21AE4</td>
<td>4</td>
<td>1390</td>
<td>348</td>
<td>14,2</td>
</tr>
<tr>
<td>16AE3</td>
<td>1,5</td>
<td>1390</td>
<td>348</td>
<td>8,9</td>
<td>305</td>
<td>6,1</td>
<td>21A01</td>
<td>5</td>
<td>1765</td>
<td>441</td>
<td>13,5</td>
</tr>
<tr>
<td>16A02</td>
<td>2</td>
<td>2060</td>
<td>515</td>
<td>9,0</td>
<td>453</td>
<td>9,0</td>
<td>21A02</td>
<td>3</td>
<td>1535</td>
<td>384</td>
<td>13,4</td>
</tr>
<tr>
<td>17AN1</td>
<td>3</td>
<td>765</td>
<td>191</td>
<td>14,4</td>
<td>209</td>
<td>4,4</td>
<td>21A03</td>
<td>3</td>
<td>1320</td>
<td>330</td>
<td>14,9</td>
</tr>
<tr>
<td>Nº de anillos</td>
<td>Carga P(kg)</td>
<td>$C_h$</td>
<td>H %</td>
<td>$C_{12}$</td>
<td>Cota esférica</td>
<td>Nº de probet</td>
<td>Nº de anillos</td>
<td>Carga P(kg)</td>
<td>$C_h$</td>
<td>H %</td>
<td>$C_{12}$</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>1785</td>
<td>446</td>
<td>413</td>
<td>478</td>
<td>10,2</td>
<td>28AS5</td>
<td>2</td>
<td>2155</td>
<td>539</td>
<td>8,0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2070</td>
<td>515</td>
<td>9,4</td>
<td>464</td>
<td>9,2</td>
<td>28AS6</td>
<td>2</td>
<td>1875</td>
<td>469</td>
<td>7,8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2270</td>
<td>567</td>
<td>8,4</td>
<td>406</td>
<td>9,7</td>
<td>28AE1</td>
<td>2</td>
<td>1920</td>
<td>480</td>
<td>8,6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2010</td>
<td>502</td>
<td>8,6</td>
<td>434</td>
<td>8,6</td>
<td>28AE2</td>
<td>2,5</td>
<td>2015</td>
<td>504</td>
<td>8,6</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1685</td>
<td>421</td>
<td>9,0</td>
<td>371</td>
<td>7,4</td>
<td>28A01</td>
<td>2</td>
<td>1980</td>
<td>495</td>
<td>8,5</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1640</td>
<td>410</td>
<td>8,9</td>
<td>359</td>
<td>7,2</td>
<td>28A02</td>
<td>2</td>
<td>1855</td>
<td>464</td>
<td>8,4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2280</td>
<td>570</td>
<td>8,1</td>
<td>401</td>
<td>9,6</td>
<td>28A04</td>
<td>2</td>
<td>2680</td>
<td>670</td>
<td>8,3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2010</td>
<td>502</td>
<td>7,7</td>
<td>471</td>
<td>9,4</td>
<td>28BN1</td>
<td>1,5</td>
<td>1460</td>
<td>365</td>
<td>8,3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1290</td>
<td>322</td>
<td>13,2</td>
<td>337</td>
<td>7,8</td>
<td>28BN2</td>
<td>1,5</td>
<td>1510</td>
<td>377</td>
<td>8,0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1505</td>
<td>376</td>
<td>13,9</td>
<td>404</td>
<td>8,6</td>
<td>28BN3</td>
<td>2</td>
<td>2020</td>
<td>505</td>
<td>8,3</td>
</tr>
<tr>
<td>1</td>
<td>2,5</td>
<td>1565</td>
<td>394</td>
<td>13,4</td>
<td>413</td>
<td>8,8</td>
<td>28BS1</td>
<td>2</td>
<td>1840</td>
<td>457</td>
<td>8,5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1180</td>
<td>295</td>
<td>13,0</td>
<td>316</td>
<td>6,7</td>
<td>28BS2</td>
<td>2</td>
<td>2440</td>
<td>610</td>
<td>8,4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1020</td>
<td>455</td>
<td>14,1</td>
<td>493</td>
<td>10,9</td>
<td>28B31</td>
<td>2</td>
<td>2020</td>
<td>505</td>
<td>8,5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1835</td>
<td>459</td>
<td>9,9</td>
<td>413</td>
<td>8,0</td>
<td>28B03</td>
<td>1</td>
<td>1815</td>
<td>454</td>
<td>8,3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1140</td>
<td>285</td>
<td>13,6</td>
<td>305</td>
<td>6,9</td>
<td>28B02</td>
<td>2</td>
<td>2380</td>
<td>595</td>
<td>8,8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1485</td>
<td>371</td>
<td>13,8</td>
<td>398</td>
<td>8,9</td>
<td>30AN2</td>
<td>2</td>
<td>1250</td>
<td>312</td>
<td>15,0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2620</td>
<td>655</td>
<td>8,5</td>
<td>562</td>
<td>11,2</td>
<td>31ASZ</td>
<td>2</td>
<td>920</td>
<td>230</td>
<td>15,2</td>
</tr>
<tr>
<td>2</td>
<td>2,5</td>
<td>2225</td>
<td>556</td>
<td>8,6</td>
<td>480</td>
<td>9,6</td>
<td>31AN3</td>
<td>3</td>
<td>1450</td>
<td>352</td>
<td>14,5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2050</td>
<td>512</td>
<td>8,4</td>
<td>438</td>
<td>8,7</td>
<td>31AN2</td>
<td>3</td>
<td>900</td>
<td>225</td>
<td>14,1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2610</td>
<td>652</td>
<td>8,2</td>
<td>554</td>
<td>11,0</td>
<td>32AN2</td>
<td>4</td>
<td>2200</td>
<td>550</td>
<td>8,6</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Carga P(kg)</td>
<td>Cₕ</td>
<td>H %</td>
<td>C₁₂</td>
<td>Cota estática</td>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Carga P(kg)</td>
<td>Cₕ</td>
<td>H %</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>32AN4</td>
<td>5</td>
<td>240</td>
<td>510</td>
<td>9,5</td>
<td>459</td>
<td>9,1</td>
<td>32BO3</td>
<td>3</td>
<td>2470</td>
<td>617</td>
<td>8,1</td>
</tr>
<tr>
<td>32AN7</td>
<td>6,5</td>
<td>2420</td>
<td>605</td>
<td>9,4</td>
<td>543</td>
<td>10,8</td>
<td>32AN1</td>
<td>3</td>
<td>2380</td>
<td>595</td>
<td>8,3</td>
</tr>
<tr>
<td>32AS1</td>
<td>4</td>
<td>2320</td>
<td>580</td>
<td>8,6</td>
<td>502</td>
<td>10,0</td>
<td>32AN2</td>
<td>4</td>
<td>2120</td>
<td>530</td>
<td>7,8</td>
</tr>
<tr>
<td>32AS2</td>
<td>4</td>
<td>2730</td>
<td>682</td>
<td>8,5</td>
<td>587</td>
<td>11,7</td>
<td>32AS7</td>
<td>5</td>
<td>2580</td>
<td>645</td>
<td>9,3</td>
</tr>
<tr>
<td>32AE2</td>
<td>3</td>
<td>2224</td>
<td>556</td>
<td>10,0</td>
<td>512</td>
<td>10,2</td>
<td>32AE1</td>
<td>3</td>
<td>2420</td>
<td>605</td>
<td>7,9</td>
</tr>
<tr>
<td>32AE3</td>
<td>5</td>
<td>2900</td>
<td>725</td>
<td>8,5</td>
<td>624</td>
<td>12,4</td>
<td>32AE3</td>
<td>3</td>
<td>2540</td>
<td>635</td>
<td>7,0</td>
</tr>
<tr>
<td>32AE4</td>
<td>4</td>
<td>2970</td>
<td>724</td>
<td>7,4</td>
<td>635</td>
<td>12,6</td>
<td>32AE4</td>
<td>4</td>
<td>2220</td>
<td>555</td>
<td>8,2</td>
</tr>
<tr>
<td>32AO2</td>
<td>4</td>
<td>2395</td>
<td>599</td>
<td>8,7</td>
<td>520</td>
<td>10,4</td>
<td>32BN2</td>
<td>2</td>
<td>1690</td>
<td>422</td>
<td>8,2</td>
</tr>
<tr>
<td>32AO4</td>
<td>5</td>
<td>2505</td>
<td>626</td>
<td>8,2</td>
<td>531</td>
<td>10,6</td>
<td>32AD1</td>
<td>3</td>
<td>1710</td>
<td>428</td>
<td>8,6</td>
</tr>
<tr>
<td>32AO5</td>
<td>4</td>
<td>1885</td>
<td>471</td>
<td>9,3</td>
<td>420</td>
<td>8,4</td>
<td>32AO2</td>
<td>5</td>
<td>2200</td>
<td>550</td>
<td>8,3</td>
</tr>
<tr>
<td>32BN1</td>
<td>-</td>
<td>2444</td>
<td>611</td>
<td>8,2</td>
<td>519</td>
<td>10,3</td>
<td>32BN1</td>
<td>4</td>
<td>2200</td>
<td>550</td>
<td>8,2</td>
</tr>
<tr>
<td>32BN4</td>
<td>3</td>
<td>2290</td>
<td>573</td>
<td>8,3</td>
<td>489</td>
<td>9,7</td>
<td>32BE3</td>
<td>3</td>
<td>1805</td>
<td>451</td>
<td>7,9</td>
</tr>
<tr>
<td>32BN8</td>
<td>3</td>
<td>1930</td>
<td>482</td>
<td>8,5</td>
<td>415</td>
<td>8,2</td>
<td>32BO2</td>
<td>2</td>
<td>1830</td>
<td>457</td>
<td>8,1</td>
</tr>
<tr>
<td>32BS4</td>
<td>3</td>
<td>1550</td>
<td>388</td>
<td>8,3</td>
<td>330</td>
<td>6,6</td>
<td>32BO4</td>
<td>4,5</td>
<td>2460</td>
<td>615</td>
<td>8,4</td>
</tr>
<tr>
<td>32BS5</td>
<td>3,5</td>
<td>2420</td>
<td>605</td>
<td>8,1</td>
<td>511</td>
<td>10,2</td>
<td>37AN3</td>
<td>6,5</td>
<td>2560</td>
<td>640</td>
<td>8,6</td>
</tr>
<tr>
<td>32BE3</td>
<td>3</td>
<td>2025</td>
<td>506</td>
<td>8,0</td>
<td>426</td>
<td>8,5</td>
<td>37AN4</td>
<td>4</td>
<td>2075</td>
<td>519</td>
<td>9,0</td>
</tr>
<tr>
<td>32BE4</td>
<td>3</td>
<td>1848</td>
<td>468</td>
<td>8,1</td>
<td>391</td>
<td>7,7</td>
<td>37AS1</td>
<td>6,5</td>
<td>2335</td>
<td>584</td>
<td>8,2</td>
</tr>
<tr>
<td>32BE5</td>
<td>3</td>
<td>1665</td>
<td>416</td>
<td>8,2</td>
<td>353</td>
<td>7,0</td>
<td>37AS2</td>
<td>7</td>
<td>2675</td>
<td>669</td>
<td>8,5</td>
</tr>
<tr>
<td>32BO1</td>
<td>4</td>
<td>1880</td>
<td>470</td>
<td>8,4</td>
<td>403</td>
<td>8,0</td>
<td>37AE2</td>
<td>2</td>
<td>1745</td>
<td>436</td>
<td>8,8</td>
</tr>
<tr>
<td>32BO2</td>
<td>3</td>
<td>1085</td>
<td>471</td>
<td>8,0</td>
<td>395</td>
<td>7,9</td>
<td>37AE3</td>
<td>5</td>
<td>2000</td>
<td>500</td>
<td>8,8</td>
</tr>
</tbody>
</table>
CUADRO Nº 31: COMPRESION AXIAL  C

<table>
<thead>
<tr>
<th>Cota</th>
<th>Nº de anillos</th>
<th>Carga P(kg)</th>
<th>Ch</th>
<th>H %</th>
<th>C12</th>
<th>Cota esásitca</th>
<th>Nº de probet</th>
<th>Nº de anillos</th>
<th>Carga P(kg)</th>
<th>Ch</th>
<th>H %</th>
<th>C12</th>
<th>Cota esásitca</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,5</td>
<td>2630</td>
<td>707</td>
<td>8,5</td>
<td>607</td>
<td>12,1</td>
<td>39AS1</td>
<td>4,5</td>
<td>2410</td>
<td>602</td>
<td>8,6</td>
<td>521</td>
<td>10,4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1840</td>
<td>460</td>
<td>8,6</td>
<td>398</td>
<td>7,9</td>
<td>39AE1</td>
<td>5</td>
<td>2003</td>
<td>501</td>
<td>8,6</td>
<td>434</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>1680</td>
<td>420</td>
<td>7,9</td>
<td>352</td>
<td>7,0</td>
<td>39AE2</td>
<td>2</td>
<td>2375</td>
<td>594</td>
<td>9,4</td>
<td>532</td>
<td>10,6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1995</td>
<td>499</td>
<td>8,2</td>
<td>424</td>
<td>8,4</td>
<td>39AD2</td>
<td>3</td>
<td>2385</td>
<td>596</td>
<td>8,8</td>
<td>520</td>
<td>10,3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1938</td>
<td>484</td>
<td>8,4</td>
<td>415</td>
<td>8,3</td>
<td>39AD4</td>
<td>2</td>
<td>1785</td>
<td>446</td>
<td>8,6</td>
<td>386</td>
<td>7,7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2195</td>
<td>549</td>
<td>8,7</td>
<td>476</td>
<td>9,5</td>
<td>39BN3</td>
<td>2</td>
<td>1550</td>
<td>387</td>
<td>8,5</td>
<td>334</td>
<td>6,6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2385</td>
<td>596</td>
<td>8,5</td>
<td>513</td>
<td>10,2</td>
<td>39BS1</td>
<td>3</td>
<td>1520</td>
<td>380</td>
<td>9,0</td>
<td>335</td>
<td>6,7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1585</td>
<td>396</td>
<td>14,4</td>
<td>435</td>
<td>9,2</td>
<td>39BE1</td>
<td>2,5</td>
<td>2000</td>
<td>500</td>
<td>8,9</td>
<td>438</td>
<td>8,7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1210</td>
<td>302</td>
<td>14,2</td>
<td>239</td>
<td>5,1</td>
<td>39BE2</td>
<td>3</td>
<td>1680</td>
<td>420</td>
<td>7,9</td>
<td>351</td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>965</td>
<td>241</td>
<td>13,4</td>
<td>255</td>
<td>5,4</td>
<td>39BG2</td>
<td>3</td>
<td>2120</td>
<td>530</td>
<td>6,4</td>
<td>454</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>3,5</td>
<td>1560</td>
<td>390</td>
<td>13,8</td>
<td>419</td>
<td>8,9</td>
<td>40S3</td>
<td>2</td>
<td>1210</td>
<td>302</td>
<td>14,4</td>
<td>331</td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>3,5</td>
<td>1180</td>
<td>295</td>
<td>13,6</td>
<td>314</td>
<td>6,7</td>
<td>40L1</td>
<td>1</td>
<td>1050</td>
<td>262</td>
<td>14,6</td>
<td>290</td>
<td>6,2</td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td>1245</td>
<td>311</td>
<td>13,6</td>
<td>331</td>
<td>7,0</td>
<td>40E4</td>
<td>2</td>
<td>1315</td>
<td>328</td>
<td>14,2</td>
<td>350</td>
<td>7,6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1010</td>
<td>252</td>
<td>14,1</td>
<td>274</td>
<td>5,8</td>
<td>41AN1</td>
<td>4</td>
<td>2505</td>
<td>626</td>
<td>8,4</td>
<td>538</td>
<td>10,1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1520</td>
<td>360</td>
<td>13,9</td>
<td>408</td>
<td>8,7</td>
<td>41AN4</td>
<td>3</td>
<td>2510</td>
<td>627</td>
<td>8,2</td>
<td>533</td>
<td>10,6</td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td>1010</td>
<td>252</td>
<td>13,7</td>
<td>270</td>
<td>5,7</td>
<td>41AN8</td>
<td>4</td>
<td>2610</td>
<td>652</td>
<td>8,3</td>
<td>557</td>
<td>11,1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1120</td>
<td>280</td>
<td>14,1</td>
<td>304</td>
<td>6,4</td>
<td>41BN2</td>
<td>2</td>
<td>1805</td>
<td>451</td>
<td>8,2</td>
<td>383</td>
<td>7,6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1430</td>
<td>357</td>
<td>13,6</td>
<td>381</td>
<td>8,1</td>
<td>41BN3</td>
<td>2</td>
<td>1892</td>
<td>473</td>
<td>8,2</td>
<td>401</td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2495</td>
<td>624</td>
<td>8,9</td>
<td>545</td>
<td>10,8</td>
<td>41AS1</td>
<td>3</td>
<td>2660</td>
<td>665</td>
<td>8,6</td>
<td>576</td>
<td>11,5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1820</td>
<td>455</td>
<td>8,6</td>
<td>394</td>
<td>7,8</td>
<td>41AS3</td>
<td>2</td>
<td>2345</td>
<td>586</td>
<td>8,9</td>
<td>514</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>No de probedd</td>
<td>No de anillos</td>
<td>Carga (kg)</td>
<td>C$_h$</td>
<td>H</td>
<td>C$_{12}$</td>
<td>Cota esótica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------</td>
<td>---</td>
<td>---------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AE1</td>
<td>4</td>
<td>2890</td>
<td>722</td>
<td>8,4</td>
<td>618</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AE3</td>
<td>3</td>
<td>2570</td>
<td>642</td>
<td>8,2</td>
<td>545</td>
<td>10,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AE4</td>
<td>3</td>
<td>2762</td>
<td>690</td>
<td>9,1</td>
<td>609</td>
<td>12,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41A02</td>
<td>3</td>
<td>2715</td>
<td>679</td>
<td>8,6</td>
<td>587</td>
<td>11,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41A04</td>
<td>5</td>
<td>2600</td>
<td>650</td>
<td>8,3</td>
<td>553</td>
<td>11,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41A05</td>
<td>4</td>
<td>2660</td>
<td>715</td>
<td>8,5</td>
<td>614</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BN1</td>
<td>3</td>
<td>2330</td>
<td>582</td>
<td>8,5</td>
<td>500</td>
<td>10,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BS1</td>
<td>2</td>
<td>1700</td>
<td>437</td>
<td>8,1</td>
<td>370</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BS2</td>
<td>2</td>
<td>1705</td>
<td>426</td>
<td>8,7</td>
<td>370</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BS3</td>
<td>2,5</td>
<td>2000</td>
<td>500</td>
<td>8,5</td>
<td>430</td>
<td>8,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BE2</td>
<td>3</td>
<td>1942</td>
<td>485</td>
<td>8,2</td>
<td>412</td>
<td>8,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BE3</td>
<td>2,5</td>
<td>2215</td>
<td>554</td>
<td>8,4</td>
<td>474</td>
<td>9,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BO1</td>
<td>3</td>
<td>1850</td>
<td>462</td>
<td>8,4</td>
<td>396</td>
<td>7,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° de estanillas</td>
<td>Carga rotura P(kg)</td>
<td>flecha rotura f(cm)</td>
<td>$\sigma_\text{h}$</td>
<td>$\sigma_{12}$</td>
<td>Cota rigidez L/1000</td>
<td>Cota flexión $\sigma_\text{f}$</td>
<td>1$\text{'}$</td>
<td>1$\text{'}$</td>
<td>módulo elasticidad $E$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>------</td>
<td>------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>174</td>
<td>0'7</td>
<td>703</td>
<td>712</td>
<td>34'3</td>
<td>14'3</td>
<td>2'1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>182</td>
<td>0'6</td>
<td>819</td>
<td>753</td>
<td>40'0</td>
<td>15'0</td>
<td>1'8</td>
<td>25'5</td>
<td>2</td>
<td>110.160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>237</td>
<td>1'1</td>
<td>1069</td>
<td>983</td>
<td>21'8</td>
<td>19'6</td>
<td>1'9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>176</td>
<td>0'8</td>
<td>792</td>
<td>729</td>
<td>30'0</td>
<td>14'5</td>
<td>1'5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>312</td>
<td>0'7</td>
<td>1404</td>
<td>1292</td>
<td>34'3</td>
<td>25'7</td>
<td>2'5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>147</td>
<td>0'45</td>
<td>661</td>
<td>609</td>
<td>53'3</td>
<td>12'1</td>
<td>1'5</td>
<td>21</td>
<td>2</td>
<td>90.720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>204</td>
<td>0'45</td>
<td>919</td>
<td>845</td>
<td>53'3</td>
<td>16'8</td>
<td>1'8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>173</td>
<td>0'5</td>
<td>778</td>
<td>716</td>
<td>48'0</td>
<td>14'2</td>
<td>2'1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>164</td>
<td>0'7</td>
<td>738</td>
<td>679</td>
<td>34'3</td>
<td>13'5</td>
<td>1'8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>206</td>
<td>0'8</td>
<td>927</td>
<td>853</td>
<td>30'0</td>
<td>17'0</td>
<td>1'9</td>
<td>22'5</td>
<td>2'5</td>
<td>77.760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>198</td>
<td>0'6</td>
<td>891</td>
<td>820</td>
<td>40'0</td>
<td>16'3</td>
<td>1'9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>180</td>
<td>1'0</td>
<td>810</td>
<td>745</td>
<td>24'0</td>
<td>14'8</td>
<td>1'8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>183</td>
<td>1'2</td>
<td>823</td>
<td>758</td>
<td>20'0</td>
<td>15'1</td>
<td>1'8</td>
<td>25</td>
<td>4</td>
<td>54.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>156</td>
<td>0'35</td>
<td>700</td>
<td>644</td>
<td>68'6</td>
<td>12'0</td>
<td>1'3</td>
<td>27</td>
<td>2</td>
<td>116.640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>130</td>
<td>0'5</td>
<td>585</td>
<td>538</td>
<td>48'0</td>
<td>10'7</td>
<td>2'0</td>
<td>23</td>
<td>3'5</td>
<td>56.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>95</td>
<td>0'3</td>
<td>428</td>
<td>393</td>
<td>80'0</td>
<td>7'8</td>
<td>1'4</td>
<td>19</td>
<td>2'5</td>
<td>65.664</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>160</td>
<td>0'55</td>
<td>718</td>
<td>660</td>
<td>43'6</td>
<td>13'1</td>
<td>2'5</td>
<td>28</td>
<td>3</td>
<td>80.690</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>130</td>
<td>0'5</td>
<td>583</td>
<td>536</td>
<td>48'0</td>
<td>10'7</td>
<td>1'7</td>
<td>24</td>
<td>3</td>
<td>69.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1'5</td>
<td>152</td>
<td>0'75</td>
<td>684</td>
<td>629</td>
<td>32'0</td>
<td>12'5</td>
<td>1'7</td>
<td>16</td>
<td>2'5</td>
<td>56.290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº de</td>
<td>Nº de</td>
<td>Carga</td>
<td>flecha</td>
<td>Cota</td>
<td>Cota</td>
<td>Cota</td>
<td>P'</td>
<td>1'</td>
<td>mó.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>probeto</td>
<td>anillas</td>
<td>rotura</td>
<td>rotura</td>
<td>rigidez</td>
<td>flexión</td>
<td>tensac.</td>
<td>(mm)</td>
<td>(mm)</td>
<td>el.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A12</td>
<td>3'5</td>
<td>259</td>
<td>0'6</td>
<td>1165</td>
<td>1072</td>
<td>40</td>
<td>21.3</td>
<td>2.3</td>
<td>31</td>
<td>2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A3</td>
<td>2</td>
<td>163</td>
<td>0'6</td>
<td>733</td>
<td>675</td>
<td>40</td>
<td>13.4</td>
<td>1.8</td>
<td>30</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A1</td>
<td>2</td>
<td>143</td>
<td>0'65</td>
<td>643</td>
<td>592</td>
<td>36.9</td>
<td>11.8</td>
<td>1.9</td>
<td>17</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E1</td>
<td>2</td>
<td>219</td>
<td>0'6</td>
<td>985</td>
<td>907</td>
<td>40.0</td>
<td>18.0</td>
<td>1.7</td>
<td>22</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E2</td>
<td>3</td>
<td>136</td>
<td>0'5</td>
<td>612</td>
<td>563</td>
<td>48.0</td>
<td>11.2</td>
<td>1.6</td>
<td>22</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A01</td>
<td>3'5</td>
<td>212</td>
<td>0'8</td>
<td>954</td>
<td>978</td>
<td>30.0</td>
<td>17.5</td>
<td>2.4</td>
<td>22</td>
<td>1'5</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A1</td>
<td>2'5</td>
<td>266</td>
<td>1'1</td>
<td>1197</td>
<td>1101</td>
<td>21.8</td>
<td>21.9</td>
<td>2.4</td>
<td>25</td>
<td>2'5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A1</td>
<td>4</td>
<td>297</td>
<td>0'7</td>
<td>1336</td>
<td>1230</td>
<td>34.3</td>
<td>24.5</td>
<td>2.7</td>
<td>40</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A2</td>
<td>2</td>
<td>225</td>
<td>1'05</td>
<td>1012</td>
<td>931</td>
<td>22.9</td>
<td>18.5</td>
<td>1.8</td>
<td>30</td>
<td>4'5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A05</td>
<td>2</td>
<td>281</td>
<td>1'0</td>
<td>1264</td>
<td>1163</td>
<td>24.0</td>
<td>23.1</td>
<td>2.7</td>
<td>30</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6B2</td>
<td>2'5</td>
<td>174</td>
<td>0'4</td>
<td>783</td>
<td>720</td>
<td>60.0</td>
<td>14.3</td>
<td>1.5</td>
<td>19'5</td>
<td>2</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6E2</td>
<td>2</td>
<td>102</td>
<td>0'55</td>
<td>459</td>
<td>422</td>
<td>43.6</td>
<td>8'4</td>
<td>1'32</td>
<td>17</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6B2</td>
<td>2'5</td>
<td>220</td>
<td>0'7</td>
<td>990</td>
<td>911</td>
<td>34.3</td>
<td>18.1</td>
<td>1.9</td>
<td>19'5</td>
<td>2</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6B3</td>
<td>2</td>
<td>159</td>
<td>1'05</td>
<td>718</td>
<td>660</td>
<td>22.9</td>
<td>13.1</td>
<td>1.6</td>
<td>17'5</td>
<td>2'5</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9AN6</td>
<td>3</td>
<td>244</td>
<td>1'2</td>
<td>1098</td>
<td>1010</td>
<td>20.0</td>
<td>20'1</td>
<td>2.4</td>
<td>37'5</td>
<td>4'5</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8A1</td>
<td>5</td>
<td>146</td>
<td>0'35</td>
<td>657</td>
<td>604</td>
<td>68.6</td>
<td>12'0</td>
<td>1'1</td>
<td>19</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8A6</td>
<td>2</td>
<td>243</td>
<td>1'35</td>
<td>1093</td>
<td>1006</td>
<td>17.6</td>
<td>20'0</td>
<td>2'4</td>
<td>28'5</td>
<td>3</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8A2</td>
<td>3</td>
<td>180</td>
<td>0'65</td>
<td>610</td>
<td>745</td>
<td>36.9</td>
<td>14'8</td>
<td>1'8</td>
<td>28'5</td>
<td>4</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8A02</td>
<td>2'5</td>
<td>221</td>
<td>0'85</td>
<td>994</td>
<td>915</td>
<td>26.2</td>
<td>18'2</td>
<td>1'9</td>
<td>46'5</td>
<td>4'5</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUADRO NO 32: FLEXION ESTÁTICA O Y MÓDULO DE ELASTICIDAD E

<table>
<thead>
<tr>
<th>de</th>
<th>Nº de</th>
<th>Carga</th>
<th>flecha</th>
<th>$ \sigma_h$</th>
<th>$\sigma_{12}$</th>
<th>Cota</th>
<th>Cota</th>
<th>Cota</th>
<th>P'</th>
<th>l'</th>
<th>módulo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>rotura</td>
<td>rotura</td>
<td></td>
<td></td>
<td>rigidez</td>
<td>seción</td>
<td>tenac.</td>
<td>(mm)</td>
<td>(mm)</td>
<td>elast.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P(kg)</td>
<td>f(cm)</td>
<td></td>
<td></td>
<td>L/8</td>
<td>$\sigma_2$</td>
<td>$\sigma_C$</td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>186</td>
<td>0'4</td>
<td>846</td>
<td>778</td>
<td>60</td>
<td>15'5</td>
<td>1'9</td>
<td></td>
<td></td>
<td>115.200</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>148</td>
<td>0'55</td>
<td>666</td>
<td>613</td>
<td>43'6</td>
<td>12'2</td>
<td>1'6</td>
<td></td>
<td></td>
<td>76.800</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>197</td>
<td>0'6</td>
<td>887</td>
<td>816</td>
<td>40</td>
<td>16'2</td>
<td>1'9</td>
<td>20</td>
<td>1'5</td>
<td>115.200</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>212</td>
<td>0'5</td>
<td>954</td>
<td>878</td>
<td>48</td>
<td>17'5</td>
<td>2'1</td>
<td>40</td>
<td>4'5</td>
<td>76.800</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>186</td>
<td>0'55</td>
<td>837</td>
<td>770</td>
<td>43'6</td>
<td>15'3</td>
<td>2'3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>173</td>
<td>0'4</td>
<td>778</td>
<td>716</td>
<td>60</td>
<td>14'2</td>
<td>1'6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>166</td>
<td>0'45</td>
<td>837</td>
<td>770</td>
<td>53'3</td>
<td>15'3</td>
<td>1'8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>147</td>
<td>1'15</td>
<td>661</td>
<td>701</td>
<td>20'9</td>
<td>14'9</td>
<td>2'1</td>
<td>11</td>
<td>2</td>
<td>47.520</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>206</td>
<td>0'85</td>
<td>927</td>
<td>853</td>
<td>28'2</td>
<td>17</td>
<td>2</td>
<td>19'5</td>
<td>2'3</td>
<td>69.496</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>195</td>
<td>1'45</td>
<td>877</td>
<td>807</td>
<td>16'6</td>
<td>16'1</td>
<td>2'0</td>
<td>20</td>
<td>3</td>
<td>57.600</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>163</td>
<td>1'4</td>
<td>734</td>
<td>675</td>
<td>17'1</td>
<td>13'4</td>
<td>1'8</td>
<td>19</td>
<td>4</td>
<td>41.040</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>232</td>
<td>1'5</td>
<td>1044</td>
<td>960</td>
<td>16</td>
<td>19'1</td>
<td>2'2</td>
<td>26</td>
<td>4</td>
<td>56.160</td>
</tr>
<tr>
<td>1</td>
<td>1'5</td>
<td>205</td>
<td>2'0</td>
<td>922</td>
<td>849</td>
<td>12</td>
<td>16'9</td>
<td>2</td>
<td>28'5</td>
<td>4'5</td>
<td>54.720</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>146</td>
<td>0'75</td>
<td>657</td>
<td>604</td>
<td>32</td>
<td>12</td>
<td>1'4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>182</td>
<td>1'1</td>
<td>819</td>
<td>753</td>
<td>21'8</td>
<td>15</td>
<td>2'4</td>
<td>20</td>
<td>2'5</td>
<td>69.120</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>228</td>
<td>0'9</td>
<td>1026</td>
<td>944</td>
<td>26'7</td>
<td>18'6</td>
<td>3'3</td>
<td>27'5</td>
<td>2'2</td>
<td>108.000</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>238</td>
<td>0'8</td>
<td>1071</td>
<td>985</td>
<td>30</td>
<td>19'6</td>
<td>2'9</td>
<td>36'5</td>
<td>3'3</td>
<td>95.564</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>202</td>
<td>0'85</td>
<td>909</td>
<td>836</td>
<td>28'2</td>
<td>16'6</td>
<td>1'8</td>
<td>36</td>
<td>4</td>
<td>77.770</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>196</td>
<td>1'0</td>
<td>882</td>
<td>811</td>
<td>24</td>
<td>16'1</td>
<td>2'0</td>
<td>25</td>
<td>2'5</td>
<td>86.400</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Carga rotura P(kg)</td>
<td>flecha rotura f(cm)</td>
<td>$\sigma_h$</td>
<td>$\sigma_{12}$</td>
<td>Cota rigidez $L/f$</td>
<td>Cota flexión $\sigma^2_{100D}$</td>
<td>Cota tenaz. $\sigma_C$</td>
<td>$P'$ (mm)</td>
<td>$l'$ (mm)</td>
<td>mác.ele.</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>16AE3</td>
<td>2</td>
<td>165</td>
<td>1'1</td>
<td>742</td>
<td>683</td>
<td>21'8</td>
<td>13'6</td>
<td>2'2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16A01</td>
<td>1</td>
<td>126</td>
<td>0'8</td>
<td>567</td>
<td>522</td>
<td>30</td>
<td>10'4</td>
<td>1'2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16A03</td>
<td>1'5</td>
<td>160</td>
<td>0'9</td>
<td>720</td>
<td>662</td>
<td>26'7</td>
<td>13'2</td>
<td>1'6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17AE2</td>
<td>2</td>
<td>144</td>
<td>1'4</td>
<td>648</td>
<td>687</td>
<td>17'1</td>
<td>14'6</td>
<td>2'0</td>
<td>23</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>21AN1</td>
<td>4</td>
<td>214</td>
<td>0'8</td>
<td>963</td>
<td>1020</td>
<td>30</td>
<td>21'7</td>
<td>3</td>
<td>19</td>
<td>1'3</td>
<td>126</td>
</tr>
<tr>
<td>21AN4</td>
<td>3</td>
<td>170</td>
<td>1'1</td>
<td>765</td>
<td>811</td>
<td>21'8</td>
<td>17'2</td>
<td>2'4</td>
<td>18</td>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>21AE1</td>
<td>4</td>
<td>188</td>
<td>0'8</td>
<td>846</td>
<td>896</td>
<td>30</td>
<td>19</td>
<td>2'6</td>
<td>33</td>
<td>4</td>
<td>71</td>
</tr>
<tr>
<td>21A02</td>
<td>2</td>
<td>150</td>
<td>0'7</td>
<td>711</td>
<td>753</td>
<td>34'3</td>
<td>16</td>
<td>2'2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21A03</td>
<td>5</td>
<td>212</td>
<td>0'95</td>
<td>954</td>
<td>1011</td>
<td>25'3</td>
<td>21'5</td>
<td>3</td>
<td>24'5</td>
<td>1'5</td>
<td>141</td>
</tr>
<tr>
<td>22AN1</td>
<td>3</td>
<td>261</td>
<td>0'95</td>
<td>1175</td>
<td>1081</td>
<td>25'3</td>
<td>21'5</td>
<td>2'33</td>
<td>27'5</td>
<td>2'7</td>
<td>88</td>
</tr>
<tr>
<td>22AN3</td>
<td>3</td>
<td>211</td>
<td>0'85</td>
<td>952</td>
<td>876</td>
<td>28'2</td>
<td>17'4</td>
<td>2'1</td>
<td>23</td>
<td>2</td>
<td>95</td>
</tr>
<tr>
<td>22AN4</td>
<td>3</td>
<td>236</td>
<td>0'75</td>
<td>1062</td>
<td>977</td>
<td>32</td>
<td>19'4</td>
<td>2'3</td>
<td>27'5</td>
<td>2'5</td>
<td>95</td>
</tr>
<tr>
<td>22AE2</td>
<td>3</td>
<td>229</td>
<td>0'65</td>
<td>1030</td>
<td>948</td>
<td>36'9</td>
<td>18'9</td>
<td>2'2</td>
<td>36</td>
<td>3</td>
<td>103</td>
</tr>
<tr>
<td>22AE8</td>
<td>2</td>
<td>235</td>
<td>0'85</td>
<td>1057</td>
<td>973</td>
<td>28'2</td>
<td>19'4</td>
<td>2'7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22A01</td>
<td>2</td>
<td>129</td>
<td>0'8</td>
<td>580</td>
<td>534</td>
<td>30</td>
<td>10'6</td>
<td>1'1</td>
<td>33'5</td>
<td>3</td>
<td>96</td>
</tr>
<tr>
<td>22A02</td>
<td>3</td>
<td>198</td>
<td>0'8</td>
<td>891</td>
<td>820</td>
<td>30</td>
<td>16'3</td>
<td>1'7</td>
<td>31</td>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td>23B03</td>
<td>3</td>
<td>168</td>
<td>0'6</td>
<td>756</td>
<td>801</td>
<td>40</td>
<td>17</td>
<td>2'3</td>
<td>21</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>25AN1</td>
<td>3</td>
<td>198</td>
<td>0'8</td>
<td>891</td>
<td>945</td>
<td>30</td>
<td>26'6</td>
<td>2'7</td>
<td>30</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>25AN2</td>
<td>2</td>
<td>176</td>
<td>1'4</td>
<td>792</td>
<td>839</td>
<td>17'1</td>
<td>17'8</td>
<td>2'5</td>
<td>17</td>
<td>1'5</td>
<td>97</td>
</tr>
</tbody>
</table>
CUADRO NO 32: FLEXION ESTATICA O Y MÓDULO DE ELASTICIDAD E

<table>
<thead>
<tr>
<th>Ñde</th>
<th>Carga</th>
<th>flecha</th>
<th>$\sigma_{h}$</th>
<th>$\sigma_{12}$</th>
<th>Cota</th>
<th>Cota</th>
<th>Cota</th>
<th>P</th>
<th>l'</th>
<th>módulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>tanaillas</td>
<td>roturum</td>
<td>rotura</td>
<td>L/f</td>
<td>rigiddz</td>
<td>flexión</td>
<td>tenac.</td>
<td>(mm)</td>
<td>(mm)</td>
<td>elast.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>202</td>
<td>0.8</td>
<td>909</td>
<td>963</td>
<td>30'0</td>
<td>20'5</td>
<td>2'8</td>
<td>14</td>
<td>3'3</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>176</td>
<td>0.5</td>
<td>792</td>
<td>839</td>
<td>48</td>
<td>17'8</td>
<td>2'5</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>2.5</td>
<td>185</td>
<td>0.7</td>
<td>832</td>
<td>882</td>
<td>34.3</td>
<td>18'7</td>
<td>2'6</td>
<td>15</td>
<td>1'5</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>135</td>
<td>0.7</td>
<td>607</td>
<td>643</td>
<td>34.3</td>
<td>13'7</td>
<td>1'9</td>
<td>24</td>
<td>3'5</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>266</td>
<td>1.0</td>
<td>1197</td>
<td>1101</td>
<td>24</td>
<td>21'9</td>
<td>2'0</td>
<td>33</td>
<td>3'2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>231</td>
<td>0.9</td>
<td>1039</td>
<td>956</td>
<td>26'7</td>
<td>19</td>
<td>2'0</td>
<td>84.240</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>238</td>
<td>2.0</td>
<td>1071</td>
<td>985</td>
<td>12</td>
<td>19'6</td>
<td>2'2</td>
<td>19'5</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>256</td>
<td>0.7</td>
<td>1152</td>
<td>1060</td>
<td>34.3</td>
<td>21'1</td>
<td>2'5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>197</td>
<td>0.6</td>
<td>884</td>
<td>814</td>
<td>40</td>
<td>16'2</td>
<td>1'8</td>
<td>25</td>
<td>2'5</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>200</td>
<td>1.25</td>
<td>900</td>
<td>828</td>
<td>19'2</td>
<td>16'5</td>
<td>2'0</td>
<td>24'5</td>
<td>3'5</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>241</td>
<td>0.8</td>
<td>1065</td>
<td>998</td>
<td>30</td>
<td>19'9</td>
<td>2'3</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>246</td>
<td>0.8</td>
<td>1107</td>
<td>1019</td>
<td>30</td>
<td>20'8</td>
<td>2'6</td>
<td>35</td>
<td>2'7</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>298</td>
<td>1.0</td>
<td>1341</td>
<td>1234</td>
<td>24</td>
<td>24'6</td>
<td>2'2</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>129</td>
<td>0.7</td>
<td>583</td>
<td>536</td>
<td>34.3</td>
<td>10'7</td>
<td>1'7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>143</td>
<td>0.8</td>
<td>643</td>
<td>592</td>
<td>30</td>
<td>11'8</td>
<td>1'9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>152</td>
<td>0.7</td>
<td>684</td>
<td>629</td>
<td>34.3</td>
<td>12'5</td>
<td>1'6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>253</td>
<td>0.65</td>
<td>1136</td>
<td>1048</td>
<td>36'9</td>
<td>20'8</td>
<td>2'0</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>230</td>
<td>0.85</td>
<td>1035</td>
<td>952</td>
<td>26'2</td>
<td>19</td>
<td>2'2</td>
<td>24'5</td>
<td>1'7</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>249</td>
<td>0.65</td>
<td>1120</td>
<td>1031</td>
<td>36'9</td>
<td>20'5</td>
<td>2'0</td>
<td>34</td>
<td>2'8</td>
</tr>
</tbody>
</table>
CUADRO Nº 32: FLEXION ESTATICA O Y MODULO DE ELASTICIDAD E

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>Nº de anillas</th>
<th>Carga rotura P(kg)</th>
<th>flecha rotura f(cm)</th>
<th>$\sigma^2_1$</th>
<th>$\sigma^2_{12}$</th>
<th>Cota rigidez $L_f$</th>
<th>Cota flexión $\sigma^2_{1000}$</th>
<th>Cota tensa $\sigma^2_C$</th>
<th>$P'$ (mm)</th>
<th>$l'$ (mm)</th>
<th>mód el</th>
</tr>
</thead>
<tbody>
<tr>
<td>28D03</td>
<td>2</td>
<td>161</td>
<td>0'65</td>
<td>725</td>
<td>667</td>
<td>36'9</td>
<td>13'3</td>
<td>1'7</td>
<td>24'5</td>
<td>3'5</td>
<td>60</td>
</tr>
<tr>
<td>30AN2</td>
<td>2'5</td>
<td>193</td>
<td>1'2</td>
<td>868</td>
<td>920</td>
<td>20</td>
<td>19'6</td>
<td>2'7</td>
<td>25</td>
<td>3</td>
<td>72</td>
</tr>
<tr>
<td>30A1</td>
<td>4</td>
<td>178</td>
<td>0'5</td>
<td>801</td>
<td>849</td>
<td>48</td>
<td>18</td>
<td>2'5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31A2</td>
<td>2</td>
<td>118</td>
<td>1'3</td>
<td>531</td>
<td>563</td>
<td>18'5</td>
<td>12</td>
<td>1'6</td>
<td>15</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>32AN4</td>
<td>5</td>
<td>231</td>
<td>0'75</td>
<td>1039</td>
<td>956</td>
<td>32</td>
<td>19</td>
<td>2'1</td>
<td>20</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>32AN5</td>
<td>5</td>
<td>244</td>
<td>0'5</td>
<td>1098</td>
<td>1010</td>
<td>48</td>
<td>20'1</td>
<td>1'9</td>
<td>23</td>
<td>1'5</td>
<td>132</td>
</tr>
<tr>
<td>32AN8</td>
<td>4</td>
<td>261</td>
<td>0'7</td>
<td>1174</td>
<td>1081</td>
<td>34'3</td>
<td>21</td>
<td>2'6</td>
<td>27</td>
<td>2</td>
<td>116</td>
</tr>
<tr>
<td>32A1</td>
<td>3'5</td>
<td>295</td>
<td>0'95</td>
<td>1327</td>
<td>1221</td>
<td>25'3</td>
<td>24'3</td>
<td>2'4</td>
<td>41</td>
<td>3'5</td>
<td>101</td>
</tr>
<tr>
<td>32A3</td>
<td>4'5</td>
<td>271</td>
<td>0'65</td>
<td>1219</td>
<td>1122</td>
<td>36'9</td>
<td>22'3</td>
<td>1'8</td>
<td>32'5</td>
<td>2'5</td>
<td>112</td>
</tr>
<tr>
<td>32D1</td>
<td>4</td>
<td>208</td>
<td>0'75</td>
<td>936</td>
<td>861</td>
<td>32</td>
<td>17'1</td>
<td>2'0</td>
<td>32'5</td>
<td>5</td>
<td>56</td>
</tr>
<tr>
<td>32D03</td>
<td>4'5</td>
<td>245</td>
<td>0'95</td>
<td>1102</td>
<td>1014</td>
<td>25'3</td>
<td>20'2</td>
<td>2'4</td>
<td>32</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>32B1</td>
<td>3</td>
<td>264</td>
<td>0'6</td>
<td>1118</td>
<td>1093</td>
<td>40</td>
<td>21'7</td>
<td>2'1</td>
<td>28</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>32B6</td>
<td>4</td>
<td>213</td>
<td>0'7</td>
<td>958</td>
<td>882</td>
<td>34'3</td>
<td>17'6</td>
<td>1'7</td>
<td>29</td>
<td>3'3</td>
<td>75</td>
</tr>
<tr>
<td>32E3</td>
<td>3</td>
<td>203</td>
<td>0'6</td>
<td>913</td>
<td>840</td>
<td>40</td>
<td>16'7</td>
<td>2</td>
<td>28'5</td>
<td>3</td>
<td>62</td>
</tr>
<tr>
<td>32D1</td>
<td>4</td>
<td>178</td>
<td>0'5</td>
<td>801</td>
<td>737</td>
<td>48</td>
<td>14'7</td>
<td>1'7</td>
<td>27</td>
<td>3</td>
<td>71</td>
</tr>
<tr>
<td>33A1</td>
<td>3</td>
<td>224</td>
<td>0'55</td>
<td>1008</td>
<td>927</td>
<td>43'6</td>
<td>18'4</td>
<td>1'8</td>
<td>25'5</td>
<td>2</td>
<td>110</td>
</tr>
<tr>
<td>33AN2</td>
<td>4'5</td>
<td>253</td>
<td>0'7</td>
<td>1130</td>
<td>1047</td>
<td>34'3</td>
<td>20'8</td>
<td>2'4</td>
<td>23'5</td>
<td>1'8</td>
<td>112</td>
</tr>
<tr>
<td>33A57</td>
<td>4</td>
<td>284</td>
<td>0'8</td>
<td>1278</td>
<td>1176</td>
<td>30</td>
<td>23'4</td>
<td>2'0</td>
<td>24'5</td>
<td>2</td>
<td>105</td>
</tr>
<tr>
<td>33AE2</td>
<td>4</td>
<td>270</td>
<td>0'65</td>
<td>1215</td>
<td>1118</td>
<td>36'9</td>
<td>22'2</td>
<td>2'6</td>
<td>23'5</td>
<td>1'5</td>
<td>138</td>
</tr>
</tbody>
</table>
CUADRO N° 32: FLEXION ESTATICA O Y MODOLO DE ELASTICIDAD E

<table>
<thead>
<tr>
<th>No de estanillas</th>
<th>Carga rotura P(kg)</th>
<th>flecha rotura f(cm)</th>
<th>$C_{th}$</th>
<th>$C_{12}$</th>
<th>Cota rigidez L/f</th>
<th>Cota flexión $\sigma^2/1000D$</th>
<th>Cota tenacidad $\sigma_T$</th>
<th>P' (mm)</th>
<th>1' (mm)</th>
<th>módulo elast. E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4</td>
<td>278</td>
<td>0'75</td>
<td>1251</td>
<td>1151</td>
<td>32</td>
<td>22'9</td>
<td>2'5</td>
<td>19'5</td>
<td>1'3</td>
<td>129.600</td>
</tr>
<tr>
<td>1 3</td>
<td>214</td>
<td>0'7</td>
<td>963</td>
<td>886</td>
<td>34'3</td>
<td>20'8</td>
<td>2'4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 2</td>
<td>200</td>
<td>0'75</td>
<td>900</td>
<td>828</td>
<td>32</td>
<td>16'5</td>
<td>2</td>
<td>20</td>
<td>1'7</td>
<td>110.647</td>
</tr>
<tr>
<td>3 3'5</td>
<td>182</td>
<td>0'4</td>
<td>819</td>
<td>753</td>
<td>60</td>
<td>15</td>
<td>1'4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 3</td>
<td>262</td>
<td>0'5</td>
<td>1269</td>
<td>1157</td>
<td>22'9</td>
<td>23'2</td>
<td>2'6</td>
<td>28</td>
<td>2'5</td>
<td>96.760</td>
</tr>
<tr>
<td>1 7</td>
<td>304</td>
<td>0'5</td>
<td>1368</td>
<td>1259</td>
<td>26'7</td>
<td>25</td>
<td>2'5</td>
<td>28</td>
<td>2</td>
<td>120.960</td>
</tr>
<tr>
<td>5 3</td>
<td>239</td>
<td>0'45</td>
<td>1075</td>
<td>989</td>
<td>17'1</td>
<td>19'7</td>
<td>2'3</td>
<td>25</td>
<td>3</td>
<td>72.000</td>
</tr>
<tr>
<td>3 4'5</td>
<td>258</td>
<td>1'4</td>
<td>1161</td>
<td>1068</td>
<td>16'5</td>
<td>21'3</td>
<td>2'4</td>
<td>30</td>
<td>4</td>
<td>64.800</td>
</tr>
<tr>
<td>1 7'5</td>
<td>304</td>
<td>0'8</td>
<td>1360</td>
<td>1259</td>
<td>30</td>
<td>25</td>
<td>2'1</td>
<td>58</td>
<td>6</td>
<td>83.540</td>
</tr>
<tr>
<td>2 5</td>
<td>240</td>
<td>0'7</td>
<td>1080</td>
<td>994</td>
<td>34'3</td>
<td>19'8</td>
<td>1'9</td>
<td>45</td>
<td>5</td>
<td>77.760</td>
</tr>
<tr>
<td>5 1'5</td>
<td>166</td>
<td>0'5</td>
<td>747</td>
<td>792</td>
<td>43'6</td>
<td>16'8</td>
<td>2'3</td>
<td>11</td>
<td>1</td>
<td>95.040</td>
</tr>
<tr>
<td>3 97</td>
<td>0'4</td>
<td>436</td>
<td>463</td>
<td>60</td>
<td>9'8</td>
<td>1'4</td>
<td>13</td>
<td>1</td>
<td></td>
<td>112.320</td>
</tr>
<tr>
<td>1 15</td>
<td>1'2</td>
<td>517</td>
<td>548</td>
<td>20</td>
<td>11'6</td>
<td>1'6</td>
<td>18</td>
<td>4</td>
<td></td>
<td>38.880</td>
</tr>
<tr>
<td>1 132</td>
<td>1'5</td>
<td>594</td>
<td>629</td>
<td>22'9</td>
<td>13'4</td>
<td>1'8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 168</td>
<td>1'8</td>
<td>756</td>
<td>802</td>
<td>30</td>
<td>17</td>
<td>2'3</td>
<td>29</td>
<td>3'5</td>
<td></td>
<td>71.589</td>
</tr>
<tr>
<td>4 4</td>
<td>171</td>
<td>0'5</td>
<td>769</td>
<td>615</td>
<td>48</td>
<td>17'3</td>
<td>2'4</td>
<td>17</td>
<td>1'5</td>
<td>97.920</td>
</tr>
<tr>
<td>2 2</td>
<td>136</td>
<td>0'6</td>
<td>612</td>
<td>648</td>
<td>40</td>
<td>13'8</td>
<td>1'9</td>
<td>7</td>
<td>1</td>
<td>60.480</td>
</tr>
<tr>
<td>1 3'5</td>
<td>131</td>
<td>0'7</td>
<td>607</td>
<td>643</td>
<td>34'3</td>
<td>13'7</td>
<td>1'9</td>
<td>21</td>
<td>3</td>
<td>60.480</td>
</tr>
<tr>
<td>4 2</td>
<td>221</td>
<td>0'95</td>
<td>994</td>
<td>915</td>
<td>25'3</td>
<td>18'2</td>
<td>2'2</td>
<td>43</td>
<td>6'5</td>
<td>57.157</td>
</tr>
</tbody>
</table>
CUADRO Nro 32: FLEXION ESTATICA O Y MODULO DE ELASTICIDAD E

<table>
<thead>
<tr>
<th>Nº de</th>
<th>Nº de</th>
<th>Carga</th>
<th>flecha</th>
<th>$\sigma_h$</th>
<th>$\sigma_{12}$</th>
<th>Coda</th>
<th>Cota</th>
<th>Cota</th>
<th>P'</th>
<th>1'</th>
<th>módulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>probeta</td>
<td>orillas</td>
<td>P(kg)</td>
<td>rotura</td>
<td>(cm)</td>
<td>rigidez</td>
<td>flexión</td>
<td>tensión</td>
<td>(mm)</td>
<td>(mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39AS1</td>
<td>5</td>
<td>262</td>
<td>0.65</td>
<td>1179</td>
<td>1085</td>
<td>36.9</td>
<td>21.6</td>
<td>2.1</td>
<td>60</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>39AE2</td>
<td>3</td>
<td>268</td>
<td>0.7</td>
<td>1206</td>
<td>1109</td>
<td>34.3</td>
<td>22.1</td>
<td>2.1</td>
<td>53</td>
<td>3.5</td>
<td>130</td>
</tr>
<tr>
<td>39AO2</td>
<td>3</td>
<td>272</td>
<td>0.6</td>
<td>1224</td>
<td>1126</td>
<td>40</td>
<td>22.4</td>
<td>2.2</td>
<td>49</td>
<td>3</td>
<td>141</td>
</tr>
<tr>
<td>39AD4</td>
<td>3.5</td>
<td>247</td>
<td>0.65</td>
<td>1111</td>
<td>1023</td>
<td>36.9</td>
<td>20.3</td>
<td>2.6</td>
<td>46</td>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>39BN3</td>
<td>2</td>
<td>134</td>
<td>0.25</td>
<td>603</td>
<td>555</td>
<td>96</td>
<td>11</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39BS1</td>
<td>2.5</td>
<td>148</td>
<td></td>
<td>666</td>
<td>613</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39BE2</td>
<td>2</td>
<td>138</td>
<td>0.5</td>
<td>623</td>
<td>573</td>
<td>48</td>
<td>11</td>
<td>1.6</td>
<td>22</td>
<td>2.8</td>
<td>67</td>
</tr>
<tr>
<td>39BO4</td>
<td>3</td>
<td>171</td>
<td>0.45</td>
<td>769</td>
<td>708</td>
<td>53.3</td>
<td>14.1</td>
<td>1.7</td>
<td>25</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>40S3</td>
<td>1</td>
<td>131</td>
<td>0.8</td>
<td>589</td>
<td>625</td>
<td>30</td>
<td>13.3</td>
<td>1.8</td>
<td>22</td>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>40E1</td>
<td>1</td>
<td>127</td>
<td>0.5</td>
<td>571</td>
<td>606</td>
<td>48</td>
<td>12.9</td>
<td>1.8</td>
<td>20</td>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>40E4</td>
<td>2</td>
<td>158</td>
<td>0.85</td>
<td>711</td>
<td>753</td>
<td>28.2</td>
<td>16</td>
<td>2.2</td>
<td>14</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>41AN3</td>
<td>3</td>
<td>247</td>
<td>0.6</td>
<td>1111</td>
<td>1023</td>
<td>40</td>
<td>20.3</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AN5</td>
<td>3</td>
<td>314</td>
<td>0.6</td>
<td>1413</td>
<td>1300</td>
<td>40</td>
<td>25.9</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AS1</td>
<td>3.5</td>
<td>243</td>
<td>0.6</td>
<td>1093</td>
<td>1006</td>
<td>40</td>
<td>20</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AS3</td>
<td>3</td>
<td>226</td>
<td>0.75</td>
<td>1019</td>
<td>938</td>
<td>32</td>
<td>18.7</td>
<td>1.8</td>
<td>39.5</td>
<td>3.5</td>
<td>97</td>
</tr>
<tr>
<td>41AS5</td>
<td>2.5</td>
<td>268</td>
<td>0.8</td>
<td>1206</td>
<td>1110</td>
<td>30</td>
<td>22.1</td>
<td>2.6</td>
<td>29.6</td>
<td>2.3</td>
<td>116</td>
</tr>
<tr>
<td>41AE3</td>
<td>3</td>
<td>266</td>
<td>0.7</td>
<td>1287</td>
<td>1184</td>
<td>34.3</td>
<td>23.6</td>
<td>2.2</td>
<td>39.5</td>
<td>3</td>
<td>112</td>
</tr>
<tr>
<td>41AE7</td>
<td>3.5</td>
<td>281</td>
<td>0.8</td>
<td>1267</td>
<td>1165</td>
<td>30</td>
<td>23.2</td>
<td>2.7</td>
<td>29.5</td>
<td>2</td>
<td>127</td>
</tr>
<tr>
<td>41AO7</td>
<td>3</td>
<td>217</td>
<td>0.6</td>
<td>979</td>
<td>900</td>
<td>40</td>
<td>17.9</td>
<td>2.1</td>
<td>31.5</td>
<td>2</td>
<td>136</td>
</tr>
<tr>
<td>N° de</td>
<td>Carga en toneladas</td>
<td>Carga</td>
<td>flecha</td>
<td>$\sigma_{n}$</td>
<td>$\sigma_{12}$</td>
<td>Cota de rigidez</td>
<td>Cota de flexión</td>
<td>Cota de tenacidad</td>
<td>$P'$</td>
<td>$l'$</td>
<td>Módulo elástico E</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.5</td>
<td>207</td>
<td>934</td>
<td>859</td>
<td>17.1</td>
<td>1.7</td>
<td>32.5</td>
<td>3</td>
<td></td>
<td>93.600</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.35</td>
<td>121</td>
<td>544</td>
<td>501</td>
<td>68.6</td>
<td>10</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>1.5</td>
<td>184</td>
<td>828</td>
<td>762</td>
<td>15.2</td>
<td>1.8</td>
<td>22.5</td>
<td>2</td>
<td></td>
<td>97.200</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1.5</td>
<td>172</td>
<td>774</td>
<td>712</td>
<td>14.2</td>
<td>1.8</td>
<td>24</td>
<td>2.5</td>
<td></td>
<td>82.944</td>
</tr>
</tbody>
</table>
DIAGRAMAS DE RESISTENCIA DEL ENSAYO DE FLEXION ESTATICA

1 AN2₁

2 AN ₂₁

2 AN ₃₁

2 AN ₆₁

2 AS ₂₁

2 AO ₂₁

2 AE ₃₁

2 BN ₂

2 BS ₁

2 BE ₁₁

2 BO ₁

3 AN ₁
Cont.

39  BN 3
39  BS 1
39  BE 2
39  BO 4
40  S 3
40  E 1
40  E 4
41  AS 3
41  AS 5
41  AE 3
41  AE 7
41  AO 7
41  BN 1
<p>| № de | № de | Trabajo | $K = \frac{T}{S}$ | Cota dinám. | № de | № de | Trabajo | $K = \frac{T}{S}$ | Cota dinám. |
|probea | anillas | T (kgm) | | $K/D^2$ | proba | anillas | T (kgm) | | $K/D^2$ |
|1AN2 | 3 | 1'05 | 0'26 | 1'09 | 3AN3 | 2 | 0'55 | 0'13 | 0'57 |
|1AE1 | 2 | 1'25 | 0'31 | 1'30 | 3AE1 | 3 | 1'3 | 0'32 | 1'35 |
|1AO1 | 2 | 1'5 | 0'37 | 1'56 | 3AE2 | 2 | 0'8 | 0'2 | 0'83 |
|1AO2 | 3 | 1'05 | 0'26 | 1'09 | 3AO1 | 4 | 0'7 | 0'17 | 0'73 |
|1BN1 | 2 | 0'7 | 0'17 | 0'73 | 4AN2 | 2 | 1'40 | 0'35 | 1'46 |
|1BE3 | 2 | 0'9 | 0'22 | 0'94 | 4AS2 | 3 | 1'15 | 0'28 | 1'20 |
|1BE4 | 2 | 0'6 | 0'15 | 0'63 | 4AO5 | 3 | 2'5 | 0'62 | 2'60 |
|1BO2 | 4 | 2'0 | 0'5 | 2'08 | 6AO2 | 3 | 0'65 | 0'16 | 0'62 |
|2AN1 | 1 | 1'6 | 0'4 | 1'67 | 8AN1 | 4 | 1'45 | 0'36 | 1'51 |
|2AN3 | 3 | 1'2 | 0'3 | 1'25 | 8AN7 | 3 | 1'25 | 0'31 | 1'30 |
|2AN7 | 2 | 1'4 | 0'35 | 1'46 | 8AS2 | 2 | 1'5 | 0'37 | 1'56 |
|2AE2 | 3 | 1'5 | 0'37 | 1'56 | 8AS5 | 5 | 1'5 | 0'37 | 1'56 |
|2AO2 | 4 | 1'70 | 0'42 | 1'77 | 8AO1 | 2 | 0'80 | 0'2 | 0'83 |
|2BN2 | 1 | 0'30 | 0'07 | 0'31 | 8AO3 | 3 | 1'9 | 0'47 | 1'98 |
|2BS1 | 1 | 0'65 | 0'16 | 0'68 | 8BN1 | 3 | 0'65 | 0'61 | 0'68 |
|2BE2 | 1 | 0'65 | 0'16 | 0'68 | 8BS1 | 2 | 0'55 | 0'13 | 0'58 |
|2BO1 | 1 | 0'4 | 0'1 | 0'42 | 8BS2 | 2 | 0'7 | 0'17 | 0'73 |
|2BO2 | 3 | 0'55 | 0'13 | 0'57 | 8BE3 | 6 | 1'30 | 0'32 | 1'35 |</p>
<table>
<thead>
<tr>
<th>№ de proba</th>
<th>№ de anillas</th>
<th>Trabajo (kgm)</th>
<th>$K = \frac{T}{S}$</th>
<th>Cota dinámica, $K/D^2$</th>
<th>№ de proba</th>
<th>№ de anillas</th>
<th>Trabajo (kgm)</th>
<th>$K = \frac{T}{S}$</th>
<th>Cota dinámica, $K/D^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>11A01</td>
<td>2</td>
<td>2'15</td>
<td>0'53</td>
<td>2'25</td>
<td>21A01</td>
<td>4</td>
<td>1'65</td>
<td>0'41</td>
<td>1'86</td>
</tr>
<tr>
<td>11A02</td>
<td>2</td>
<td>2'05</td>
<td>0'71</td>
<td>2'97</td>
<td>21A03</td>
<td>2</td>
<td>1'1</td>
<td>0'27</td>
<td>1'24</td>
</tr>
<tr>
<td>11A03</td>
<td>2</td>
<td>1'45</td>
<td>0'36</td>
<td>1'51</td>
<td>21A03</td>
<td>3</td>
<td>1'7</td>
<td>0'42</td>
<td>1'91</td>
</tr>
<tr>
<td>13A01</td>
<td>2</td>
<td>2'08</td>
<td>0'7</td>
<td>2'92</td>
<td>22A00</td>
<td>2</td>
<td>1'70</td>
<td>0'42</td>
<td>1'77</td>
</tr>
<tr>
<td>14A02</td>
<td>2</td>
<td>1'0</td>
<td>0'25</td>
<td>1'04</td>
<td>22A01</td>
<td>3</td>
<td>1'60</td>
<td>0'4</td>
<td>1'67</td>
</tr>
<tr>
<td>16AN1</td>
<td>3</td>
<td>1'85</td>
<td>0'46</td>
<td>1'92</td>
<td>22A04</td>
<td>3</td>
<td>1'05</td>
<td>0'26</td>
<td>1'09</td>
</tr>
<tr>
<td>16A51</td>
<td>2</td>
<td>1'15</td>
<td>0'28</td>
<td>1'20</td>
<td>22A02</td>
<td>2</td>
<td>1'0</td>
<td>0'25</td>
<td>1'04</td>
</tr>
<tr>
<td>16A52</td>
<td>2</td>
<td>1'05</td>
<td>0'26</td>
<td>1'09</td>
<td>22A07</td>
<td>3</td>
<td>1'0</td>
<td>0'25</td>
<td>1'04</td>
</tr>
<tr>
<td>16AE1</td>
<td>2</td>
<td>1'40</td>
<td>0'35</td>
<td>1'46</td>
<td>22A08</td>
<td>3</td>
<td>0'85</td>
<td>0'21</td>
<td>0'89</td>
</tr>
<tr>
<td>16AE1</td>
<td>2</td>
<td>1'50</td>
<td>0'37</td>
<td>1'56</td>
<td>22A02</td>
<td>3</td>
<td>1'55</td>
<td>0'38</td>
<td>1'63</td>
</tr>
<tr>
<td>16AE2</td>
<td>2</td>
<td>1'30</td>
<td>0'32</td>
<td>1'35</td>
<td>23B01</td>
<td>3</td>
<td>1'45</td>
<td>0'36</td>
<td>1'63</td>
</tr>
<tr>
<td>16AE3</td>
<td>2</td>
<td>1'20</td>
<td>0'3</td>
<td>1'25</td>
<td>27BS1</td>
<td>2'5</td>
<td>1'5</td>
<td>0'37</td>
<td>1'69</td>
</tr>
<tr>
<td>16A02</td>
<td>2</td>
<td>1'15</td>
<td>0'28</td>
<td>1'20</td>
<td>27BS2</td>
<td>1'5</td>
<td>1'1</td>
<td>0'27</td>
<td>1'24</td>
</tr>
<tr>
<td>16A3</td>
<td>2</td>
<td>0'6</td>
<td>0'15</td>
<td>0'63</td>
<td>28A01</td>
<td>3</td>
<td>1'5</td>
<td>0'37</td>
<td>1'56</td>
</tr>
<tr>
<td>16N2</td>
<td>2</td>
<td>1'2</td>
<td>0'3</td>
<td>1'35</td>
<td>28A02</td>
<td>2</td>
<td>1'4</td>
<td>0'35</td>
<td>1'46</td>
</tr>
<tr>
<td>17AN5</td>
<td>5</td>
<td>1'8</td>
<td>0'45</td>
<td>2'03</td>
<td>28A03</td>
<td>4</td>
<td>2'85</td>
<td>0'71</td>
<td>2'97</td>
</tr>
<tr>
<td>17AS9</td>
<td>2</td>
<td>2'65</td>
<td>0'66</td>
<td>2'99</td>
<td>28AS3</td>
<td>7</td>
<td>3'6</td>
<td>0'9</td>
<td>3'75</td>
</tr>
<tr>
<td>17AS10</td>
<td>2</td>
<td>1'6</td>
<td>0'45</td>
<td>2'03</td>
<td>28AS5</td>
<td>3</td>
<td>2'35</td>
<td>0'58</td>
<td>2'45</td>
</tr>
<tr>
<td>17AE8</td>
<td>2'5</td>
<td>1'65</td>
<td>0'41</td>
<td>1'86</td>
<td>28AE2</td>
<td>3</td>
<td>2'35</td>
<td>0'58</td>
<td>2'45</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Trabajo $T$ (kgm)</td>
<td>$K = \frac{T}{S}$</td>
<td>Cota dinám. $K/D^2$</td>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Trabajo $T$ (kgm)</td>
<td>$K = \frac{T}{S}$</td>
<td>Cota dinám. $K/D^2$</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>28A01</td>
<td>2</td>
<td>2'4</td>
<td>0'6</td>
<td>2'5</td>
<td>32BS4</td>
<td>4</td>
<td>1'15</td>
<td>0'28</td>
<td>1'20</td>
</tr>
<tr>
<td>28A02</td>
<td>2</td>
<td>1'50</td>
<td>0'37</td>
<td>1'56</td>
<td>32BS5</td>
<td>3</td>
<td>1'25</td>
<td>0'31</td>
<td>1'30</td>
</tr>
<tr>
<td>28BN2</td>
<td>2</td>
<td>0'65</td>
<td>0'16</td>
<td>0'68</td>
<td>32BS6</td>
<td>4</td>
<td>1'45</td>
<td>0'36</td>
<td>1'51</td>
</tr>
<tr>
<td>28BN3</td>
<td>2</td>
<td>1'40</td>
<td>0'35</td>
<td>1'46</td>
<td>32BE5</td>
<td>3</td>
<td>1'65</td>
<td>0'41</td>
<td>1'72</td>
</tr>
<tr>
<td>28BS1</td>
<td>2</td>
<td>1'9</td>
<td>0'47</td>
<td>1'98</td>
<td>32BO2</td>
<td>3</td>
<td>0'65</td>
<td>0'16</td>
<td>0'55</td>
</tr>
<tr>
<td>28BE1</td>
<td>2</td>
<td>0'8</td>
<td>0'2</td>
<td>0'90</td>
<td>33AN1</td>
<td>3</td>
<td>1'20</td>
<td>0'3</td>
<td>1'25</td>
</tr>
<tr>
<td>28BE2</td>
<td>3</td>
<td>1'65</td>
<td>0'41</td>
<td>1'77</td>
<td>33AS6</td>
<td>3</td>
<td>1'35</td>
<td>0'33</td>
<td>1'41</td>
</tr>
<tr>
<td>28BO2</td>
<td>3</td>
<td>1'30</td>
<td>0'32</td>
<td>1'35</td>
<td>33AE1</td>
<td>3</td>
<td>1'45</td>
<td>0'36</td>
<td>1'51</td>
</tr>
<tr>
<td>28BO3</td>
<td>2</td>
<td>0'9</td>
<td>0'22</td>
<td>0'94</td>
<td>33AO1</td>
<td>5</td>
<td>1'75</td>
<td>0'43</td>
<td>1'78</td>
</tr>
<tr>
<td>28BO4</td>
<td>3</td>
<td>1'60</td>
<td>0'45</td>
<td>1'88</td>
<td>33BN2</td>
<td>3</td>
<td>0'75</td>
<td>0'18</td>
<td>0'78</td>
</tr>
<tr>
<td>30AN3</td>
<td>2</td>
<td>1'40</td>
<td>0'35</td>
<td>1'58</td>
<td>33BO3</td>
<td>3</td>
<td>1'5</td>
<td>0'37</td>
<td>1'56</td>
</tr>
<tr>
<td>31AN3</td>
<td>2</td>
<td>1'2</td>
<td>0'3</td>
<td>1'31</td>
<td>37AN3</td>
<td>6</td>
<td>2'2</td>
<td>0'55</td>
<td>2'29</td>
</tr>
<tr>
<td>31AO2</td>
<td>2</td>
<td>3'5</td>
<td>0'87</td>
<td>3'95</td>
<td>37AS2</td>
<td>7</td>
<td>3'55</td>
<td>0'88</td>
<td>3'70</td>
</tr>
<tr>
<td>32AN3</td>
<td>5</td>
<td>1'55</td>
<td>0'38</td>
<td>1'60</td>
<td>37AE2</td>
<td>3</td>
<td>2'05</td>
<td>0'73</td>
<td>0'07</td>
</tr>
<tr>
<td>32AN5</td>
<td>5</td>
<td>2'5</td>
<td>0'62</td>
<td>2'60</td>
<td>37BO1</td>
<td>5</td>
<td>1'70</td>
<td>0'42</td>
<td>1'77</td>
</tr>
<tr>
<td>32AE2</td>
<td>4</td>
<td>1'35</td>
<td>0'33</td>
<td>1'41</td>
<td>37BO1</td>
<td>7</td>
<td>3</td>
<td>0'75</td>
<td>3'13</td>
</tr>
<tr>
<td>32AE4</td>
<td>6</td>
<td>2'5</td>
<td>0'62</td>
<td>2'60</td>
<td>38S2</td>
<td>3</td>
<td>1'8</td>
<td>0'45</td>
<td>2'03</td>
</tr>
<tr>
<td>32AO4</td>
<td>6</td>
<td>3'3</td>
<td>0'82</td>
<td>3'44</td>
<td>38BO2</td>
<td>1'5</td>
<td>0'9</td>
<td>0'22</td>
<td>1'01</td>
</tr>
<tr>
<td>Nº de prueba</td>
<td>Nº de anillas</td>
<td>Trabajo T (kgm)</td>
<td>$K = \frac{T}{S}$</td>
<td>Cota dinámica</td>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Trabajo T (kgm)</td>
<td>$K = \frac{T}{S}$</td>
<td>Cota dinámica</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>39AS2</td>
<td>5</td>
<td>1.45</td>
<td>0.36</td>
<td>1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39AE3</td>
<td>2</td>
<td>0.8</td>
<td>0.2</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39AD3</td>
<td>2</td>
<td>1.3</td>
<td>0.32</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39B02</td>
<td>2</td>
<td>0.7</td>
<td>0.17</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AN1</td>
<td>2</td>
<td>1.35</td>
<td>0.33</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AN4</td>
<td>4</td>
<td>1.60</td>
<td>0.4</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AN9</td>
<td>3</td>
<td>3.0</td>
<td>0.75</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AS2</td>
<td>2</td>
<td>1.85</td>
<td>0.46</td>
<td>1.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AS4</td>
<td>4</td>
<td>1.80</td>
<td>0.45</td>
<td>1.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AE1</td>
<td>4</td>
<td>4.75</td>
<td>1.18</td>
<td>4.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AE5</td>
<td>4</td>
<td>3.45</td>
<td>0.86</td>
<td>3.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AD4</td>
<td>4</td>
<td>2.35</td>
<td>0.58</td>
<td>2.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41AD5</td>
<td>6</td>
<td>2.70</td>
<td>0.67</td>
<td>2.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BN3</td>
<td>3</td>
<td>1.1</td>
<td>0.27</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BS3</td>
<td>3</td>
<td>1.8</td>
<td>0.45</td>
<td>1.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BE3</td>
<td>3</td>
<td>2.05</td>
<td>0.51</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41BG2</td>
<td>2</td>
<td>0.8</td>
<td>0.2</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUADRO N° 34 : HIENDA R

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>Nº de anillas</th>
<th>Carga rotura Pto</th>
<th>R</th>
<th>Cota laminab. Ce</th>
<th>Nº de probeta</th>
<th>Nº de anillas</th>
<th>Carga rotura Pto</th>
<th>R</th>
<th>Clas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AO11</td>
<td>6</td>
<td>19</td>
<td>9,5</td>
<td>19,28</td>
<td>1 AN31</td>
<td>5</td>
<td>22</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>1 BN11</td>
<td>2</td>
<td>11</td>
<td>5,5</td>
<td>11,16</td>
<td>1 AO21</td>
<td>2</td>
<td>17</td>
<td>8,5</td>
<td>17</td>
</tr>
<tr>
<td>1 BN31</td>
<td>5</td>
<td>17</td>
<td>8,5</td>
<td>17,25</td>
<td>1 BN21</td>
<td>28</td>
<td>14</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1 BE1</td>
<td>2</td>
<td>12</td>
<td>6,0</td>
<td>12,18</td>
<td>1 BE41</td>
<td>2</td>
<td>18</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>1 BE31</td>
<td>2</td>
<td>8</td>
<td>4,0</td>
<td>8,12</td>
<td>1 BO21</td>
<td>29</td>
<td>14,5</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>1 BO21</td>
<td>5</td>
<td>15</td>
<td>7,5</td>
<td>15,22</td>
<td>2 AN8</td>
<td>2</td>
<td>22</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>2 AN1</td>
<td>2</td>
<td>16</td>
<td>8,0</td>
<td>16,24</td>
<td>2 AS21</td>
<td>2</td>
<td>22</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>2 AN4</td>
<td>2</td>
<td>21</td>
<td>10,5</td>
<td>20,31</td>
<td>2 AE2</td>
<td>3</td>
<td>22</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>2 AS11</td>
<td>2</td>
<td>19</td>
<td>8,5</td>
<td>17,25</td>
<td>2 AO21</td>
<td>5</td>
<td>19</td>
<td>9,5</td>
<td>19</td>
</tr>
<tr>
<td>2 AE11</td>
<td>2</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td>2 BE1</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2 AO11</td>
<td>2</td>
<td>21</td>
<td>10,5</td>
<td>21,31</td>
<td>3 AE1</td>
<td>3</td>
<td>16</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>2 AO31</td>
<td>2</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td>3 AE3</td>
<td>2</td>
<td>25</td>
<td>12,5</td>
<td>25</td>
</tr>
<tr>
<td>3 AN11</td>
<td>3</td>
<td>14</td>
<td>7,0</td>
<td>14,21</td>
<td>3 AO2</td>
<td>7</td>
<td>18</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>3 AN31</td>
<td>2</td>
<td>13</td>
<td>6,5</td>
<td>13,19</td>
<td>3 BS5</td>
<td>3</td>
<td>24</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>3 AS11</td>
<td>1</td>
<td>14</td>
<td>7,0</td>
<td>14,21</td>
<td>4 AN1</td>
<td>3</td>
<td>25</td>
<td>12,5</td>
<td>25</td>
</tr>
<tr>
<td>3 AE21</td>
<td>2</td>
<td>11</td>
<td>5,5</td>
<td>11,16</td>
<td>4 AE1</td>
<td>3</td>
<td>34</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>4 AS11</td>
<td>5</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td>6 BN2</td>
<td>2</td>
<td>19</td>
<td>9,5</td>
<td>19</td>
</tr>
<tr>
<td>6 BN1</td>
<td>2</td>
<td>16</td>
<td>8,0</td>
<td>16,24</td>
<td>6 BE2</td>
<td>2</td>
<td>17</td>
<td>8,5</td>
<td>17</td>
</tr>
<tr>
<td>6 BE1</td>
<td>4</td>
<td>14</td>
<td>7,0</td>
<td>14,21</td>
<td>6 BO3</td>
<td>2</td>
<td>19</td>
<td>9,5</td>
<td>19</td>
</tr>
<tr>
<td>Nº de anillas</td>
<td>Carga rotura PtG</td>
<td>R</td>
<td>Cota laminar Ce</td>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Carga rotura Pr</td>
<td>R</td>
<td>Cota laminar Ce</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>17</td>
<td>8,5</td>
<td>17,25</td>
<td>8 AN3</td>
<td>2</td>
<td>22</td>
<td>11</td>
<td>22,33</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>16</td>
<td>8,0</td>
<td>16,24</td>
<td>8 AS3</td>
<td>3</td>
<td>32</td>
<td>16</td>
<td>32,47</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td>8 AE1</td>
<td>2</td>
<td>23</td>
<td>11,5</td>
<td>23,34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21</td>
<td>10,5</td>
<td>21,31</td>
<td>8 AE2</td>
<td>3</td>
<td>18</td>
<td>9</td>
<td>18,27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16</td>
<td>8,0</td>
<td>16,24</td>
<td>8 AE4</td>
<td>3</td>
<td>26</td>
<td>13</td>
<td>26,39</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17</td>
<td>8,5</td>
<td>17,25</td>
<td>8 AE41</td>
<td>6</td>
<td>22</td>
<td>11</td>
<td>22,33</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td>8,0</td>
<td>16,25</td>
<td>8 AO3</td>
<td>4</td>
<td>26</td>
<td>13</td>
<td>26,34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td>8 BE1</td>
<td>2</td>
<td>28</td>
<td>14</td>
<td>28,41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>6,0</td>
<td>12,18</td>
<td>8 BE6</td>
<td>3</td>
<td>19</td>
<td>9,5</td>
<td>19,28</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>8,0</td>
<td>16,25</td>
<td>10 AS1</td>
<td>17</td>
<td>8,5</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>18</td>
<td>9,0</td>
<td>18,27</td>
<td>11 AN1</td>
<td>2</td>
<td>24</td>
<td>12</td>
<td>24,36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18</td>
<td>9,0</td>
<td>18,24</td>
<td>11 AS1</td>
<td>2</td>
<td>24</td>
<td>12</td>
<td>24,36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td>11 AE1</td>
<td>2</td>
<td>25</td>
<td>12,5</td>
<td>25,37</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>28</td>
<td>14,0</td>
<td>28,41</td>
<td>11 AO2</td>
<td>2</td>
<td>32</td>
<td>16</td>
<td>32,47</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>28</td>
<td>14,0</td>
<td>28,41</td>
<td>13 N1</td>
<td>3</td>
<td>24</td>
<td>12</td>
<td>24,36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25</td>
<td>12,5</td>
<td>25,37</td>
<td>13 AS2</td>
<td>2</td>
<td>25</td>
<td>12,5</td>
<td>25,37</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30</td>
<td>15,0</td>
<td>30,44</td>
<td>14 AN2</td>
<td>3</td>
<td>33</td>
<td>16,5</td>
<td>33,49</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18</td>
<td>9,0</td>
<td>18,27</td>
<td>14 AS3</td>
<td>2</td>
<td>23</td>
<td>11,5</td>
<td>23,34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13</td>
<td>6,5</td>
<td>13,19</td>
<td>16 AS1</td>
<td>3</td>
<td>22</td>
<td>11</td>
<td>22,33</td>
</tr>
</tbody>
</table>
CUADRO N° 34 : HIENDA R

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>Nº de anillas</th>
<th>Carga rotura Ptg</th>
<th>R</th>
<th>Cota laminab Ce</th>
<th>Nº de probeta</th>
<th>Nº de anillas</th>
<th>Carga rotura Pr</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 AN1</td>
<td>2</td>
<td>16</td>
<td>8</td>
<td>16,24</td>
<td>16 AE3</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>15 AE2</td>
<td>3</td>
<td>15</td>
<td>7,5</td>
<td>15,22</td>
<td>17 AN5</td>
<td>28</td>
<td>14</td>
<td>0,2</td>
</tr>
<tr>
<td>16 AO2</td>
<td>2</td>
<td>15</td>
<td>7,5</td>
<td>15,22</td>
<td>17 AS1</td>
<td>26</td>
<td>13</td>
<td>0,2</td>
</tr>
<tr>
<td>17 AN2</td>
<td>22</td>
<td>11</td>
<td>0,23</td>
<td>17 AS2</td>
<td>28</td>
<td>14</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>17 AE3</td>
<td>18</td>
<td>9</td>
<td>0,19</td>
<td>17 AE2</td>
<td>20</td>
<td>10</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>17 AE8</td>
<td>16</td>
<td>8</td>
<td>0,17</td>
<td>21 AS2</td>
<td>18</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21 AN1</td>
<td>14</td>
<td>7</td>
<td>0,15</td>
<td>21 AE3</td>
<td>19</td>
<td>9,5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>21 AN2</td>
<td>15</td>
<td>7,5</td>
<td>0,16</td>
<td>21 AO2</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>21 AN4</td>
<td>14</td>
<td>7,0</td>
<td>0,15</td>
<td>22 AN1</td>
<td>3</td>
<td>27</td>
<td>13,5</td>
<td>2</td>
</tr>
<tr>
<td>21 AE2</td>
<td>17</td>
<td>7,5</td>
<td>0,16</td>
<td>22 AN4</td>
<td>3</td>
<td>28</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>22 AN2</td>
<td>3</td>
<td>16</td>
<td>8,0</td>
<td>16,24</td>
<td>22 AN6</td>
<td>3</td>
<td>27</td>
<td>13,5</td>
</tr>
<tr>
<td>22 AN5</td>
<td>2</td>
<td>12</td>
<td>6,0</td>
<td>12,18</td>
<td>22 AE7</td>
<td>3</td>
<td>15</td>
<td>7,5</td>
</tr>
<tr>
<td>22 AE1</td>
<td>2</td>
<td>15</td>
<td>7,5</td>
<td>15,22</td>
<td>22 AO2</td>
<td>2</td>
<td>27</td>
<td>13,5</td>
</tr>
<tr>
<td>22 AO1</td>
<td>3</td>
<td>14</td>
<td>7</td>
<td>14,21</td>
<td>23 BE1</td>
<td>20</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>23 BO3</td>
<td>12</td>
<td>6</td>
<td>0,12</td>
<td>25 AN2</td>
<td>30</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25 AN1</td>
<td>19</td>
<td>9,5</td>
<td>0,20</td>
<td>28 AN2</td>
<td>33</td>
<td>16,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>27 AO1</td>
<td>24</td>
<td>12</td>
<td>0,25</td>
<td>28 AS2</td>
<td>3</td>
<td>18</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>27 BO1</td>
<td>12</td>
<td>6</td>
<td>0,12</td>
<td>28 AS5</td>
<td>3</td>
<td>28</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>28 AN1</td>
<td>2</td>
<td>17</td>
<td>7,5</td>
<td>15,22</td>
<td>28 AE1</td>
<td>3</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Nº de anillas</td>
<td>Carga rotura Ptg</td>
<td>Cota laminar Ce</td>
<td>Nº de probeta</td>
<td>Carga rotura Pr</td>
<td>Nº de anillas</td>
<td>Cota laminar Ce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN3</td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>12,18</td>
<td>28 AO1</td>
<td>2</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>AS3</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>16,24</td>
<td>28 BN1</td>
<td>2</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>AS6</td>
<td>2</td>
<td>16</td>
<td>8</td>
<td>16,24</td>
<td>28 BN3</td>
<td>3</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>E2</td>
<td>3</td>
<td>14</td>
<td>7</td>
<td>14,21</td>
<td>28 BO1</td>
<td>2</td>
<td>27</td>
<td>13,5</td>
</tr>
<tr>
<td>O3</td>
<td>3</td>
<td>13</td>
<td>6,5</td>
<td>13,19</td>
<td>30 AN3</td>
<td>22</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>O4</td>
<td>3</td>
<td>22</td>
<td>11</td>
<td>22,33</td>
<td>31 AN3</td>
<td>26</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>N2</td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>12,18</td>
<td>31 As2</td>
<td>24</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>E2</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>12,18</td>
<td>32 AN5</td>
<td>4</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>O4</td>
<td>3</td>
<td>16</td>
<td>8</td>
<td>16,24</td>
<td>32 AE2</td>
<td>4</td>
<td>23</td>
<td>11,5</td>
</tr>
<tr>
<td>N2</td>
<td>23</td>
<td>11,5</td>
<td>0,24</td>
<td>32 AE4</td>
<td>4</td>
<td>32</td>
<td>16</td>
<td>32,47</td>
</tr>
<tr>
<td>S1</td>
<td>20</td>
<td>10</td>
<td>0,21</td>
<td>32 AO5</td>
<td>4</td>
<td>22</td>
<td>11</td>
<td>22,33</td>
</tr>
<tr>
<td>O2</td>
<td>20</td>
<td>10,0</td>
<td>0,21</td>
<td>32 BN1</td>
<td>3</td>
<td>34</td>
<td>17</td>
<td>34,50</td>
</tr>
<tr>
<td>N5</td>
<td>5</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td>32 BN2</td>
<td>21</td>
<td>10,5</td>
<td>22</td>
</tr>
<tr>
<td>N7</td>
<td>7</td>
<td>18</td>
<td>9,0</td>
<td>18,27</td>
<td>32 BN7</td>
<td>4</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>E3</td>
<td>6</td>
<td>10</td>
<td>5,0</td>
<td>10,15</td>
<td>32 BO1</td>
<td>4</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>O4</td>
<td>6</td>
<td>18</td>
<td>9,0</td>
<td>18,27</td>
<td>32 BO3</td>
<td>4</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>O6</td>
<td>4</td>
<td>14</td>
<td>7,0</td>
<td>14,21</td>
<td>33 BA3</td>
<td>3</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>O2</td>
<td>3</td>
<td>15</td>
<td>7,5</td>
<td>15,22</td>
<td>33 AE4</td>
<td>5</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>S7</td>
<td>5</td>
<td>17</td>
<td>8,5</td>
<td>17,25</td>
<td>37 AN1</td>
<td>7</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Carga rotura Prtg</td>
<td>R</td>
<td>Cota laminables</td>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Carga rotura Pr</td>
<td>R</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>---</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>33 AO1</td>
<td>3</td>
<td>20</td>
<td>10.0</td>
<td>20.30</td>
<td>37N3</td>
<td>6</td>
<td>28</td>
<td>14'0</td>
</tr>
<tr>
<td>33 BN1</td>
<td>3</td>
<td>12</td>
<td>6.0</td>
<td>12.18</td>
<td>37AS1</td>
<td>8</td>
<td>27</td>
<td>13'5</td>
</tr>
<tr>
<td>33 BN2</td>
<td>3</td>
<td>10</td>
<td>5.0</td>
<td>10.15</td>
<td>37AS5</td>
<td>4</td>
<td>34</td>
<td>17'0</td>
</tr>
<tr>
<td>33 BN4</td>
<td>3</td>
<td>13</td>
<td>6.5</td>
<td>13.19</td>
<td>37AO2</td>
<td>4</td>
<td>32</td>
<td>16'0</td>
</tr>
<tr>
<td>33 BE2</td>
<td>3</td>
<td>12</td>
<td>6.0</td>
<td>12.18</td>
<td>37BE2</td>
<td>6</td>
<td>18</td>
<td>9'0</td>
</tr>
<tr>
<td>33 BE6</td>
<td>3</td>
<td>16</td>
<td>8.0</td>
<td>16.24</td>
<td>37BO2</td>
<td>5</td>
<td>20</td>
<td>10'0</td>
</tr>
<tr>
<td>33 BO2</td>
<td>3</td>
<td>14</td>
<td>7.0</td>
<td>14.21</td>
<td>38S2</td>
<td></td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>37 AN4</td>
<td>4</td>
<td>26</td>
<td>13.0</td>
<td>26.39</td>
<td>38BO2</td>
<td></td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>37 As2</td>
<td>7</td>
<td>26</td>
<td>13.5</td>
<td>27.46</td>
<td>39AN2</td>
<td>6</td>
<td>28</td>
<td>14'0</td>
</tr>
<tr>
<td>37 AE2</td>
<td>3</td>
<td>27</td>
<td>13.5</td>
<td>27.40</td>
<td>39AE1</td>
<td>5</td>
<td>24</td>
<td>12'0</td>
</tr>
<tr>
<td>37 AO1</td>
<td>9</td>
<td>23</td>
<td>11.5</td>
<td>23.34</td>
<td>39AO1</td>
<td>4</td>
<td>31</td>
<td>15'5</td>
</tr>
<tr>
<td>37 BN2</td>
<td>5</td>
<td>14</td>
<td>7.0</td>
<td>14.21</td>
<td>39BS1</td>
<td>2</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>37 BS1</td>
<td>3</td>
<td>14</td>
<td>7.0</td>
<td>14.21</td>
<td>39BE1</td>
<td>3</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>38 N1</td>
<td>22</td>
<td>11.0</td>
<td>0.23</td>
<td>39BO3</td>
<td>2</td>
<td>23</td>
<td>11'5</td>
<td>2'</td>
</tr>
<tr>
<td>38 N2</td>
<td>20</td>
<td>10.0</td>
<td>0.21</td>
<td>40AS3</td>
<td>21</td>
<td>10'5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>38 EO2</td>
<td>12</td>
<td>6.0</td>
<td>0.12</td>
<td>40E1</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>38 BE</td>
<td>10</td>
<td>5.0</td>
<td>0.10</td>
<td>41A4</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>39 AN1</td>
<td>4</td>
<td>18</td>
<td>9.0</td>
<td>18.27</td>
<td>41AN1</td>
<td>3</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>39 AS1</td>
<td>5</td>
<td>18</td>
<td>9.0</td>
<td>18.25</td>
<td>41AS5</td>
<td>3</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>N° de anillas</td>
<td>Carga rotura Ptg</td>
<td>R</td>
<td>Cota laminab. Ce</td>
<td>Nº de probeta</td>
<td>Nº de anillas</td>
<td>Carga rotura Pr</td>
<td>R</td>
<td>Cota laminab. Ce</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>7,5</td>
<td>15,22</td>
<td>41AE4</td>
<td>3</td>
<td>24</td>
<td>12</td>
<td>24,36</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>10,5</td>
<td>21,31</td>
<td>41AO1</td>
<td>2</td>
<td>26</td>
<td>13</td>
<td>26,39</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>7,0</td>
<td>14,21</td>
<td>41AO3</td>
<td>3</td>
<td>28</td>
<td>14</td>
<td>28,41</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>8,5</td>
<td>17,25</td>
<td>41AO5</td>
<td>5</td>
<td>28</td>
<td>14</td>
<td>28,41</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td>41BN1</td>
<td>4</td>
<td>22</td>
<td>11</td>
<td>22,33</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>9,0</td>
<td>18,27</td>
<td>41BS1</td>
<td>2</td>
<td>16</td>
<td>8</td>
<td>16,24</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>9,0</td>
<td>18,27</td>
<td>41BE3</td>
<td>3</td>
<td>22</td>
<td>11</td>
<td>22,33</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>9,0</td>
<td>18,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8,0</td>
<td>16,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>10,0</td>
<td>20,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>6,5</td>
<td>13,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>11,0</td>
<td>22,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>8,5</td>
<td>17,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>5,0</td>
<td>10,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>6,0</td>
<td>12,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### CUADRO Nº 35: TRACCIÓN PERPENDICULAR A LAS FIBRAS T

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>Carga de rotura P</th>
<th>T</th>
<th>Cota de adherencia Ca.</th>
<th>Nº de probeta</th>
<th>Carga de rotura P</th>
<th>T</th>
<th>Cota adherencia C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AN1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>50</td>
<td>12,5</td>
<td>0,25</td>
<td>1 AN1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>56</td>
<td>14</td>
<td>0,2</td>
</tr>
<tr>
<td>1 AN1&lt;sub&gt;2&lt;/sub&gt;</td>
<td>50</td>
<td>12,5</td>
<td>0,25</td>
<td>1 AN3&lt;sub&gt;1&lt;/sub&gt;</td>
<td>83</td>
<td>20,75</td>
<td>0,4</td>
</tr>
<tr>
<td>1 AN3&lt;sub&gt;2&lt;/sub&gt;</td>
<td>79</td>
<td>19,75</td>
<td>0,40</td>
<td>1 AS2&lt;sub&gt;1&lt;/sub&gt;</td>
<td>70</td>
<td>17,5</td>
<td>0,3</td>
</tr>
<tr>
<td>1 AO2&lt;sub&gt;1&lt;/sub&gt;</td>
<td>73</td>
<td>18,25</td>
<td>0,37</td>
<td>1 AO1</td>
<td>80</td>
<td>20</td>
<td>0,6</td>
</tr>
<tr>
<td>1 BS1</td>
<td>32</td>
<td>8</td>
<td>0,16</td>
<td>1 BN1</td>
<td>56</td>
<td>14</td>
<td>0,2</td>
</tr>
<tr>
<td>1 BE3</td>
<td>56</td>
<td>14</td>
<td>0,28</td>
<td>1 BN2</td>
<td>74</td>
<td>18,5</td>
<td>0,2</td>
</tr>
<tr>
<td>2 AN3&lt;sub&gt;1&lt;/sub&gt;</td>
<td>90</td>
<td>22,5</td>
<td>0,46</td>
<td>1 BE1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>58</td>
<td>14,5</td>
<td>0,2</td>
</tr>
<tr>
<td>2 AN5</td>
<td>60</td>
<td>15</td>
<td>0,30</td>
<td>1 BE1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>64</td>
<td>16</td>
<td>0,3</td>
</tr>
<tr>
<td>2 AN7</td>
<td>86</td>
<td>21,5</td>
<td>0,44</td>
<td>1 BE2&lt;sub&gt;1&lt;/sub&gt;</td>
<td>60</td>
<td>15</td>
<td>0,3</td>
</tr>
<tr>
<td>2 AS1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>63</td>
<td>15,75</td>
<td>0,32</td>
<td>2 AN2&lt;sub&gt;1&lt;/sub&gt;</td>
<td>88</td>
<td>22</td>
<td>0,4</td>
</tr>
<tr>
<td>2 AO1</td>
<td>61</td>
<td>15,25</td>
<td>0,31</td>
<td>2 AN4&lt;sub&gt;1&lt;/sub&gt;</td>
<td>71</td>
<td>17,75</td>
<td>0,5</td>
</tr>
<tr>
<td>2 AO3&lt;sub&gt;1&lt;/sub&gt;</td>
<td>58</td>
<td>14,5</td>
<td>0,29</td>
<td>2 AN6</td>
<td>71</td>
<td>17,75</td>
<td>0,5</td>
</tr>
<tr>
<td>2 BO1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>44</td>
<td>11</td>
<td>0,22</td>
<td>2 AN8&lt;sub&gt;1&lt;/sub&gt;</td>
<td>62</td>
<td>15,5</td>
<td>0,5</td>
</tr>
<tr>
<td>3 AN1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>53</td>
<td>13,25</td>
<td>0,27</td>
<td>2 AE1</td>
<td>60</td>
<td>15</td>
<td>0,3</td>
</tr>
<tr>
<td>3 AN3&lt;sub&gt;1&lt;/sub&gt;</td>
<td>42 x</td>
<td>10,5</td>
<td>0,21</td>
<td>2 AE3&lt;sub&gt;1&lt;/sub&gt;</td>
<td>78</td>
<td>19,5</td>
<td>0,6</td>
</tr>
<tr>
<td>3 AE1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>92</td>
<td>23</td>
<td>0,47</td>
<td>2 AO2&lt;sub&gt;1&lt;/sub&gt;</td>
<td>69</td>
<td>17,25</td>
<td>0,3</td>
</tr>
<tr>
<td>3 AE3</td>
<td>54 x</td>
<td>13,5</td>
<td>0,27</td>
<td>2 BN1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>43</td>
<td>19,75</td>
<td>0,2</td>
</tr>
<tr>
<td>4 AN1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>73</td>
<td>18,25</td>
<td>0,37</td>
<td>2 BS1&lt;sub&gt;1&lt;/sub&gt;</td>
<td>43</td>
<td>10,75</td>
<td>0,2</td>
</tr>
<tr>
<td>4 AN3&lt;sub&gt;1&lt;/sub&gt;</td>
<td>69</td>
<td>17,25</td>
<td>0,35</td>
<td>2 BE1</td>
<td>42</td>
<td>10,5</td>
<td>0,2</td>
</tr>
<tr>
<td>No del</td>
<td>RADIAL</td>
<td></td>
<td>T</td>
<td>Cota de</td>
<td>Nº de</td>
<td>TANGENCIAL</td>
<td>Carga de</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Carga de rotura</td>
<td>P</td>
<td></td>
<td>adherencia</td>
<td>probeta</td>
<td>rotura</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>91</td>
<td>22,75</td>
<td>0,46</td>
<td>2 BO2</td>
<td>52</td>
<td>13</td>
<td>0,26</td>
</tr>
<tr>
<td>33</td>
<td>109</td>
<td>27,25</td>
<td>0,55</td>
<td>3 AN2</td>
<td>82</td>
<td>20,5</td>
<td>0,42</td>
</tr>
<tr>
<td>32</td>
<td>83</td>
<td>20,75</td>
<td>0,42</td>
<td>3 AS1</td>
<td>48</td>
<td>12</td>
<td>0,24</td>
</tr>
<tr>
<td>11</td>
<td>76</td>
<td>19</td>
<td>0,39</td>
<td>3 AE2</td>
<td>62</td>
<td>15,5</td>
<td>0,31</td>
</tr>
<tr>
<td>31</td>
<td>58</td>
<td>14,5</td>
<td>0,29</td>
<td>3 AO1</td>
<td>62</td>
<td>15,5</td>
<td>0,31</td>
</tr>
<tr>
<td>31</td>
<td>72</td>
<td>18</td>
<td>0,37</td>
<td>4 AN2</td>
<td>70 x</td>
<td>17,5</td>
<td>0,36</td>
</tr>
<tr>
<td>11</td>
<td>81</td>
<td>20,25</td>
<td>0,41</td>
<td>4 AS1</td>
<td>88</td>
<td>22</td>
<td>0,45</td>
</tr>
<tr>
<td>33</td>
<td>81</td>
<td>20,25</td>
<td>0,41</td>
<td>4 AO2</td>
<td>74</td>
<td>18,5</td>
<td>0,38</td>
</tr>
<tr>
<td>35</td>
<td>94</td>
<td>23,5</td>
<td>0,48</td>
<td>6 BN1</td>
<td>52 x</td>
<td>13</td>
<td>0,26</td>
</tr>
<tr>
<td>11</td>
<td>108</td>
<td>27</td>
<td>0,55</td>
<td>6 BE2</td>
<td>47</td>
<td>11,75</td>
<td>0,24</td>
</tr>
<tr>
<td>31</td>
<td>72</td>
<td>18</td>
<td>0,37</td>
<td>6 BO4</td>
<td>61</td>
<td>15,25</td>
<td>0,31</td>
</tr>
<tr>
<td>11</td>
<td>60</td>
<td>15</td>
<td>0,30</td>
<td>8 AN2</td>
<td>73</td>
<td>18,25</td>
<td>0,37</td>
</tr>
<tr>
<td>31</td>
<td>80</td>
<td>20</td>
<td>0,41</td>
<td>8AN4</td>
<td>54</td>
<td>13,5</td>
<td>0,27</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>13</td>
<td>0,26</td>
<td>8 AN6</td>
<td>90</td>
<td>22,5</td>
<td>0,46</td>
</tr>
<tr>
<td>32</td>
<td>85</td>
<td>21,25</td>
<td>0,43</td>
<td>8 AS2</td>
<td>75</td>
<td>18,75</td>
<td>0,38</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>12</td>
<td>0,24</td>
<td>8 AS4</td>
<td>82</td>
<td>20,5</td>
<td>0,42</td>
</tr>
<tr>
<td>11</td>
<td>42 x</td>
<td>10,5</td>
<td>0,21</td>
<td>8 AE2</td>
<td>74</td>
<td>18,5</td>
<td>0,38</td>
</tr>
<tr>
<td>32</td>
<td>53</td>
<td>13,25</td>
<td>0,27</td>
<td>8 AE3</td>
<td>58</td>
<td>14,5</td>
<td>0,29</td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>19</td>
<td>0,39</td>
<td>8 AO1</td>
<td>65</td>
<td>16,25</td>
<td>0,33</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Carga de rotura P</td>
<td>T</td>
<td>Cota de adherencia Ca,</td>
<td>Nº de probeta</td>
<td>Carga de rotura</td>
<td>T</td>
<td>Cot adherr C</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>-----</td>
<td>------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----</td>
<td>--------------</td>
</tr>
<tr>
<td>11 AE1</td>
<td>72</td>
<td>18</td>
<td>0,37</td>
<td>8 AO3</td>
<td>64</td>
<td>16</td>
<td>0,</td>
</tr>
<tr>
<td>11 AO1</td>
<td>87</td>
<td>2,75</td>
<td>0,44</td>
<td>8 BN2</td>
<td>58</td>
<td>14,5</td>
<td>0,</td>
</tr>
<tr>
<td>11 AO3</td>
<td>82</td>
<td>20,5</td>
<td>0,42</td>
<td>8 BE1</td>
<td>54 x</td>
<td>13,5</td>
<td>0,</td>
</tr>
<tr>
<td>13 AS1</td>
<td>58</td>
<td>14,5</td>
<td>0,29</td>
<td>8 BE2</td>
<td>58</td>
<td>14,5</td>
<td>0,</td>
</tr>
<tr>
<td>13 AS2</td>
<td>84</td>
<td>21</td>
<td>0,43</td>
<td>8 BO2</td>
<td>65</td>
<td>16,25</td>
<td>0,</td>
</tr>
<tr>
<td>14 AN1</td>
<td>73</td>
<td>18,25</td>
<td>0,37</td>
<td>11 AN1</td>
<td>55</td>
<td>13,75</td>
<td>0,</td>
</tr>
<tr>
<td>14 AS1</td>
<td>36</td>
<td>9</td>
<td>0,18</td>
<td>11 AS3</td>
<td>68</td>
<td>17</td>
<td>0,</td>
</tr>
<tr>
<td>14 AS3</td>
<td>77</td>
<td>19,25</td>
<td>0,39</td>
<td>11 AE2</td>
<td>97</td>
<td>24,25</td>
<td>0,</td>
</tr>
<tr>
<td>14 AE2</td>
<td>67</td>
<td>16,75</td>
<td>0,34</td>
<td>13 AN1</td>
<td>84</td>
<td>21</td>
<td>0,</td>
</tr>
<tr>
<td>14 AO1</td>
<td>46</td>
<td>11,5</td>
<td>0,23</td>
<td>13 AN2</td>
<td>108</td>
<td>27</td>
<td>0,</td>
</tr>
<tr>
<td>14 AO2</td>
<td>85</td>
<td>21,25</td>
<td>0,43</td>
<td>13 AO1</td>
<td>131</td>
<td>32,75</td>
<td>0,</td>
</tr>
<tr>
<td>16 AN1</td>
<td>76</td>
<td>19</td>
<td>0,39</td>
<td>13 AO2</td>
<td>107</td>
<td>26,75</td>
<td>0,</td>
</tr>
<tr>
<td>16 AS1</td>
<td>63</td>
<td>15,75</td>
<td>0,32</td>
<td>14 AN2</td>
<td>94</td>
<td>23,5</td>
<td>0,</td>
</tr>
<tr>
<td>16 AO1</td>
<td>69</td>
<td>17,25</td>
<td>0,35</td>
<td>14 AS2</td>
<td>62</td>
<td>15,5</td>
<td>0,</td>
</tr>
<tr>
<td>20 BE1</td>
<td>73</td>
<td>18,25</td>
<td>0,37</td>
<td>14 AE1</td>
<td>76</td>
<td>19</td>
<td>0,</td>
</tr>
<tr>
<td>22 AN1</td>
<td>74</td>
<td>18,5</td>
<td>0,38</td>
<td>14 AO1</td>
<td>76</td>
<td>19</td>
<td>0,</td>
</tr>
<tr>
<td>22 AN5</td>
<td>87</td>
<td>21,75</td>
<td>0,44</td>
<td>14 AO3</td>
<td>73</td>
<td>18,25</td>
<td>0,</td>
</tr>
<tr>
<td>22 AN3</td>
<td>80</td>
<td>20</td>
<td>0,41</td>
<td>16 AN2</td>
<td>89</td>
<td>22,25</td>
<td>0,</td>
</tr>
<tr>
<td>22 AE1</td>
<td>85</td>
<td>21,25</td>
<td>0,43</td>
<td>16 AS2</td>
<td>64</td>
<td>16</td>
<td>0,</td>
</tr>
</tbody>
</table>
CUADRO Nº 35: TRACCION PERPENDICULAR A LAS FIBRAS T

<table>
<thead>
<tr>
<th>No. de probeta</th>
<th>Carga de rotura P</th>
<th>T</th>
<th>Cota de adherencia Ca.</th>
<th>Nº de probeta</th>
<th>Carga de rotura</th>
<th>T</th>
<th>Cota de adherencia Ca.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>12.5</td>
<td>0.25</td>
<td>16 AS2</td>
<td>64</td>
<td>16</td>
<td>0.32</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>15</td>
<td>0.30</td>
<td>16 AE2</td>
<td>80</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>20</td>
<td>0.41</td>
<td>16 AE3</td>
<td>63</td>
<td>15.75</td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>17.5</td>
<td>0.36</td>
<td>22 AN2</td>
<td>99</td>
<td>24.75</td>
<td>0.50</td>
</tr>
<tr>
<td>5</td>
<td>138</td>
<td>34.5</td>
<td>0.70</td>
<td>22 AN4</td>
<td>64</td>
<td>16</td>
<td>0.32</td>
</tr>
<tr>
<td>6</td>
<td>81</td>
<td>20.25</td>
<td>0.41</td>
<td>22 AN6</td>
<td>50</td>
<td>12.5</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>87</td>
<td>21.75</td>
<td>0.44</td>
<td>22 AF4</td>
<td>79</td>
<td>19.75</td>
<td>0.40</td>
</tr>
<tr>
<td>8</td>
<td>85</td>
<td>21.25</td>
<td>0.43</td>
<td>22 AE6</td>
<td>65</td>
<td>16.25</td>
<td>0.33</td>
</tr>
<tr>
<td>9</td>
<td>74</td>
<td>18.5</td>
<td>0.38</td>
<td>22 AO2</td>
<td>62</td>
<td>15.5</td>
<td>0.31</td>
</tr>
<tr>
<td>10</td>
<td>127</td>
<td>31.75</td>
<td>0.64</td>
<td>28 AN2</td>
<td>58</td>
<td>14.5</td>
<td>0.29</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
<td>12</td>
<td>0.24</td>
<td>28 AS3</td>
<td>80</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>12</td>
<td>28</td>
<td>7</td>
<td>0.14</td>
<td>28 AS5</td>
<td>95</td>
<td>23.75</td>
<td>0.48</td>
</tr>
<tr>
<td>13</td>
<td>76</td>
<td>19</td>
<td>0.39</td>
<td>28 AO1</td>
<td>90</td>
<td>22.5</td>
<td>0.46</td>
</tr>
<tr>
<td>14</td>
<td>91</td>
<td>22.75</td>
<td>0.46</td>
<td>28 AO3</td>
<td>106</td>
<td>26.5</td>
<td>0.54</td>
</tr>
<tr>
<td>15</td>
<td>109</td>
<td>27.25</td>
<td>0.55</td>
<td>28 BN3</td>
<td>62</td>
<td>15.5</td>
<td>0.31</td>
</tr>
<tr>
<td>16</td>
<td>62</td>
<td>15.5</td>
<td>0.31</td>
<td>28 BS2</td>
<td>48</td>
<td>12</td>
<td>0.24</td>
</tr>
<tr>
<td>17</td>
<td>59</td>
<td>14.75</td>
<td>0.30</td>
<td>28 BE2</td>
<td>67</td>
<td>16.75</td>
<td>0.34</td>
</tr>
<tr>
<td>18</td>
<td>102</td>
<td>25.5</td>
<td>0.52</td>
<td>28 BO1</td>
<td>46</td>
<td>11.5</td>
<td>0.23</td>
</tr>
<tr>
<td>19</td>
<td>92</td>
<td>23</td>
<td>0.47</td>
<td>28 BO3</td>
<td>56</td>
<td>14</td>
<td>0.28</td>
</tr>
</tbody>
</table>
CUADRO Nº 35: TRACCIÓN PERPENDICULAR A LAS FIBRAS T

<table>
<thead>
<tr>
<th>Nº de probeta</th>
<th>Carga de rotura P</th>
<th>T</th>
<th>Cota de adherencia Ca.</th>
<th>Nº de probeta</th>
<th>Carga de rotura P</th>
<th>T</th>
<th>Cot adher C</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 BN4</td>
<td>61</td>
<td>15,25</td>
<td>0,31</td>
<td>32 AN1</td>
<td>96</td>
<td>24</td>
<td>0,2</td>
</tr>
<tr>
<td>32 BN7</td>
<td>74</td>
<td>18,5</td>
<td>0,38</td>
<td>32 AN3</td>
<td>80</td>
<td>20</td>
<td>0,4</td>
</tr>
<tr>
<td>32 BS6</td>
<td>77</td>
<td>19,25</td>
<td>0,39</td>
<td>32 AN7</td>
<td>96</td>
<td>24</td>
<td>0,4</td>
</tr>
<tr>
<td>32 BE4</td>
<td>83</td>
<td>20,75</td>
<td>0,42</td>
<td>32 AS1</td>
<td>94</td>
<td>23,5</td>
<td>0,4</td>
</tr>
<tr>
<td>32 BO1</td>
<td>61</td>
<td>15,25</td>
<td>0,31</td>
<td>32 AS2</td>
<td>68</td>
<td>17</td>
<td>0,3</td>
</tr>
<tr>
<td>32 BO3</td>
<td>79</td>
<td>19,75</td>
<td>0,40</td>
<td>32 AS4</td>
<td>94</td>
<td>23,5</td>
<td>0,4</td>
</tr>
<tr>
<td>33 AS6</td>
<td>106</td>
<td>26,5</td>
<td>0,54</td>
<td>32 AE1</td>
<td>60</td>
<td>15</td>
<td>0,3</td>
</tr>
<tr>
<td>33 AE3</td>
<td>120</td>
<td>30</td>
<td>0,61</td>
<td>32 AE3</td>
<td>91</td>
<td>22,75</td>
<td>0,4</td>
</tr>
<tr>
<td>33 AO1</td>
<td>78</td>
<td>19,5</td>
<td>0,40</td>
<td>32 AO2</td>
<td>73</td>
<td>18,25</td>
<td>0,3</td>
</tr>
<tr>
<td>33 BN1</td>
<td>70</td>
<td>17,5</td>
<td>0,36</td>
<td>32 BN2</td>
<td>79</td>
<td>19,75</td>
<td>0,4</td>
</tr>
<tr>
<td>33 BO2</td>
<td>80</td>
<td>20</td>
<td>0,41</td>
<td>32 BN6</td>
<td>56</td>
<td>14</td>
<td>0,2</td>
</tr>
<tr>
<td>37 AS1</td>
<td>98</td>
<td>24,5</td>
<td>0,50</td>
<td>32 BS5</td>
<td>21</td>
<td>5,25</td>
<td>0,1</td>
</tr>
<tr>
<td>37 AS5</td>
<td>95</td>
<td>23,75</td>
<td>0,48</td>
<td>32 BE3</td>
<td>64</td>
<td>16</td>
<td>0,3</td>
</tr>
<tr>
<td>37 AO2</td>
<td>78</td>
<td>19,5</td>
<td>0,40</td>
<td>32 BE5</td>
<td>49</td>
<td>12,25</td>
<td>0,2</td>
</tr>
<tr>
<td>37 BN2</td>
<td>82</td>
<td>20,5</td>
<td>0,42</td>
<td>32 BO2</td>
<td>44</td>
<td>11</td>
<td>0,4</td>
</tr>
<tr>
<td>37 BO1</td>
<td>105</td>
<td>26,25</td>
<td>0,53</td>
<td>33 AS3</td>
<td>107</td>
<td>26,75</td>
<td>0,5</td>
</tr>
<tr>
<td>39 AN1</td>
<td>110</td>
<td>27,5</td>
<td>0,56</td>
<td>33 AS7</td>
<td>102</td>
<td>25,5</td>
<td>0,5</td>
</tr>
<tr>
<td>39 AS1</td>
<td>88</td>
<td>22</td>
<td>0,45</td>
<td>33 AE2</td>
<td>105</td>
<td>26,25</td>
<td>0,5</td>
</tr>
<tr>
<td>39 AE3</td>
<td>71</td>
<td>17,75</td>
<td>0,36</td>
<td>33 AE4</td>
<td>107</td>
<td>26,75</td>
<td>0,5</td>
</tr>
</tbody>
</table>
CUADRO N° 35: TRACCION PERPENDICULAR A LAS FIBRAS T

<table>
<thead>
<tr>
<th>de roto</th>
<th>Carga de rotura P.</th>
<th>T</th>
<th>Cota de adherencia Ca.</th>
<th>Nº de probeta</th>
<th>Carga de rotura</th>
<th>T</th>
<th>Cota de adherencia Ca.</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>42</td>
<td>10,5</td>
<td>0,21</td>
<td>33 AQ2</td>
<td>92</td>
<td>23</td>
<td>0,47</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td>16,75</td>
<td>0,34</td>
<td>33 BN2</td>
<td>61</td>
<td>15,25</td>
<td>0,31</td>
</tr>
<tr>
<td>82</td>
<td>82</td>
<td>20,5</td>
<td>0,42</td>
<td>33 BS-</td>
<td>64</td>
<td>16</td>
<td>0,32</td>
</tr>
<tr>
<td>71</td>
<td>71</td>
<td>17,75</td>
<td>0,36</td>
<td>33 BE-</td>
<td>52</td>
<td>13</td>
<td>0,26</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td>13,5</td>
<td>0,28</td>
<td>37 AN1</td>
<td>122</td>
<td>30,5</td>
<td>0,62</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>13</td>
<td>0,27</td>
<td>37 AN3</td>
<td>108</td>
<td>27</td>
<td>0,55</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>12,75</td>
<td>0,26</td>
<td>37 AS4</td>
<td>78</td>
<td>19,5</td>
<td>0,40</td>
</tr>
<tr>
<td>101</td>
<td>101</td>
<td>25,25</td>
<td>0,51</td>
<td>37 AE2</td>
<td>122</td>
<td>30,5</td>
<td>0,62</td>
</tr>
<tr>
<td>83</td>
<td>83</td>
<td>20,75</td>
<td>0,42</td>
<td>37 BN1</td>
<td>58</td>
<td>14,5</td>
<td>0,29</td>
</tr>
<tr>
<td>102</td>
<td>102</td>
<td>25,5</td>
<td>0,52</td>
<td>37 BS-</td>
<td>50</td>
<td>12,5</td>
<td>0,25</td>
</tr>
<tr>
<td>108</td>
<td>108</td>
<td>27</td>
<td>0,55</td>
<td>37 BO2</td>
<td>42</td>
<td>10,5</td>
<td>0,21</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>25</td>
<td>0,51</td>
<td>38 BE1</td>
<td>52</td>
<td>13</td>
<td>0,27</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>22,5</td>
<td>0,46</td>
<td>38 BO2</td>
<td>32</td>
<td>8</td>
<td>0,17</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>17</td>
<td>0,35</td>
<td>38 N1</td>
<td>67</td>
<td>16,75</td>
<td>0,35</td>
</tr>
<tr>
<td>103</td>
<td>103</td>
<td>25,75</td>
<td>0,52</td>
<td>38 N2</td>
<td>64</td>
<td>16</td>
<td>0,33</td>
</tr>
<tr>
<td>124</td>
<td>124</td>
<td>31</td>
<td>0,63</td>
<td>38 E2</td>
<td>47</td>
<td>11,75</td>
<td>0,24</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
<td>24,5</td>
<td>0,50</td>
<td>38 O4</td>
<td>80</td>
<td>20</td>
<td>0,42</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>14</td>
<td>0,28</td>
<td>39 AN3</td>
<td>76</td>
<td>19</td>
<td>0,39</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td>14,5</td>
<td>0,29</td>
<td>39 AE2</td>
<td>78</td>
<td>19,5</td>
<td>0,40</td>
</tr>
<tr>
<td>Nº de probeta</td>
<td>Carga de rotura P</td>
<td>T</td>
<td>Cota de adherencia Ca.</td>
<td>Nº de probeta</td>
<td>Carga de rotura P</td>
<td>T</td>
<td>Cota adherencia Ca.</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>----</td>
<td>------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----</td>
<td>---------------------</td>
</tr>
<tr>
<td>41 BE2</td>
<td>72</td>
<td>18</td>
<td>0,37</td>
<td>39 AO4</td>
<td>109</td>
<td>27,25</td>
<td>0,5</td>
</tr>
<tr>
<td>41 BO1</td>
<td>68</td>
<td>17</td>
<td>0,35</td>
<td>39 AO6</td>
<td>103</td>
<td>25,75</td>
<td>0,5</td>
</tr>
<tr>
<td>17 AS12</td>
<td>45</td>
<td>11,25</td>
<td>0,13</td>
<td>39 BO1</td>
<td>64</td>
<td>16</td>
<td>0,3</td>
</tr>
<tr>
<td>17 AS2</td>
<td>84</td>
<td>21</td>
<td>0,44</td>
<td>40 E4</td>
<td>68</td>
<td>17</td>
<td>0,3</td>
</tr>
<tr>
<td>17 AS9</td>
<td>62</td>
<td>15,5</td>
<td>0,32</td>
<td>41 An2</td>
<td>64</td>
<td>16</td>
<td>0,3</td>
</tr>
<tr>
<td>17 AE3</td>
<td>96</td>
<td>24</td>
<td>0,50</td>
<td>41 AN4</td>
<td>78</td>
<td>19,5</td>
<td>0,4</td>
</tr>
<tr>
<td>17 AE8</td>
<td>72</td>
<td>18</td>
<td>0,37</td>
<td>41 AS1</td>
<td>94</td>
<td>23,5</td>
<td>0,4</td>
</tr>
<tr>
<td>21 AN2</td>
<td>92</td>
<td>23</td>
<td>0,48</td>
<td>41 AS3</td>
<td>78</td>
<td>19,5</td>
<td>0,4</td>
</tr>
<tr>
<td>21 AO1</td>
<td>52</td>
<td>13</td>
<td>0,27</td>
<td>41 AE3</td>
<td>81</td>
<td>20,25</td>
<td>0,4</td>
</tr>
<tr>
<td>21 AO3</td>
<td>60</td>
<td>15</td>
<td>0,31</td>
<td>41 AE5</td>
<td>90</td>
<td>22,5</td>
<td>0,4</td>
</tr>
<tr>
<td>21 AO4</td>
<td>82</td>
<td>20,5</td>
<td>0,43</td>
<td>41 AO2</td>
<td>104</td>
<td>26</td>
<td>0,5</td>
</tr>
<tr>
<td>22 AE5</td>
<td>72</td>
<td>18</td>
<td>0,37</td>
<td>41 AO4</td>
<td>100</td>
<td>25</td>
<td>0,5</td>
</tr>
<tr>
<td>23 BE12</td>
<td>90</td>
<td>22,5</td>
<td>0,47</td>
<td>41 AO8</td>
<td>54</td>
<td>13,5</td>
<td>0,2</td>
</tr>
<tr>
<td>27 BN1</td>
<td>51</td>
<td>12,75</td>
<td>0,26</td>
<td>41 BN3</td>
<td>57</td>
<td>14,25</td>
<td>0,2</td>
</tr>
<tr>
<td>27 BO2</td>
<td>59</td>
<td>14,75</td>
<td>0,31</td>
<td>41 BS2</td>
<td>60</td>
<td>15</td>
<td>0,3</td>
</tr>
<tr>
<td>25 AN1</td>
<td>90</td>
<td>22,5</td>
<td>0,47</td>
<td>41 BE1</td>
<td>66</td>
<td>16,5</td>
<td>0,3</td>
</tr>
<tr>
<td>30 AN3</td>
<td>53</td>
<td>13,25</td>
<td>0,28</td>
<td>41 BE3</td>
<td>66</td>
<td>16,5</td>
<td>0,3</td>
</tr>
<tr>
<td>38 S2</td>
<td>76</td>
<td>19</td>
<td>0,39</td>
<td>41 BO6</td>
<td>84</td>
<td>21</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 As1</td>
<td>56</td>
<td>14</td>
<td>0,2</td>
</tr>
</tbody>
</table>
### CUADRO Nº 35: TRACCIÓN PERPENDICULAR A LAS FIBRAS T

<table>
<thead>
<tr>
<th>Carga de rotura P</th>
<th>T</th>
<th>Cota de adherencia Ca.</th>
<th>Nº de probeta</th>
<th>Carga de rotura P</th>
<th>T</th>
<th>Cota de adherencia Ca.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 AO1</td>
<td>80</td>
<td>20</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 AN5</td>
<td>58</td>
<td>14,5</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 AS1</td>
<td>65</td>
<td>16,25</td>
<td>0,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 AS2</td>
<td>78</td>
<td>19,5</td>
<td>0,40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 AE2</td>
<td>56</td>
<td>14,</td>
<td>0,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 AN1</td>
<td>85</td>
<td>21,25</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 AN4</td>
<td>58</td>
<td>14,5</td>
<td>0,30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 AE1</td>
<td>78</td>
<td>19,5</td>
<td>0,40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 AE4</td>
<td>78</td>
<td>19,5</td>
<td>0,40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 AO2</td>
<td>72</td>
<td>18</td>
<td>0,37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 AN2</td>
<td>70</td>
<td>17,5</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 BS2</td>
<td>58</td>
<td>14,5</td>
<td>0,30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 BS1</td>
<td>82</td>
<td>20,5</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 BO1</td>
<td>65</td>
<td>16,25</td>
<td>0,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 AS1</td>
<td>80</td>
<td>20</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 BO2</td>
<td>56</td>
<td>14</td>
<td>0,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 AN3</td>
<td>64</td>
<td>16</td>
<td>0,73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 AS2</td>
<td>46</td>
<td>11,5</td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 AO2</td>
<td>74</td>
<td>18,5</td>
<td>0,38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 BO3</td>
<td>61</td>
<td>15,25</td>
<td>0,32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUADRO N° 36 : ESFUERZO CORTANTE Z

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2A6</td>
<td>4'0x3'9</td>
<td>1550</td>
<td>98'6'</td>
<td>2A1</td>
<td>4'1x3'9</td>
<td>1460</td>
<td>91'3</td>
</tr>
<tr>
<td>2B6</td>
<td>4'1x4'0</td>
<td>1530</td>
<td>94'2</td>
<td>2B1</td>
<td>4'1x3'9</td>
<td>1285</td>
<td>81'2</td>
</tr>
<tr>
<td>3A6</td>
<td>4'0x3'9</td>
<td>2602</td>
<td>166'0</td>
<td>3A1</td>
<td>4'1x4'0</td>
<td>2420</td>
<td>147'2</td>
</tr>
<tr>
<td>9B1</td>
<td>4'0x4'0</td>
<td>2100</td>
<td>130'0</td>
<td>6B6</td>
<td>4'0x3'9</td>
<td>1540</td>
<td>100'0</td>
</tr>
<tr>
<td>11A4</td>
<td>4'1x4'0</td>
<td>1870</td>
<td>114'4</td>
<td>8A3</td>
<td>4'0x3'9</td>
<td>1900</td>
<td>118'7</td>
</tr>
<tr>
<td>13A6</td>
<td>4'1x3'9</td>
<td>2300</td>
<td>142'6</td>
<td>8B6</td>
<td>4'0x4'0</td>
<td>2130</td>
<td>133'1</td>
</tr>
<tr>
<td>16A6</td>
<td>4'0x3'9</td>
<td>2200</td>
<td>141'0</td>
<td>11A6</td>
<td>4'0x3'9</td>
<td>1982</td>
<td>125'4</td>
</tr>
<tr>
<td>16B1</td>
<td>4'0x3'9</td>
<td>1700</td>
<td>107'9</td>
<td>13A1</td>
<td>4'0x3'8</td>
<td>1710</td>
<td>112'2</td>
</tr>
<tr>
<td>28A6</td>
<td>4'0x3'9</td>
<td>2400</td>
<td>146'0</td>
<td>16A1</td>
<td>4'1x3'9</td>
<td>1470</td>
<td>92'9</td>
</tr>
<tr>
<td>28B1</td>
<td>4'0x3'9</td>
<td>1710</td>
<td>109'0</td>
<td>22A6</td>
<td>4'1x3'9</td>
<td>1490</td>
<td>92'1</td>
</tr>
<tr>
<td>32A3</td>
<td>5'0x3'9</td>
<td>2710</td>
<td>139'8</td>
<td>26A1</td>
<td>4'1x3'9</td>
<td>2010</td>
<td>122'9</td>
</tr>
<tr>
<td>33B1</td>
<td>4'0x3'9</td>
<td>1720</td>
<td>110'2</td>
<td>28B6</td>
<td>4'0x3'9</td>
<td>1650</td>
<td>105'5</td>
</tr>
<tr>
<td>37A6</td>
<td>4'2x3'9</td>
<td>2000</td>
<td>122'7</td>
<td>32A6</td>
<td>4'0x4'0</td>
<td>1830</td>
<td>115'2</td>
</tr>
<tr>
<td>39B6</td>
<td>4'0x4'0</td>
<td>1300</td>
<td>81'2</td>
<td>33B6</td>
<td>3'9x3'8</td>
<td>1700</td>
<td>112'6</td>
</tr>
<tr>
<td>4A</td>
<td>Por reducción de la tensión</td>
<td>110'5</td>
<td>37A2</td>
<td>4'1x3'9</td>
<td>2110</td>
<td>131'0</td>
<td></td>
</tr>
<tr>
<td>6B</td>
<td>obtenida al 19 y 35 % de</td>
<td>88'4</td>
<td>39B2</td>
<td>4'1x3'9</td>
<td>1450</td>
<td>90'7</td>
<td></td>
</tr>
<tr>
<td>8A</td>
<td>humedada</td>
<td>109'9</td>
<td>41B1</td>
<td>4'1x3'9</td>
<td>1520</td>
<td>94'3</td>
<td></td>
</tr>
<tr>
<td>82A</td>
<td>61'1</td>
<td></td>
<td>4A</td>
<td>Por reducción de la obtenida</td>
<td>85'8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° probeta</td>
<td>DESPLAZAMIENTOS</td>
<td>Carga</td>
<td>C' LE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X250 X400 X500 X600 X700 X800 X900 X1000 X1100 X1200 X1300 X1400 X1500 X1600</td>
<td>lim.elas. H%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 AO</td>
<td>6 10 13 17 21 25 32 41 57</td>
<td>670</td>
<td>49,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 BO1</td>
<td>10 17 20 28 38 50 41 61</td>
<td>500</td>
<td>36,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 AE3</td>
<td>10 16 20 25 29 35 40 48 61</td>
<td>750</td>
<td>54,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 AO2</td>
<td>4 11 17 24 32 43 62</td>
<td>570</td>
<td>41,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 BN2</td>
<td>12 20 28 42</td>
<td>410</td>
<td>29,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 AO1</td>
<td>11 19 25 33 40 47 60 79</td>
<td>780</td>
<td>56,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 AS</td>
<td>5 8 9 10,5 11 14 15 17 20 24 32 59</td>
<td>1,050</td>
<td>76,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 AO5</td>
<td>6 9 12 15 18 21 24 27 30 32 38 42 52</td>
<td>1,180</td>
<td>86,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 BO2</td>
<td>9 14 18 22 25 29 34 40 48</td>
<td>810</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 BN1</td>
<td>10 25 29 35 40 47 54 63 71 83</td>
<td>710</td>
<td>51,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 BE3</td>
<td>6 10 13 15 18 20 24 28 33 38 43 53</td>
<td>860</td>
<td>62,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 AN5</td>
<td>8 15 19 22 25 29 33 36 41 44 57</td>
<td>1,050</td>
<td>76,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 AN</td>
<td>6 10 12 13 15 16,5 18 20 22 24 25 29 36</td>
<td>1,250</td>
<td>89,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 AO3</td>
<td>10 17 21 26 31 37 43 52 58 69</td>
<td>750</td>
<td>54,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 AN</td>
<td>30 40 48 59 73</td>
<td>940</td>
<td>72,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 AO3</td>
<td>8 13 19 27 40 62</td>
<td>390</td>
<td>28,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 AN2</td>
<td>8 14 18 22 27 31 36 42 47 56 71</td>
<td>1,050</td>
<td>75,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 AS</td>
<td>9 15 21 29 40</td>
<td>490</td>
<td>35,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 AE1</td>
<td>8 13 18 23 30 37 46 54</td>
<td>640</td>
<td>49,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Carga</td>
<td>CLE</td>
<td>DESPLAZAMIENTOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lim.elas.</td>
<td></td>
<td>1.250 1.400 1.500 1.600 1.700 1.800 1.900 1.100 1.150 1.200 1.250 1.300 1.350 1.400 1.450 1.500 1.550 1.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>27.34.38</td>
<td>1.050</td>
<td>80,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>13.16</td>
<td>1.100</td>
<td>94,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9,16</td>
<td>1.050</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7.10</td>
<td>1.100</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5.10</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7.10</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7.11</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7.11</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9.13</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5.10</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4.8</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8.13</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5.7</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>6.9</td>
<td>1.200</td>
<td>85,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>32.43.50</td>
<td>1.000</td>
<td>80,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>5,7</td>
<td>1.050</td>
<td>80,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Superficie de compresión 13 cm²
<table>
<thead>
<tr>
<th>Nº probeta</th>
<th>DESPLAZAMIENTOS</th>
<th>Carga</th>
<th>C'LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 AE5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 BN3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X 250</th>
<th>X 400</th>
<th>X 500</th>
<th>X 600</th>
<th>X 700</th>
<th>X 800</th>
<th>X 900</th>
<th>X 1000</th>
<th>X 1100</th>
<th>X 1200</th>
<th>X 1300</th>
<th>X 1400</th>
<th>X 1500</th>
<th>X 1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 AE5</td>
<td>5</td>
<td>7,5</td>
<td>9</td>
<td>11</td>
<td>12,5</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td>23</td>
<td>25</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 BN3</td>
<td>9</td>
<td>14</td>
<td>16</td>
<td>17,5</td>
<td>19</td>
<td>26</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Superficie de compresión 13 cm²
DIAGRAMA DE CARGA-DESLIZAMIENTOS EN COMPRESIÓN PERPENDICULAR A LA FIBRA

CARGA (Kgf)

DESLIZAMIENTOS (mm)

1AD

1B01
DIAGRAMA CARGA-DESPLAZAMIENTOS EN COMPRESIÓN PERPENDICULAR A LA FIBRA

CARGA (Kgf)

1300
1200
1100
1000
900
800
700
600
500
400
300
200

DESPLAZAMIENTOS (mm)

0.1
0.2
0.3
0.4
0.5

2AE3

CARGA (Kgf)

1300
1200
1100
1000
900
800
700
600
500
400
300
200

DESPLAZAMIENTOS (mm)

0.1
0.2
0.3
0.4
0.5

2AD2
Diagrama Carga-Desplazamientos en Compresión Perpendicular a la Fibra

2BN2

3A01

Desplazamientos
DIAGRAMA CARGA-DESLIZAMIENTOS EN COMPRESIÓN PERPENDICULAR A LA FIBRA

CARGA (Kgf)

DESLIZAMIENTOS (mm)

4AS

4A05
DIAGRAMA CARGA-DESPLAZAMIENTOS EN CUMPRSIÓN PERPENDICULAR A LA FIBRA

CARGA
Kgf

DESPLAZAMIENTOS
mm

11AN

CARGA
Kgf

DESPLAZAMIENTOS
mm

11A03
Diagrama Carga-Desplazamientos en compresión perpendicular a la fibra

13AN

16A03

Carga (Kg f)

Desplazamientos (mm)
DIAGRAMA CARGA-DESLAZAMIENTOS EN COMPRESION PERPENDICULAR A LA FIBRA

CARGA
Kgf

1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

DESLAZAMIENTOS
mm

0.1
0.2
0.3
0.4
0.5

16AN2

CARGA
Kgf

1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

DESLAZAMIENTOS
mm

0.1
0.2
0.3
0.4
0.5

16AS
DIAGRAMA CARGA-DESPLAZAMIENTOS EN COMPRESION PERPENDICULAR A LA FIBRA

CARGA (Kgf)

DESPLAZAMIENTOS (mm)

16AE1

17AE3
Diagrama Carga-Desplazamientos en Compresión Perpendicular a la Fibra

16AS

22AS
DIAGRAMA CARGA-DESPLAZAMIENTOS EN COMPRESIÓN PERPENDICULAR A LA FIBRA

CARGA Kgf

DESPLAZAMIENTOS mm

CARGA Kgf

DESPLAZAMIENTOS mm
DIAGRAMA CARGA-DESPLAZAMIENTOS EN COMPRESION PERPENDICULAR A LA FIBRA

CARGA
Kgf

DESPLAZAMIENTOS
mm

CARGA
Kgf

DESPLAZAMIENTOS
mm

28AN1

28AS3
DIAGRAMA CARGA-DESLIZAMIENTOS EN COMPRESION PERPENDICULAR A LA FIBRA

CARGA [Kgf]

DESLIZAMIENTOS [mm]

20AE2

20BN2

Diagramas de carga-desplazamientos en compresión perpendicular a la fibra.
DIAGRAMA CARGA-DESLIZAMIENTOS EN COMPRESION PERPENDICULAR A LA FIBRA

DESLIZAMIENTOS

28BE2

DESLIZAMIENTOS

28BO2
DIAGRAMA CARGA-DESPLAZAMIENTOS EN COMPRESIÓN PERPENDICULAR A LA FIBRA
DIAGRAMA CARGA-DESPLAZAMIENTOS EN COMPRESIÓN PERPENDICULAR A LA FIBRA
DIAGRAMA CARGA-DESPLAZAMIENTOS EN COMPRESIÓN PERPENDICULAR A LA FIBRA

\[ \Delta \text{CARGA (Kgf)} \]

\[ \text{DESPLAZAMIENTOS (mm)} \]

33A01

33BN2
Diagrama Carga-Desplazamientos en Compresión Perpendicular a la Fibra

1. Diagrama de Carga y Desplazamientos para la fibra 37AS2

2. Diagrama de Carga y Desplazamientos para la fibra 41AES
DIAGRAMA CARGA-DESPALZAMIENTOS EN COMPRESION PERPENDICULAR A LA FIBRA

CARGA Kg

DESPALZAMIENTOS

mm

3980

41A05
Diagrama Carga-Desplazamientos en Compresión Perpendicular a la Fibra

Carga (Kgf)

Desplazamientos (mm)

41BN3

Carga (Kgf)

Desplazamientos (mm)

3AAS2
ANEXO NO III

VARIACIÓN DE LAS CARACTERISTICAS MECÁNICAS
CON LA HUMEDAD
INDICE

Cuadro n° 38.- Variación de la flexión con la humedad.

Cuadro n° 39.- Variación del módulo de elasticidad con la humedad.

Cuadro n° 40.- Variación del esfuerzo cortante con la humedad.

Cuadro n° 41.- Variación de la compresión axial con humedad.

Cuadro n° 42.- Variación de la compresión perpendicular a la fibra con la humedad.
<table>
<thead>
<tr>
<th>N° probeta</th>
<th>N° equipos</th>
<th>Tensión - H2O 12%</th>
<th>Tensión - H2O 15%</th>
<th>Tensión - H2O 35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AN8</td>
<td>2</td>
<td>810</td>
<td>559,1</td>
<td></td>
</tr>
<tr>
<td>13AN2</td>
<td>4</td>
<td>778</td>
<td>452,2</td>
<td></td>
</tr>
<tr>
<td>22AE1</td>
<td>3</td>
<td>1030</td>
<td>398,7</td>
<td></td>
</tr>
<tr>
<td>23B02</td>
<td>3</td>
<td>756</td>
<td>473,7</td>
<td></td>
</tr>
<tr>
<td>29AS1</td>
<td>3</td>
<td>884</td>
<td>409,5</td>
<td></td>
</tr>
<tr>
<td>28AO2</td>
<td>3</td>
<td>1341</td>
<td>607,7</td>
<td></td>
</tr>
<tr>
<td>28BE2</td>
<td>3</td>
<td>1035</td>
<td>696,3</td>
<td></td>
</tr>
<tr>
<td>28B01</td>
<td>2</td>
<td>725</td>
<td>763,5</td>
<td></td>
</tr>
<tr>
<td>32AN5</td>
<td>3</td>
<td>1174</td>
<td>385,3</td>
<td></td>
</tr>
<tr>
<td>32BE2</td>
<td>3</td>
<td>913</td>
<td>520,1</td>
<td></td>
</tr>
<tr>
<td>33AN2</td>
<td>3</td>
<td>1008</td>
<td>527,1</td>
<td></td>
</tr>
<tr>
<td>33AE4</td>
<td>4</td>
<td>1251</td>
<td>825,4</td>
<td></td>
</tr>
<tr>
<td>37AS2</td>
<td>7</td>
<td>1360</td>
<td>947,8</td>
<td></td>
</tr>
<tr>
<td>39AO1</td>
<td>4</td>
<td>1111</td>
<td>1071,0</td>
<td></td>
</tr>
<tr>
<td>39AO5</td>
<td>3</td>
<td>1224</td>
<td>574,9</td>
<td></td>
</tr>
<tr>
<td>39B03</td>
<td>3</td>
<td>769</td>
<td>578,2</td>
<td></td>
</tr>
<tr>
<td>41AD7</td>
<td>3</td>
<td>979</td>
<td>338,2</td>
<td></td>
</tr>
</tbody>
</table>

\[ Y = 1115.5 - 17.72x \]

\[ \text{u} = 1.59 \% \]
<table>
<thead>
<tr>
<th>Nº prueba</th>
<th>Nº ani-</th>
<th>Tensión - H2O 12%</th>
<th>Tensión - H2O 15%</th>
<th>Tensión - H2O 35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AN8</td>
<td>2</td>
<td>77.760</td>
<td>8.4</td>
<td>41.040</td>
</tr>
<tr>
<td>13AN2</td>
<td>13</td>
<td>57.600</td>
<td>7.9</td>
<td>46.080</td>
</tr>
<tr>
<td>22AE1</td>
<td>22</td>
<td>103.680</td>
<td>8.6</td>
<td>46.080</td>
</tr>
<tr>
<td>23BO2</td>
<td>23</td>
<td>90.720</td>
<td>8.6</td>
<td>34.560</td>
</tr>
<tr>
<td>28AS1</td>
<td>28</td>
<td>86.400</td>
<td>11.0</td>
<td>51.840</td>
</tr>
<tr>
<td>28AO2</td>
<td>28</td>
<td>112.000</td>
<td>10.0</td>
<td>112.320</td>
</tr>
<tr>
<td>28BE2</td>
<td>28</td>
<td>124.518</td>
<td>8.5</td>
<td>69.120</td>
</tr>
<tr>
<td>28BO1</td>
<td>28</td>
<td>82.500</td>
<td>8.5</td>
<td>66.691</td>
</tr>
<tr>
<td>32AN5</td>
<td>32</td>
<td>132.480</td>
<td>9.5</td>
<td>48.960</td>
</tr>
<tr>
<td>32BE2</td>
<td>32</td>
<td>82.800</td>
<td>8.0</td>
<td>77.760</td>
</tr>
<tr>
<td>33AN2</td>
<td>33</td>
<td>112.800</td>
<td>7.8</td>
<td>65.664</td>
</tr>
<tr>
<td>33AE4</td>
<td>33</td>
<td>135.360</td>
<td>8.2</td>
<td>83.931</td>
</tr>
<tr>
<td>37AS2</td>
<td>37</td>
<td>96.480</td>
<td>8.5</td>
<td>118.080</td>
</tr>
<tr>
<td>39AN1</td>
<td>39</td>
<td>57.157</td>
<td>8.9</td>
<td>35.600</td>
</tr>
<tr>
<td>39AE1</td>
<td>39</td>
<td>130.804</td>
<td>8.6</td>
<td>47.127</td>
</tr>
<tr>
<td>39AO1</td>
<td>39</td>
<td>120.240</td>
<td>8.7</td>
<td>56.777</td>
</tr>
<tr>
<td>39BO2</td>
<td>39</td>
<td>108.000</td>
<td>8.4</td>
<td>34.560</td>
</tr>
<tr>
<td>41AO1</td>
<td>41</td>
<td>136.180</td>
<td>8.5</td>
<td>83.160</td>
</tr>
</tbody>
</table>

Recta de regresión: $Y = 111.457'4 - 1.656'6X \ u = 1'49\%$
<table>
<thead>
<tr>
<th>No.</th>
<th>Tensión 12%</th>
<th>Tensión 19%</th>
<th>Tensión 35%</th>
<th>No.</th>
<th>Tensión 12%</th>
<th>Tensión 19%</th>
<th>Tensión 35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>91.3</td>
<td>56.8</td>
<td>40.9</td>
<td>A</td>
<td>98.6</td>
<td>48.1</td>
<td>46.6</td>
</tr>
<tr>
<td>B</td>
<td>81.2</td>
<td>57.1</td>
<td>49.0</td>
<td>B</td>
<td>94.2</td>
<td>57.9</td>
<td>44.2</td>
</tr>
<tr>
<td>C</td>
<td>147.2</td>
<td>63.5</td>
<td></td>
<td>C</td>
<td>166.0</td>
<td>89.4</td>
<td>70.9</td>
</tr>
<tr>
<td>D</td>
<td>83.5</td>
<td>54.0</td>
<td></td>
<td>D</td>
<td>91.5</td>
<td>83.3</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>100.0</td>
<td>78.3</td>
<td>46.7</td>
<td>E</td>
<td>6.0</td>
<td>91.2</td>
<td>52.2</td>
</tr>
<tr>
<td>F</td>
<td>79.3</td>
<td>60.8</td>
<td></td>
<td>F</td>
<td>108.7</td>
<td>68.7</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>133.1</td>
<td>91.3</td>
<td>42.1</td>
<td>G</td>
<td>84.1</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>125.4</td>
<td>64.8</td>
<td>47.4/44.1</td>
<td>H</td>
<td>114.4</td>
<td>88.2</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>112.2</td>
<td>71.2/87.5</td>
<td>45.6</td>
<td>I</td>
<td>142.8</td>
<td>74.7</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>92.9</td>
<td>65.6</td>
<td>42.4</td>
<td>J</td>
<td>141.0</td>
<td>86.2</td>
<td>48.9</td>
</tr>
<tr>
<td>K</td>
<td>92.1</td>
<td>74.2</td>
<td>41.2</td>
<td>K</td>
<td>48.8</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>122.9</td>
<td>73.1</td>
<td>55.1</td>
<td>L</td>
<td>146.0</td>
<td>67.9</td>
<td>59.8</td>
</tr>
<tr>
<td>M</td>
<td>105.5</td>
<td>81.2</td>
<td>49.1</td>
<td>M</td>
<td>109.0</td>
<td>62.8</td>
<td>47.9</td>
</tr>
<tr>
<td>N</td>
<td>115.2</td>
<td>82.9</td>
<td></td>
<td>N</td>
<td>139.8</td>
<td>137.5</td>
<td>65.6</td>
</tr>
<tr>
<td>O</td>
<td>112.6</td>
<td>88.12</td>
<td>46.4</td>
<td>O</td>
<td>110.2</td>
<td>59.7</td>
<td>52.2</td>
</tr>
<tr>
<td>P</td>
<td>111.0</td>
<td>92.5</td>
<td>57.5</td>
<td>P</td>
<td>122.7</td>
<td>94.4</td>
<td>67.8</td>
</tr>
<tr>
<td>Q</td>
<td>90.7</td>
<td>68.16</td>
<td>38.9</td>
<td>Q</td>
<td>81.2</td>
<td>58.4</td>
<td>47.8</td>
</tr>
<tr>
<td>R</td>
<td>94.3</td>
<td>75.0</td>
<td>35.7</td>
<td>R</td>
<td>6.0</td>
<td>36.9</td>
<td></td>
</tr>
</tbody>
</table>

Recta regresión $Y = 132.5 - 2.43x; \ u = 1.37\%$

Recta regresión $Y = 141.5 - 2.57x; \ u = 1.81\%$
<table>
<thead>
<tr>
<th>probeta</th>
<th>anillos</th>
<th>Tensión-H(^\circ) 12%</th>
<th>Tensión-H(^\circ) 35%</th>
<th>Tensión-H(^\circ) 35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AE1</td>
<td>2</td>
<td>394 8</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>3AE3</td>
<td>3</td>
<td>600 9</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>4AN1</td>
<td>4</td>
<td>530 9</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>4AN2</td>
<td>4</td>
<td>401 9</td>
<td>139,4</td>
<td></td>
</tr>
<tr>
<td>4AE1</td>
<td>5</td>
<td>590 8</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>4AE2</td>
<td>4</td>
<td>517 8</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>6BN2</td>
<td>4</td>
<td>467 8</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>6B03</td>
<td>3</td>
<td>537 9</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>8AN1</td>
<td>5</td>
<td>517 9</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>8AN2</td>
<td>4</td>
<td>466 7</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>8AS2</td>
<td>4</td>
<td>604 9</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>8AE2</td>
<td>2</td>
<td>465 10</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>6AE2</td>
<td>3</td>
<td>537 9</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>6BS5</td>
<td>5</td>
<td>597 9</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>8AB3</td>
<td>2</td>
<td>370 8</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>11AE2</td>
<td>3</td>
<td>377 9</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>13AS2</td>
<td>5</td>
<td>433 9</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>20AS3</td>
<td>4</td>
<td>652 8</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>20BE2</td>
<td>3</td>
<td>505 9</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>32AN5</td>
<td>4</td>
<td>550 9</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>32AS4</td>
<td>4</td>
<td>682 8</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>32BN5</td>
<td>3</td>
<td>573 8</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>33AE3</td>
<td>4</td>
<td>635 7</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>37BE2</td>
<td>6</td>
<td>549 9</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>39AS3</td>
<td>3</td>
<td>602 8</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>39AE2</td>
<td>2</td>
<td>594 9</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>probeta</td>
<td>anillos</td>
<td>Tensión-H=12%</td>
<td>Tensión-H=16%</td>
<td>Tensión-H=35%</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>41AN7</td>
<td>5</td>
<td>652</td>
<td>337</td>
<td>238</td>
</tr>
<tr>
<td>41AE2</td>
<td>5</td>
<td>722</td>
<td></td>
<td>310</td>
</tr>
</tbody>
</table>

\[
y = 606.7 - 11.7x
\]

\[
u = 1.94\%
\]
<table>
<thead>
<tr>
<th>Nº probeta</th>
<th>Nº anillos</th>
<th>Tensión -H- 12%</th>
<th>Tensión -H- 18%</th>
<th>Tensión -H- 35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AD0</td>
<td></td>
<td>51'5</td>
<td>69'2</td>
<td>20</td>
</tr>
<tr>
<td>1BD01</td>
<td></td>
<td>38'5</td>
<td>43'8</td>
<td>17'8</td>
</tr>
<tr>
<td>2AE3</td>
<td></td>
<td>57'7</td>
<td>31'5</td>
<td>13'4</td>
</tr>
<tr>
<td>2BN2</td>
<td></td>
<td>8'8</td>
<td>30'0</td>
<td>28'8</td>
</tr>
<tr>
<td>3AO1</td>
<td></td>
<td>60'0</td>
<td>9'1</td>
<td>31'5</td>
</tr>
<tr>
<td>6B02</td>
<td></td>
<td>62'3</td>
<td>34'6</td>
<td>11'5</td>
</tr>
<tr>
<td>8AN5</td>
<td></td>
<td>80'8</td>
<td>9'0</td>
<td>17'3</td>
</tr>
<tr>
<td>8BE3</td>
<td></td>
<td>66'2</td>
<td>54'6</td>
<td>12'3</td>
</tr>
<tr>
<td>8BN1</td>
<td></td>
<td>9'1</td>
<td>57'7</td>
<td>92'3</td>
</tr>
<tr>
<td>11A03</td>
<td></td>
<td>9'1</td>
<td>37'7</td>
<td>17'7</td>
</tr>
<tr>
<td>16AS</td>
<td></td>
<td>8'9</td>
<td>80'8</td>
<td>17'7</td>
</tr>
<tr>
<td>16AN2</td>
<td></td>
<td>9'0</td>
<td>30'0</td>
<td>24'2</td>
</tr>
<tr>
<td>16A03</td>
<td></td>
<td>8'9</td>
<td>69'2</td>
<td>19'2</td>
</tr>
<tr>
<td>22A02</td>
<td></td>
<td>8'6</td>
<td>58'5</td>
<td>20'0</td>
</tr>
<tr>
<td>22AE2</td>
<td></td>
<td>9'0</td>
<td>90'8</td>
<td>34'6</td>
</tr>
<tr>
<td>28AS3</td>
<td></td>
<td>8'8</td>
<td>61'5</td>
<td>16'3</td>
</tr>
<tr>
<td>32B02</td>
<td></td>
<td>9'1</td>
<td>72'3</td>
<td>31'5</td>
</tr>
<tr>
<td>33A01</td>
<td></td>
<td>9'4</td>
<td>83'1</td>
<td>31'9</td>
</tr>
<tr>
<td>37AS2</td>
<td></td>
<td>8'9</td>
<td>84'6</td>
<td>25'4</td>
</tr>
<tr>
<td>39AS2</td>
<td></td>
<td>9'3</td>
<td>73'1</td>
<td>26'9</td>
</tr>
<tr>
<td>41AES</td>
<td></td>
<td>11'8</td>
<td>26'9</td>
<td>22'9</td>
</tr>
<tr>
<td>41A05</td>
<td></td>
<td>26'2</td>
<td>79'2</td>
<td>29'2</td>
</tr>
<tr>
<td>41BN3</td>
<td></td>
<td>9'3</td>
<td>53'8</td>
<td>17'7</td>
</tr>
</tbody>
</table>

Recta de regresión \( Y = 75'89 - 1'51X; u = 1'99 \)
ANEXO Nº IV

RELACIÓN ENTRE LAS CARACTERÍSTICAS DE LAS MUESTRAS Y LOS RESULTADOS DE LOS ENSAYOS


<table>
<thead>
<tr>
<th>INDICE</th>
</tr>
</thead>
</table>

Cuadro n° 43.- Valores de densidad para cada troza y orientación.

Cuadro n° 44.- Variación de la densidad con la dirección de la pendiente.

<p>| 0000 | O 0000 |</p>
<table>
<thead>
<tr>
<th>N° del Arbol</th>
<th>Troza A</th>
<th>Troza B</th>
<th>Media del Arbol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dir. N</td>
<td>Dir. S</td>
<td>Dir. E</td>
</tr>
<tr>
<td>1</td>
<td>0.48</td>
<td>0.45</td>
<td>0.49</td>
</tr>
<tr>
<td>2</td>
<td>0.43</td>
<td>0.41</td>
<td>0.44</td>
</tr>
<tr>
<td>3</td>
<td>0.44</td>
<td>0.40</td>
<td>0.54</td>
</tr>
<tr>
<td>4</td>
<td>0.57</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.52</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>7</td>
<td>0.53</td>
<td>0.51</td>
<td>0.52</td>
</tr>
<tr>
<td>8</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.40</td>
<td>0.46</td>
<td>0.48</td>
</tr>
<tr>
<td>10</td>
<td>0.50</td>
<td>0.43</td>
<td>0.46</td>
</tr>
<tr>
<td>11</td>
<td>0.46</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>12</td>
<td>0.40</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>13</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.52</td>
<td>0.50</td>
<td>0.49</td>
</tr>
<tr>
<td>15</td>
<td>0.50</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>16</td>
<td>0.50</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td>17</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.41</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.63</td>
<td>0.61</td>
<td>0.55</td>
</tr>
<tr>
<td>20</td>
<td>0.56</td>
<td>0.48</td>
<td>0.53</td>
</tr>
<tr>
<td>21</td>
<td>0.57</td>
<td>0.57</td>
<td>0.60</td>
</tr>
<tr>
<td>22</td>
<td>0.44</td>
<td>0.44</td>
<td>0.47</td>
</tr>
<tr>
<td>23</td>
<td>0.56</td>
<td>0.53</td>
<td>0.42</td>
</tr>
<tr>
<td>24</td>
<td>0.59</td>
<td>0.60</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Cuadro nº 43: Valores de densidad para cada troza y orientación.
<table>
<thead>
<tr>
<th>Nº del arbol</th>
<th>TROZA A</th>
<th>TROZA B</th>
<th>TROZA B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A favor pend</td>
<td>En contra P</td>
<td>A favor pend</td>
</tr>
<tr>
<td>1</td>
<td>0.49</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.44</td>
<td>0.46</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td>0.59</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.49</td>
<td>0.49</td>
<td>0.39</td>
</tr>
<tr>
<td>8</td>
<td>0.54</td>
<td>0.54</td>
<td>0.45</td>
</tr>
<tr>
<td>13</td>
<td>0.51</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.52</td>
<td>0.58</td>
<td>0.47</td>
</tr>
<tr>
<td>37</td>
<td>0.60</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0.47</td>
<td>0.44</td>
<td>0.42</td>
</tr>
<tr>
<td>39</td>
<td>0.58</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0.60</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>
ANEXO Nº V

CLASIFICACION DE LA MADERA ASERRADA SEGÚN
NORMA UNE 56.527-72
<table>
<thead>
<tr>
<th>Clasif. UNE</th>
<th>Defectos</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>56.5525</td>
<td>Otros</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Dados absolutos</th>
<th>Dim. Relativas</th>
<th>Estado</th>
<th>Cara x Canto</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1x2,5</td>
<td>2x2,5</td>
<td>1/8</td>
<td>1/4</td>
</tr>
<tr>
<td>2</td>
<td>3x2,3</td>
<td>4x2,3</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>3</td>
<td>3x2,3</td>
<td>4x2,3</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>4</td>
<td>5x2,6</td>
<td>6x2,6</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>5</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>6</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>7</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>8</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>9</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>10</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>11</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>12</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>13</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>14</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>15</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>16</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>17</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>18</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
<tr>
<td>19</td>
<td>10x2,4</td>
<td>20x2,4</td>
<td>1/8</td>
<td>1/1</td>
</tr>
</tbody>
</table>

<p>| 14,7x2,5 | 3,5 | 2,5 | 1/4 | 1/1 | Vicioso | Saltadizo |
| 14,7x2,5 | 3,5 | 2,5 | 1/4 | 1/1 | Vicioso | Saltadizo |</p>
<table>
<thead>
<tr>
<th>N° de muestra</th>
<th>Dimensiones (cm)</th>
<th>DEFECTOS NODOS</th>
<th>Estado</th>
<th>Otros</th>
<th>Clasif. UNE</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cara x Canto</td>
<td>Dim. absolut.</td>
<td>Dim. relativas</td>
<td>Cara</td>
<td>Canto</td>
<td>Cara</td>
</tr>
<tr>
<td>20</td>
<td>12 x 2,5</td>
<td>1</td>
<td>-</td>
<td>1/12</td>
<td>-</td>
<td>Saltadizo</td>
</tr>
<tr>
<td>21</td>
<td>15 x 2,5</td>
<td>3,5</td>
<td>-</td>
<td>1/4</td>
<td>-</td>
<td>Saltadizo</td>
</tr>
<tr>
<td>22</td>
<td>12 x 2,5</td>
<td>1</td>
<td>1,5</td>
<td>1/12</td>
<td>1/2</td>
<td>Sano</td>
</tr>
<tr>
<td>23</td>
<td>10 x 2,5</td>
<td>4,5</td>
<td>2</td>
<td>1/2</td>
<td>1/1</td>
<td>Vicioso</td>
</tr>
<tr>
<td>24</td>
<td>12 x 2,5</td>
<td>1</td>
<td>2</td>
<td>1/12</td>
<td>1/1</td>
<td>Vicioso</td>
</tr>
<tr>
<td>25</td>
<td>12 x 2,5</td>
<td>1,5</td>
<td>0,5</td>
<td>1/8</td>
<td>1/5</td>
<td>Vicioso</td>
</tr>
<tr>
<td>26</td>
<td>12 x 2,5</td>
<td>2</td>
<td>0,5</td>
<td>1/10</td>
<td>1/5</td>
<td>Vicioso</td>
</tr>
<tr>
<td>27</td>
<td>15 x 2,5</td>
<td>2,5</td>
<td>1</td>
<td>1/6</td>
<td>1/2,5</td>
<td>Vicioso</td>
</tr>
<tr>
<td>28</td>
<td>15 x 2,5</td>
<td>3,5</td>
<td>-</td>
<td>1/4</td>
<td>-</td>
<td>Sano</td>
</tr>
<tr>
<td>29</td>
<td>12 x 2,5</td>
<td>3</td>
<td>2,5</td>
<td>1/4</td>
<td>1/1</td>
<td>Sano</td>
</tr>
<tr>
<td>30</td>
<td>15 x 2,5</td>
<td>3</td>
<td>1</td>
<td>1/5</td>
<td>1/2,5</td>
<td>Vicioso</td>
</tr>
<tr>
<td>31</td>
<td>12 x 2,5</td>
<td>2</td>
<td>2,5</td>
<td>1/6</td>
<td>1/1</td>
<td>Vicioso</td>
</tr>
<tr>
<td>32</td>
<td>15 x 2,5</td>
<td>4</td>
<td>2</td>
<td>1/4</td>
<td>1/1</td>
<td>Vicioso</td>
</tr>
<tr>
<td>33</td>
<td>10 x 2,5</td>
<td>3</td>
<td>2,5</td>
<td>1/3</td>
<td>1/1</td>
<td>Sano</td>
</tr>
<tr>
<td>34</td>
<td>10 x 2,5</td>
<td>2</td>
<td>-</td>
<td>1/5</td>
<td>-</td>
<td>Vicioso</td>
</tr>
<tr>
<td>35</td>
<td>20 x 2,5</td>
<td>4</td>
<td>2,5</td>
<td>1/5</td>
<td>1/1</td>
<td>Sano</td>
</tr>
<tr>
<td>36</td>
<td>12 x 2,5</td>
<td>2</td>
<td>2,5</td>
<td>1/6</td>
<td>1/1</td>
<td>Vicioso</td>
</tr>
<tr>
<td>37</td>
<td>15 x 2,5</td>
<td>3</td>
<td>1</td>
<td>1/5</td>
<td>1/2,5</td>
<td>Vicioso</td>
</tr>
<tr>
<td>Nº de muestra</td>
<td>Dimensiones(cm)</td>
<td>DEFECTOS NUDOS</td>
<td>Otros</td>
<td>Clasif. UNE 56.525</td>
<td>Observaciones</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dim.absolut. Cara</td>
<td>Dim.absolut. Canto</td>
<td>Dim.relativas Cara</td>
<td>Dim.relativas Canto</td>
<td>Estado Cara</td>
</tr>
<tr>
<td>39</td>
<td>15 x 2,5</td>
<td>4</td>
<td>2,5</td>
<td>1/4</td>
<td>1/1</td>
<td>Sano</td>
</tr>
<tr>
<td>40</td>
<td>20 x 4</td>
<td>3,5</td>
<td>3</td>
<td>1/6</td>
<td>1/1</td>
<td>Vicioso</td>
</tr>
<tr>
<td>41</td>
<td>16,5 x 4</td>
<td>2</td>
<td>2</td>
<td>1/8</td>
<td>1/2</td>
<td>Vicioso</td>
</tr>
<tr>
<td>42</td>
<td>20 x 4</td>
<td>2</td>
<td>1</td>
<td>1/10</td>
<td>1/4</td>
<td>Vicioso</td>
</tr>
<tr>
<td>43</td>
<td>20 x 4</td>
<td>4</td>
<td>-</td>
<td>1/5</td>
<td>-</td>
<td>Sano</td>
</tr>
<tr>
<td>44</td>
<td>20,5 x 4</td>
<td>5</td>
<td>2</td>
<td>1/4</td>
<td>1/2</td>
<td>Sano</td>
</tr>
<tr>
<td>45</td>
<td>19 x 4</td>
<td>3,5</td>
<td>-</td>
<td>1/5</td>
<td>-</td>
<td>Vicioso</td>
</tr>
<tr>
<td>46</td>
<td>20 x 4</td>
<td>7,5</td>
<td>1</td>
<td>1/3</td>
<td>1/4</td>
<td>Vicioso</td>
</tr>
<tr>
<td>47</td>
<td>17 x 4</td>
<td>5</td>
<td>1</td>
<td>1/4</td>
<td>1/4</td>
<td>Sano</td>
</tr>
<tr>
<td>48</td>
<td>23 x 4</td>
<td>11</td>
<td>3,5</td>
<td>1/2</td>
<td>1/1</td>
<td>Sano</td>
</tr>
<tr>
<td>49</td>
<td>20 x 4</td>
<td>5</td>
<td>-</td>
<td>1/4</td>
<td>-</td>
<td>Vicioso</td>
</tr>
<tr>
<td>50</td>
<td>20 x 4</td>
<td>10</td>
<td>2,5</td>
<td>1/2</td>
<td>1/4</td>
<td>Sano</td>
</tr>
<tr>
<td>51</td>
<td>20 x 8</td>
<td>3</td>
<td>2</td>
<td>1/7</td>
<td>1/4</td>
<td>Vicioso</td>
</tr>
<tr>
<td>52</td>
<td>20 x 8</td>
<td>2,5</td>
<td>3,5</td>
<td>1/8</td>
<td>1/2</td>
<td>Vicioso</td>
</tr>
<tr>
<td>53</td>
<td>20 x 8</td>
<td>3</td>
<td>2</td>
<td>1/7</td>
<td>1/4</td>
<td>Vicioso</td>
</tr>
<tr>
<td>54</td>
<td>15 x 2,5</td>
<td>5</td>
<td>1,5</td>
<td>1/3</td>
<td>1/2</td>
<td>Sano</td>
</tr>
<tr>
<td>55</td>
<td>15 x 2,5</td>
<td>3</td>
<td>2,5</td>
<td>1/5</td>
<td>1/1</td>
<td>Vicioso</td>
</tr>
<tr>
<td>56</td>
<td>14,5 x 2</td>
<td>3</td>
<td>2</td>
<td>1/5</td>
<td>1/1</td>
<td>Sano</td>
</tr>
<tr>
<td>57</td>
<td>12,5 x 2,5</td>
<td>3</td>
<td>-</td>
<td>1/4</td>
<td>-</td>
<td>Vicioso</td>
</tr>
</tbody>
</table>
CUADRO N° 45: CLASIFICACIÓN DE LA MADERA ASERRADA (Continuación)

<table>
<thead>
<tr>
<th>No de muestra</th>
<th>Dimensiones (cm)</th>
<th>DEFECTOS NUDOS</th>
<th>Otros</th>
<th>Clasif. UNE 56.525</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cara x Canto</td>
<td>Dim. absoul.</td>
<td>Dim. relativas</td>
<td>Estado</td>
<td>Carácter</td>
</tr>
<tr>
<td>58</td>
<td>15,5 x 2,5</td>
<td>2,5</td>
<td>1</td>
<td>1/6</td>
<td>1/2,5</td>
</tr>
<tr>
<td>59</td>
<td>9,5 x 2,5</td>
<td>3</td>
<td>2,5</td>
<td>1/3</td>
<td>1/1</td>
</tr>
<tr>
<td>60</td>
<td>15 x 3</td>
<td>1,3</td>
<td>1</td>
<td>1/10</td>
<td>1/3</td>
</tr>
<tr>
<td>61</td>
<td>15 x 2,5</td>
<td>1,5</td>
<td>2,5</td>
<td>1/10</td>
<td>1/1</td>
</tr>
<tr>
<td>62</td>
<td>15 x 3</td>
<td>2</td>
<td>3</td>
<td>1/7,5</td>
<td>1/1</td>
</tr>
<tr>
<td>63</td>
<td>17,5 x 6,5</td>
<td>8,5</td>
<td>3</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>64</td>
<td>18 x 7</td>
<td>8</td>
<td>1,5</td>
<td>1/2</td>
<td>1/5</td>
</tr>
<tr>
<td>65</td>
<td>17,5 x 6</td>
<td>2,5</td>
<td>1,5</td>
<td>1/7</td>
<td>1/4</td>
</tr>
<tr>
<td>66</td>
<td>18 x 6,5</td>
<td>1</td>
<td>3</td>
<td>1/18</td>
<td>1/2</td>
</tr>
<tr>
<td>67</td>
<td>12 x 2,5</td>
<td>6,5</td>
<td>2,5</td>
<td>1/2</td>
<td>1/1</td>
</tr>
<tr>
<td>68</td>
<td>12 x 2,5</td>
<td>6,5</td>
<td>2,5</td>
<td>1/2</td>
<td>1/1</td>
</tr>
<tr>
<td>69</td>
<td>12,5 x 2,5</td>
<td>6,5</td>
<td>2,5</td>
<td>1/2</td>
<td>1/1</td>
</tr>
<tr>
<td>70</td>
<td>14 x 2,5</td>
<td>6,5</td>
<td>2,5</td>
<td>1/2</td>
<td>1/1</td>
</tr>
<tr>
<td>71</td>
<td>12 x 2,5</td>
<td>8</td>
<td>2,5</td>
<td>1/1,5</td>
<td>1/1</td>
</tr>
<tr>
<td>72</td>
<td>7,5 x 1,5</td>
<td>4</td>
<td>1,5</td>
<td>1/2</td>
<td>1/1</td>
</tr>
<tr>
<td>73</td>
<td>8 x 2</td>
<td></td>
<td>2,5</td>
<td>2</td>
<td>1/3</td>
</tr>
<tr>
<td>74</td>
<td>8 x 2</td>
<td></td>
<td>6</td>
<td>2</td>
<td>1/1</td>
</tr>
<tr>
<td>75</td>
<td>7,5 x 2</td>
<td>3,5</td>
<td>2</td>
<td>1/2</td>
<td>1/1</td>
</tr>
</tbody>
</table>

- 243 -

ANEXO N° VI

NORMAS UNE
ÍNDICE

UNE 56.525-72: Clasificación de la madera aserrada de construcción.
UNE 56.528: Características físico-mecánicas de la madera. Preparación de probetas para ensayos.
UNE 56.529: Características físico-mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el estado anhidro.
UNE 56.531: Características físico-mecánicas de la madera. Determinación del peso específico.
UNE 56.532: Características físico-mecánicas de la madera. Determinación de la higroscopía.
UNE 56.533: Características físico-mecánicas de la madera. Determinación de las contracciones lineal y volumétrica.
UNE 56.534: Características físico-mecánicas de la madera. Determinación de la dureza.
UNE 56.535: Características físico-mecánicas de la madera. Determinación de la resistencia a la compresión axial.
UNE 56.536: Características físico-mecánicas de la madera. Determinación de la resistencia a la flexión dinámica.
UNE 56.537: Características físico-mecánicas de la madera. Determinación de la resistencia a la flexión estática.
UNE 56.538: Características físico-mecánicas de la madera. Determinación de la resistencia a la tracción perpendicular a las fibras.
UNE 56.539: Características físico-mecánicas de la madera. Determinación de la resistencia a la hiedra.
UNE 56.540: Características físico-mecánicas de la madera. Interpretación de resultados.
Propuesta UNE 56.543: Características físico-mecánicas de la madera. Determinación del esfuerzo cortante.

Propuesta UNE 56.544: Características físico-mecánicas de la madera. Determinación de la resistencia a la compresión perpendicular a la fibra.
1 OBJETO
La presente norma tiene por objeto clasificar la madera aserrada de construcción de acuerdo con su calidad.

2 CLASIFICACION POR CALIDADES
La madera aserrada de construcción se clasificará en siete clases según los defectos que presente, de acuerdo con el Cuadro de clasificación que se indica en el apartado 2.3.

El nombre de cada clase se compone de dos términos, separados por el signo /: El primero es la palabra Extra o el número de orden expresado en números romanos. El segundo representa el porcentaje mínimo de resistencia mecánica de la pieza respecto de la tensión básica, correspondiente a la especie de madera de que se trate.

2.1 Especificaciones de calidad
En el Cuadro de clasificación se recogen las especificaciones de calidad que deberá cumplir cada clase.

2.2 Observaciones
No se admitirá que ninguna pieza de madera presente rasgos de pudrición.
La especificación del número mínimo de anillos se exigirá solamente para la madera de coníferas.

2.3 Cuadro de clasificación

<table>
<thead>
<tr>
<th>Clase</th>
<th>Defectos</th>
<th>Medida relativa máxima</th>
<th>Estado</th>
<th>Medida relativa máxima</th>
<th>Desviación máxima de la fibra en la sección radial</th>
<th>Número mínimo de anillos por cm</th>
<th>Decoloraciones máxima de la superficie %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra/100</td>
<td>No tolerados</td>
<td>1/10</td>
<td>No admitidas</td>
<td>1/20</td>
<td>4</td>
<td>No admitidas</td>
<td></td>
</tr>
<tr>
<td>I/80</td>
<td>1/10</td>
<td>1/8</td>
<td>Sanos y adherentes</td>
<td>1/10</td>
<td>No admitidas</td>
<td>1/16</td>
<td>4</td>
</tr>
<tr>
<td>II/70</td>
<td>1/8</td>
<td>1/6</td>
<td>Sanos y adherentes</td>
<td>1/4</td>
<td>1/8</td>
<td>1/15</td>
<td>4</td>
</tr>
<tr>
<td>III/60</td>
<td>1/4</td>
<td>1/4</td>
<td>Sanos y adherentes</td>
<td>1/3</td>
<td>1/8</td>
<td>1/10</td>
<td>3</td>
</tr>
<tr>
<td>IV/50</td>
<td>1/3</td>
<td>1/2</td>
<td>Viciosos, podridos, suelos</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
<td>2</td>
</tr>
<tr>
<td>V/40</td>
<td>1/3</td>
<td>1/2</td>
<td>Viciosos, podridos, suelos</td>
<td>3/5</td>
<td>1/4</td>
<td>1/6</td>
<td>1</td>
</tr>
<tr>
<td>VI</td>
<td>Sin limitación</td>
<td>Sin especificar</td>
<td>3/5</td>
<td>1/4</td>
<td>1/5</td>
<td>No fijado</td>
<td>Sin limitación</td>
</tr>
</tbody>
</table>

3 METODO DE CLASIFICACION
Se medirán todos los defectos que presente la pieza que se vaya a clasificar, siguiendo las Normas UNE 56 520, 56 521, 56 522, 56 523 y 56 524. La clasificación se hará por el defecto más desfavorable.

4 NORMAS PARA CONSULTA
UNE 56 520 - Defectos y anomalías de la madera aserrada. Fendas y acebolilladuras.

Continúa en página 2.
UNE 56 521 - Defectos y anomalías de la madera aserrada. Nudos.

UNE 56 522 - Defectos y anomalías de la madera aserrada. Gemas.

UNE 56 523 - Medida de la desviación de las fibras en la madera aserrada.

UNE 56 524 - Medida de los crecimientos en la madera aserrada.
1 OBJETO
Esta norma tiene por objeto establecer el modo de preparar las probetas para los ensayos de determinación de las características físico-mecánicas de la madera.

2 SELECCION DE LA MATERIA PRIMA PARA LAS PROBETAS
La materia prima para la realización de los ensayos se seleccionará de acuerdo con los fines de los mismos (determinación de la calidad de la madera de una masa forestal, de un árbol tipo, de una partida de madera aserrada, etc.), buscando la representatividad estadística, y siguiendo las recomendaciones contenidas en la norma UNE 56 542.

3 OBTENCION DE LAS PROBETAS
Si la madera está en rollo, se cortarán tablas que comprendan el corazón del tronco. Si éste es excéntrico, la tabla deberá contener el centro geométrico y el corazón.

Cuando el diámetro del tronco sea superior a 180 mm bastará obtener una sola tabla. Cuando sea menor, se obtendrán dos cruzadas (figura 1). Se eliminará la madera de corazón de todas las tablas obtenidas.

Si la madera está aserrada, se cortará según planos tangenciales sin incluir madera de corazón (figura 2). Seguidamente se secarán las tablas hasta que alcancen la humedad de equilibrio que corresponda al ambiente del laboratorio. Se cortarán después en probetas de las medidas y forma previstas en cada norma de ensayo, de manera que los anillos de crecimiento sean de curvatura muy pequeña y sensiblemente perpendiculares a dos caras paralelas.

4 NUMERO DE PROBETAS
El número de probetas se fijará de acuerdo con los fines del ensayo. Se recomienda utilizar la fórmula siguiente:

\[ n_{\text{min}} = \frac{V^{2} \cdot t^{2}}{\rho} \]

en la que:

- \( n_{\text{min}} \) = número mínimo de probetas.

Continúa en páginas 2 y 3
V = coeficiente de variación de la característica considerada.

t = mitad de la longitud del intervalo de confianza expresado en múltiplos de la desviación típica.

p = relación entre la desviación típica de la media aritmética y la media aritmética.

Como valores de V se pueden utilizar los que se dan en la tabla I.

<table>
<thead>
<tr>
<th>Propiedad de la madera</th>
<th>V %b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico</td>
<td>10</td>
</tr>
<tr>
<td>Humedad de equilibrio</td>
<td>5</td>
</tr>
<tr>
<td>Contracción lineal</td>
<td>28</td>
</tr>
<tr>
<td>Contracción volumétrica</td>
<td>16</td>
</tr>
<tr>
<td>Dureza</td>
<td>17</td>
</tr>
<tr>
<td>Resistencia a la compresión axial</td>
<td>13</td>
</tr>
<tr>
<td>Resistencia a la flexión estática</td>
<td>15</td>
</tr>
<tr>
<td>Módulo de elasticidad a la flexión estática</td>
<td>20</td>
</tr>
<tr>
<td>Resistencia a la flexión dinámica</td>
<td>32</td>
</tr>
<tr>
<td>Resistencia al esfuerzo cortante paralelo a las fibras</td>
<td>20</td>
</tr>
<tr>
<td>Resistencia a la compresión perpendicular a los fi - bras</td>
<td>20</td>
</tr>
<tr>
<td>Resistencia a la tracción paralela a las fibras</td>
<td>20</td>
</tr>
<tr>
<td>Resistencia a la tracción perpendicular a las fibras</td>
<td>20</td>
</tr>
</tbody>
</table>

Como valor de p se puede utilizar el 5 por 100.

El valor de t debe deducirse de experiencias anteriores.

5 MARCADO DE LAS PROBETAS

Las probetas deberán marcarse indicando especie de la madera, procedencia y fecha de apeo.

6 ACONDICIONAMIENTO DE LAS PROBETAS

Una vez cortadas las probetas se colocarán en ambiente a 20°C ± 2°C de temperatura y 65 ± 3 por 100 de humedad relativa hasta que adquieran la humedad de equilibrio, lo que se comprobará mediante pesadas sucesivas. Se considerará que ha llegado a dicho equilibrio cuando dos pesadas consecutivas, separadas por un intervalo de 24 h, diferan en menos de 1/200 de la primera de ellas.
En caso de que no se disponga de ambiente con las condiciones citadas, se homogeneizarán en la atmósfera del laboratorio hasta alcanzar igualmente la humedad de equilibrio.

Después de acondicionadas, se guardarán en recipientes herméticos hasta el momento del ensayo. En dichos recipientes se colocarán apiladas canto con canto, sin dejar huecos.

7 NORMAS PARA CONSULTA

UNE 56-542 (*) — Características físico-mecánicas de la madera. Selección de la materia prima para obtención de probetas para ensayos.

(*) En preparación
1 OBJETO

Esta norma tiene por objeto indicar el modo de realizar el ensayo para determinar la humedad de la madera, mediante su desecación en estufa hasta el estado anhidro.

después en la estufa donde se seca a 103° C ± 2° C, hasta que alcance peso constante. Para determinar que se ha llegado a este punto, se saca de la estufa cada 24 horas y se pesa, entrándola previamente en el desecador.

Cuando dos pesadas consecutivas difieren en menos de 1/200 de la primera de ellas, se considera que se ha llegado al peso constante, que coincide con el peso anhidro.

5 OBTENCION Y EJRESION DE LOS RESULTADOS

El contenido de humedad se calcula por la fórmula siguiente:

\[ H(\%) = \frac{P_1 - P_2}{P_2} \times 100 \]

en la que:

- \( H \) = Humedad en porcentaje del peso anhidro.
- \( P_1 \) = Peso inicial de la probeta, en gramos.
- \( P_2 \) = Peso de la probeta, en gramos, después de la desecación o peso anhidro.

El resultado se expresa con aproximación de una unidad.

Se considera como humedad de la madera la media aritmética de los resultados obtenidos con todas las probetas utilizadas.

6 NORMAS PARA CONSULTA

UNE 56-528-77 - Características físico-mecánicas de la madera. Preparación de probetas para ensayo.
1 OBJETO
Esta norma tiene por objeto indicar el modo de realizar el ensayo para determinar el peso específico de la madera.

2 APARATOS NECESARIOS
2.1 Balanza, con precisión de 0,01 g.
2.2 Pié de rey, con precisión de 0,1 mm.
2.3 Estufa y desecador como los indicados en la norma UNE 56-520-77.

3 PROBETAS
Las probetas se prepararán de acuerdo con la norma UNE 56-528-77. Tendrán forma de prisma cuadrangular, de sección recta de 20 mm de lado y altura paralela a la dirección de las fibras de 26 mm ± 5 mm.

4 PROCEDIMIENTO OPERATORIO
4.1 Determinación del peso específico correspondiente a la humedad en el momento del ensayo
Se pesa la probeta con aproximación de 0,01 g. Se miden sus dimensiones con aproximación de 0,1 mm. Después se determina su contenido de humedad de acuerdo con la norma UNE 56-529-77.

4.2 Determinación del peso específico anhídrico
Se deseca lentamente la probeta hasta el estado anhídrico, de acuerdo con la norma UNE 56-529-77, procurando que no se produzcan fendas ni deformaciones. Inmediatamente después de secar, se pesa y se mide la probeta, como se indica en 4.1.

5 OBTENCIÓN DE LOS RESULTADOS
El peso específico de la probeta a la humedad $H$ se calcula por la fórmula siguiente:

$$r_H = \frac{\rho_H}{a_H \times b_H \times c_H} = \frac{\rho_H}{V_H}$$

en la que:

- $r_H$ = Peso específico en kilogramos por metro cúbico a la humedad $H$%.
- $\rho_H$ = Peso en kilogramos de la probeta a la humedad $H$%.
- $a_H$, $b_H$, $c_H$ = Mida en metros de la probeta a la humedad $H$%.
- $V_H$ = Volumen en metros cúbicos de la probeta a la humedad $H$%.

El resultado se expresa con aproximación de 5 kg/m³. Para determinar el peso específico de la madera anhídrica se realiza el mismo cálculo que se acaba de describir.

Si se desea conocer el peso específico para otro contenido de humedad $H'$ distinto de $H$, se utiliza la siguiente fórmula:

$$r_{H'} = r_H \left[ 1 - \frac{(1-\nu)(H-H')}{100} \right]$$

en la que:

- $r_{H'}$ = Peso específico en kilogramos por metro cúbico a la humedad $H'$%.
- $\nu$ = Coeficiente de contracción volumétrica de la madera determinado de acuerdo con la norma UNE 56-533-77.

Se considera como peso específico de la madera a determinada humedad la media aritmética de los resultados.
obtenidos con todas las probetas utilizadas.

6 NORMAS PARA CONSULTA

UNE 56-528-77 - Características físico-mecánicas de la madera. Preparación de probetas para ensayo.

UNE 56-529-77 - Características físico-mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el estado anhidro.

UNE 56-533-77 - Características físico-mecánicas de la madera. Determinación de las contracciones lineal y volumétrica.
1 OBJETO

Esta norma tiene por objeto definir la higroscopiedad de la madera e indicar el método de determinarla.

2 DEFINICION

Se llama higroscopiedad de la madera a la variación del peso específico de la misma cuando su contenido de humedad varía en 1 por 100.

3 CALCULO DE LA HIGROSCOPICIDAD

La higroscopiedad se calcula por la siguiente fórmula:

\[
h = \frac{(1 - v) \cdot r_{12}}{100}
\]

en la que:

- \( h \) = Higroscopiedad en kilogramos por metro cúbico.
- \( v \) = Coeficiente de contracción volumétrica en porcentaje, determinado según la norma UNE 56-533-77.
- \( r_{12} \) = Peso específico en kilogramos por metro cúbico al 12 % de humedad. El resultado se expresa con aproximación de 0,1 Kg/m³.

4 NORMAS PARA CONSULTA

- UNE 56-531-77 - Características físico-mecánicas de la madera. Determinación del peso específico.
- UNE 56-533-77 - Características físico-mecánicas de la madera. Determinación de las contracciones lineal y volumétrica.

1 OBJETO
Esta norma tiene por objeto indicar el modo de realizar el ensayo para determinar la contracción de la madera debido a cambios en su contenido de humedad.

2 APARATOS NECESARIOS
2.1 Balanza, con precisión de 0,01 g.
2.2 Estufa, con circulación de aire cuya temperatura se pueda mantener a 103º C ± 2º C.
2.3 Desecador, que contenga un producto absorbente de la humedad, como el cloruro cálcico.
2.4 Pie de rey con precisión de 0,1 mm.
2.5 Recipiente con agua

3 PROBETAS
Las probetas se prepararán de acuerdo con la norma UNE 56-528-77. Tendrán forma de prisma cuadrangular, de sección recta de 20 mm de lado y altura, paralela a la dirección cuya contracción se desee determinar, de 40 mm. Para la contracción volumétrica este detalle es indiferente.

4 PROCEDIMIENTO OPERATORIO
Se sumerge la probeta en agua a la temperatura ambiente manteniéndola así hasta sobrepasar la humedad de saturación, lo que se estimará se consigue después de 24 h de inmersión. Se miden las dimensiones de la probeta con aproximación de 0,1 mm después de secarla del agua, y se calcula con estas medidas el volumen saturado \( V_s \).

Se deja la probeta en la atmósfera ambiente hasta que alcance el estado de equilibrio hipogélico, lo que se comprobará realizando pesadas sucesivas con intervalos de 24 h hasta que dos pesadas consecutivas difieran en menos de 1/200 de la primera de ellas. Se miden entonces sus dimensiones, con las que se calcula el volumen a la humedad de equilibrio \( V_H \). Se deseca después la probeta en estufa hasta el estado anhídrico, pesándola y midiendo entonces sus dimensiones con aproximación de 0,1 mm con las que se calcula el volumen anhídrico \( V_0 \).

5 OBTENCIÓN Y EXPRESIÓN DE LOS RESULTADOS
5.1 Contracción volumétrica total
La contracción volumétrica total se calcula con la siguiente fórmula:

\[
C_V = \frac{V_s - V_o}{V_o} \times 100
\]

en la que:

\( C_V \) = Contracción volumétrica total en porcentaje.
\( V_s \) = Volumen saturado en centímetros cúbicos.
\( V_o \) = Volumen anhídrico en centímetros cúbicos.

5.2 Coeficiente de contracción volumétrica
El coeficiente de contracción volumétrica se calcula con la siguiente fórmula:

\[
\nu = \frac{V_H - V_o}{V_o \cdot H} \times 100
\]

en la que:

\( \nu \) = Coeficiente de contracción volumétrica en porcentaje.
\[ V_H = \text{Volumen a la humedad de equilibrio higroscópico en centímetros cúbicos.} \]

\[ H = \text{Humedad de equilibrio higroscópico, determinada según la norma UNE 56-529-77 y utilizando los pesos obtenidos durante el proceso operatorio.} \]

\[ L_s = \text{Longitud de la probeta en la dirección que se considere para la madera saturada, en centímetros.} \]

\[ L_o = \text{Longitud de la probeta en la dirección que se considere para la madera anhidra, en centímetros.} \]

5.3 Contracción lineal total

La contracción lineal total se calcula con la siguiente fórmula:

\[ C_l = \frac{L_s - L_o}{L_o} \times 100 \]

en la que:

\[ C_l = \text{Contracción lineal total en la dirección que se considere, longitudinal, radial o tangencial, expresada en porcentaje.} \]

5.4 Aproximación de los resultados

Los resultados se calcularán con aproximación de una décima.

6 NORMAS PARA CONSULTA

UNE 56-528-77 - Características físico-mecánicas de la madera. Preparación de probetas para ensayo.

UNE 56-529-77 - Características físico-mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el estado anhidro.
1 OBJETO

Esta norma tiene por objeto indicar el modo de realizar el ensayo para la determinación de la dureza de la madera.

\[ f = 15 - 0,5 \sqrt{900 - a^2} \]

Los valores de \( a \) y de \( f \) se obtendrán con aproximación igual a 0,1 mm.

2 APARATOS NECESARIOS

Para realizar este ensayo se necesita una máquina de carga que pueda aplicarla de modo continuo y a velocidad constante, llegando hasta 200 Kg.

El útil, a través del cual se aplica la carga, es un cilindro de acero de 30 mm de diámetro.

3 PROBETAS

Las probetas se prepararán de acuerdo con la norma UNE 56-528-77. Tendrán forma de paralelepípedo recto rectangular. Su medida en dirección longitudinal no debe ser menor de 30 mm. La cara radial sobre la que se apoya el cilindro debe ser plana y lisa.

4 PROCEDIMIENTO OPERATORIO

Se coloca la probeta en la mesa de la máquina de carga, con su cara radial hacia arriba. Se pone en contacto el cilindro con la probeta, de modo que los ejes de ambos sean perpendiculares. Entre el cilindro y la madera se coloca un papel carbón para que se marque bien la huella.

Se aplica la carga hasta llegar a 100 Kg por centímetro de anchura, que se mantendrá durante 5 s. En caso de maderas muy blandas se reducirá la carga máxima a 50 Kg y se multiplicará por dos la flecha obtenida.

Después de retirada la carga, se mide la anchura \( a \) de la marca en milímetros y se calcula la flecha \( f \) de penetración según la fórmula siguiente:

\[ N = \frac{f}{d} \]

en la que

\[ r'H = \text{densidad de la madera para la humedad que tenga la probeta}. \]

La dureza y la cota de dureza se calcularán con una aproximación de 0,01.

6 NORMAS PARA CONSULTAR

UNE 56-528-77, Características físico-mecánicas de la madera. Preparación de probetas para ensayo.

Las observaciones relativas a la presente norma deben ser dirigidas al IRANOR - Serrano, 160 - MADRID (6).
1 OBJETO

Esta norma tiene por objeto indicar el modo de realizar el ensayo para la determinación de la resistencia de la madera a la compresión axial, mediante rotura de la misma sin pandeo.

2 APARATOS NECESARIOS

2.1 Presa de platos planos, con dinamómetro que permita medir el esfuerzo con aproximación de 1 Kg.

2.2 Instrumentos para determinación del contenido de humedad de acuerdo con la norma UNE 56-529-77.

2.3 Instrumentos adecuados para determinar las dimensiones de la probeta con precisión de 0,1 mm.

3 PROBETAS

Las probetas se prepararán de acuerdo con la norma UNE 56-528-77. Tendrán forma de prisma cuadrangular de sección recta de 20 mm de lado y altura paralela a la dirección longitudinal de las fibras de 60 mm.

4 PROCEDIMIENTO OPERATORIO

Se miden las dimensiones de la probeta con aproximación de 0,1 mm.

Se coloca la probeta entre los platos de la prensa, de modo que la dirección longitudinal de las fibras sea perpendicular a ellos, y se aplica la carga a velocidad uniforme de 200 a 300 Kg/cm² por minuto hasta que se produzca la rotura de la probeta. Se anota la carga de rotura.

Con la misma probeta que se ha roto se determina el contenido de humedad de la madera de acuerdo con la norma UNE 56-529-77.

5 OBTENCION DE LOS RESULTADOS

5.1 Resistencia a la compresión axial

La resistencia a la compresión axial se calcula por la fórmula siguiente:

\[ C_H = \frac{C_r}{S} \]

en la que

\[ C_H = \text{Resistencia a la compresión axial de la madera cuya humedad es el } H^1 \]

\[ C_r = \text{Carga de rotura en kilogramos} \]

\[ S = \text{Area de la sección recta del prisma en centímetros cuadrados} \]

El resultado se expresa con aproximación de 1 Kg/cm².

Se considera como resistencia a la compresión axial la media aritmética de los resultados obtenidos con todas las probetas utilizadas. Para calcular la resistencia a la compresión axial cuando el contenido de humedad sea \( H^1 \) se utiliza la fórmula siguiente:

\[ C_{H1} = [1 + 0,04 (H-H^1)] \]

en la que

\[ C_{H1} = \text{Resistencia a la compresión axial de la madera cuya humedad es el } H^1 \text{ g.} \]

5.2 Cota estática

La cotas estática se calcula por la fórmula siguiente:

\[ C_e = \frac{C_{12}}{100 r_{12}} \]

Contiene en página 2

Las observaciones relativas a la presente norma deben ser dirigidas al IRANOR - Serrano, 150 - MADRID (6)
en la que

\[ C_e = \text{Cota estática.} \]

\[ C_{12} = \text{Resistencia a la compresión axial de la madera cuya humedad es el 12 \%}. \]

\[ r_{12} = \text{Peso específico de la madera al 12 \% de humedad}. \]

6 NORMAS PARA CONSULTAR

UNE 56-528-77. Características físico-mecánicas de la madera. Preparación de probetas para ensayo.

UNE 56-529-77. Características físico-mecánicas de la madera. Determinación del contenido de humedad por deseccación hasta el estado anhidro.
1 OBJETO
Esta norma tiene por objeto indicar el modo de realizar el ensayo para la determinación de la resistencia de la madera a la flexión dinámica o choque.

2 APARATOS NECESARIOS
2.1 Aparato provisto de dos apoyos cilíndricos de ejes paralelos, cuyo radio sea 15 mm ± 0,5 mm, separados 240 mm ± 1 mm.
La carga se aplica mediante un martillo igualmente cilíndrico, cuyo radio sea 15 mm ± 0,5 mm, centrado entre los apoyos, que cae desde 1000 mm ± 1 mm de altura con energía comprendida entre 5 y 15 Kg.
La longitud de los apoyos y del martillo debe ser superior a 20 mm.
El aparato de medida de la energía absorbida debe permitir una aproximación de 0,1 Kgm.

2.2 Instrumentos para medir las dimensiones de las probetas con aproximación de 0,1 mm.

2.3 Elementos necesarios para determinar la humedad de la madera, de acuerdo con la norma UNE 56-529-77.

3 PROBETAS
Las probetas se prepararán de acuerdo con la norma UNE 56-528-77. Tendrán forma de prisma recto cuadrangular, de sección recta de 20 mm de lado y altura, paralela a la dirección longitudinal de las fibras, de 300 mm.

4 PROCEDIMIENTO OPERATORIO
Se coloca la probeta centrada sobre los apoyos con su cara radial hacia arriba. Se mide la sección central. Se da caer el martillo de modo que rompa la probeta de un solo golpe.
Si esto no se produce o la rotura no es claramente transversal, el ensayo no es válido.
Se toma después un pedazo de la probeta rota y se determina con él la humedad de la madera, de acuerdo con la norma UNE 56-529-77.

5 OBTENCION DE LOS RESULTADOS
La resistencia de la madera a la flexión dinámica se mide por el trabajo T absorbido por la probeta, expresado en Kgm.
Como indicador de esta resistencia se puede calcular el coeficiente de resiliencia por la fórmula siguiente:

\[ K = \frac{T}{S} \]

en la que:

\[ K \] = Coeficiente de resiliencia en kilogramos por centímetro cuadrado.
\[ T \] = Trabajo absorbido por la probeta en Kilogramos,
\[ S \] = Área de la sección central de la probeta en centímetros cuadrados.

El valor de \( K \) se calcula con aproximación de 0,1 Kgm/cm².
Se consideran como resistencia a la flexión dinámica y como coeficiente de resiliencia las medias aritméticas de los resultados obtenidos con todas las probetas utilizadas.

6 NORMAS PARA CONSULTAR
UNE 56-528-77. Características físico-mecánicas de la madera. Preparación de probetas para ensayo.
UNE 56-529-77. Características físicas mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el citado anhidro.
1 OBJETO
Esta norma tiene por objeto indicar el modo de realizar el ensayo para la determinación de la resistencia de la madera a la flexión estática.

2 APARATOS NECESARIOS
2.1 Aparato provisto de dos apoyos cilíndricos de ejes paralelos, cuyo radio sea 15 mm ± 0,5 mm separados 240 mm ± 1 mm. La carga se aplica mediante otro cilindro de 15 mm ± 0,5 mm de radio, centrado entre los anillos. Bajo este cilindro y sobre los apoyos se deben colocar placas de tablero contrachapado de 20 x 20 mm y 5 mm de grosor para evitar que los cilindros penetren en la madera. El aparato de medida de la carga debe permitir una aproximación de 0,1 Kg. La longitud de los apoyos y del cilindro debe ser superior a 20 mm.
2.2 Instrumentos para medir las dimensiones de la probeta con aproximación de 0,1 mm.
2.3 Elementos necesarios para determinar la humedad de la madera, de acuerdo con la norma UNE 56-529-77.

3 PROBETAS
Las probetas se prepararán de acuerdo con la norma UNE 56-528-77. Tendrán forma de prisma recto cuyos lados y altura, paralela a la dirección longitudinal de las fibras, de 300 mm.

4 PROCEDIMIENTO OPERATORIO
Se coloca la probeta centrada sobre los apoyos con su cara radial hacia arriba. Se miden las dimensiones de la probeta con aproximación de 0,1 mm. Se aplica la carga con velocidad constante de 5 mm/min hasta la rotura. Se lee la carga de rotura con aproximación de 0,1 Kg.

Se toma después un pedazo de la probeta rota y se determina con él la humedad de la madera, de acuerdo con la norma UNE 56-529-77.

5 OBTENCIÓN DE LOS RESULTADOS
La resistencia de la madera a la flexión estática se calcula por la siguiente fórmula:

\[ \sigma_H = \frac{3P}{2bh^2} \]

en la que:

\[ \sigma_H \] = Resistencia a la flexión estática, en kilogramos por centímetro cuadrado, de la madera al 4 % de contenido de humedad, con aproximación de 1 kg/cm².

\[ P \] = Carga de rotura en kilogramos.

\[ l \] = Longitud de la probeta entre apoyos en centímetros.

\[ b \] = Medida en dirección radial de la probeta en centímetros

\[ h \] = Medida en dirección tangencial de la probeta en centímetros.

Se considera como resistencia a la flexión estática la media aritmética de los resultados obtenidos con todas las probetas utilizadas.

6 NORMAS PARA CONSULTAR
UNE 56-528-77. Características físico-mecánicas de la madera. Preparación de probetas para ensayo.
UNE 56-529-77. Características físico-mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el estado anhidro.

Las observaciones relativas a la presente norma deben ser dirigidas al
IRANOR — Zurbano, 46 — Madrid (10)

UNE 56-537-79
Physical and mechanical characteristics of wood. Determination of strength against static flexion.
Caractéristiques physico-mechaniques du bois. Determination de la resistance à la flexion statique.
Grupo 1
1 OBJETO

Esta norma tiene por objeto indicar el modo de realizar el ensayo para la determinación de la resistencia de la madera a la tracción perpendicular a las fibras.

2 APARATOS NECESARIOS

2.1 Máquina de tracción, con dispositivo de medida cuya exactitud sea de 1 Kg.

2.2 Instrumentos adecuados para determinar las dimensiones de la probeta con precisión de 0,1 mm.

2.3 Instrumentos para determinación del contenido de humedad de acuerdo con la norma UNE 56-529-77.

3 PROBETAS

Las probetas se prepararán de acuerdo con la norma UNE 56-528-77. Tendrán la forma y las medidas indicadas en la figura 1.

Se harán dos series de probetas, una para ensayar la resistencia en dirección radial y otra para la tangencial.
4 PROCEDIMIENTO OPERATORIO

Se miden la anchura y la altura de la sección recta central de la probeta con aproximación de 0,1 mm y se calcula su área.

Se sujeta la probeta entre las mordazas de la máquina de tracción, como indica la figura 2.

![Figura 2](image)

Se aplica la carga a la velocidad constante de 400 Kg/min, hasta que se produzca la rotura de la probeta.

Se lee la carga de rotura con aproximación de 1 Kg. No se consideran las probetas cuya rotura se produzca por lugar distinto de la zona más delgada.

Con la misma probeta que se ha roto se determina el contenido de humedad de la madera de acuerdo con la norma UNE 56-529-77.

5 OBTENCION DE LOS RESULTADOS

La resistencia a la tracción perpendicular a las fibras se calculará por la fórmula siguiente:

$$\sigma_H = \frac{P_r}{S}$$

en la que:

- $\sigma_H$ = Resistencia a la tracción perpendicular a las fibras en Kilogramos por centímetro cuadrado para madera cuya humedad sea $H$ por 100, con aproximación de 1 Kg/cm².
- $P_r$ = Carga de rotura en kilogramos.
- $S$ = Área de la sección recta central de la probeta en centímetros cuadrados.
Se obtendrá también la magnitud llamada **cota de adherencia** según la expresión:

\[
C_a = \frac{\sigma_{H}}{100 \, r_{H}}
\]

en la que:

\( C_a \) = Cota de adherencia, con aproximación de 0,01.

\( \sigma_{H} \) = Resistencia a la tracción perpendicular a las fibras.

\( r_{H} \) = Peso específico de la madera cuya humedad sea H por 100.

Se consideran como resistencia a la tracción perpendicular a las fibras y como cota de adherencia las medias aritméticas de los resultados obtenidos con todas las probetas utilizadas para una humedad que sea igualmente la media aritmética de las que tengan las probetas.

6 **NORMAS PARA CONSULTA**

UNE 56-528-77 – *Características físico-mecánicas de la madera. Preparación de probetas para ensayos.*

UNE 56-529-77 – *Características físico-mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el estado anhídrico.*
1 OBJETO

Esta norma tiene por objeto indicar el modo de realizar el ensayo para determinar la resistencia de la madera al hendidio en dirección paralela a las fibras.

2 APARATOS NECESARIOS

2.1 Máquina de tracción con dispositivo de medida cuya exactitud sea de 1 Kg.

2.2 Instrumentos adecuados para determinar las dimensiones de la probeta con precisión de 0,1 mm.

2.3 Instrumentos para determinación del contenido de humedad de acuerdo con la norma UNE 56-529-77.

3 PROBETAS

Las probetas se prepararán de acuerdo con la norma UNE 56-528-77. Tendrán la forma y la medida indicadas en la figura 1.

---

Fig. 1

---

Las observaciones relativas a la presente norma deben ser dirigidas al

IRANOR - Serrano, 150 -- Madrid (6)
4 PROCEDIMIENTO OPERATORIO

Se mide la anchura de la probeta con aproximación de 0,1 mm.

Se introducen en la hendidura las mordazas especiales que lleva la máquina de tracción. Se aplica la carga a la velocidad constante de 50 Kg/min hasta que se produce la rotura de la probeta.

Se lee la carga de rotura con aproximación de 1 Kg. No se consideran las probetas cuya rotura no esté localizada en la sección central. Con la misma probeta que se ha roto se determina el contenido de humedad de la madera de acuerdo con la norma UNE 56-529-77.

5 OBTENCIÓN DE LOS RESULTADOS

La resistencia a la hienda se calculará por la fórmula siguiente:

\[ R_H = \frac{P_r}{a} \]

en la que:

- \( R_H \) = Resistencia a la hienda en kilogramos por centímetro para madera cuya humedad sea \( H \) por 100, con aproximación de 1 Kg/cm.
- \( P_r \) = Carga de rotura en kilogramos.
- \( a \) = Anchura de la probeta en centímetros.

Se obtendrá también la magnitud llamada *cota de hendibilidad* según la expresión:

\[ C_H = \frac{R_H}{100 r_H} \]

en la que:

- \( C_H \) = Cota de hendibilidad.
- \( R_H \) = Resistencia a la hienda.
- \( r_H \) = Peso específico de la madera cuya humedad es \( H \) por 100.

Se consideran como resistencia a la hienda y como cota de hendibilidad la media aritmética de los resultados obtenidos con todas las probetas utilizadas para una humedad que sea igualmente la media aritmética de las que tengan las probetas.

6 NORMAS PARA CONSULTA

- UNE 56-528-77 — *Características físico-mecánicas de la madera. Preparación de probetas para ensayos.*
- UNE 56-529-77 — *Características físico-mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el estado anhídrico.*
1 OBJETO
Esta norma tiene por objeto indicar el modo de interpretar los resultados de los ensayos realizados para determinar las características físico-mecánicas de la madera.

2 CONTENIDO DE HUMEDAD
Los resultados del ensayo descrito en la norma UNE 56-529-77 se interpretarán de la forma descrita en la Tabla I.

<table>
<thead>
<tr>
<th>Humedad en %</th>
<th>Estado de la madera</th>
<th>Medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt; 70</td>
<td>Madera amapadada</td>
<td>Sumergida en agua</td>
</tr>
<tr>
<td>30-70</td>
<td>Madera verde</td>
<td>En pie o cortada en monte</td>
</tr>
<tr>
<td>30</td>
<td>Madera saturada</td>
<td>El aire saturado de humedad</td>
</tr>
<tr>
<td>23-30</td>
<td>Madera semi-seca</td>
<td>Al aserrar</td>
</tr>
<tr>
<td>18-22</td>
<td>Madera comercialmente seca</td>
<td>Al aire</td>
</tr>
<tr>
<td>13-17</td>
<td>Madera seca al aire</td>
<td>Bajo cubierta</td>
</tr>
<tr>
<td>&lt; 13</td>
<td>Madera muy seca</td>
<td>Secada en cámara o en clima muy seco.</td>
</tr>
<tr>
<td>0</td>
<td>Madera anhidra</td>
<td>Secada en estufa</td>
</tr>
</tbody>
</table>

3 PESO ESPECIFICO
Los resultados del ensayo descrito en la norma UNE 56-531-77 para madera al 12% de humedad se interpretarán del modo descrito en la Tabla II.

<table>
<thead>
<tr>
<th>Madera</th>
<th>Resinosas</th>
<th>Frondosas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy ligera</td>
<td>&lt; 0,40</td>
<td>&lt; 0,35</td>
</tr>
<tr>
<td>Ligera</td>
<td>0,40-0,49</td>
<td>0,35-0,50</td>
</tr>
<tr>
<td>Semipesada</td>
<td>0,50-0,59</td>
<td>0,51-0,70</td>
</tr>
<tr>
<td>Pesada</td>
<td>0,60-0,70</td>
<td>0,75-0,95</td>
</tr>
<tr>
<td>Muy pesada</td>
<td>&gt; 0,70</td>
<td>&gt; 0,95</td>
</tr>
</tbody>
</table>

4 HIGROSCOPICIDAD
Los resultados del ensayo descrito en la norma UNE 56-532-77 para madera al 12% de humedad se interpretarán del modo descrito en la Tabla II.

Continúa en páginas 2 a 5.
dad se interpretarán según la Tabla III.

<table>
<thead>
<tr>
<th>Higroscopacidad</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débil</td>
<td>0,0015</td>
</tr>
<tr>
<td>Normal</td>
<td>0,0030</td>
</tr>
<tr>
<td>Fuerte</td>
<td>0,0050</td>
</tr>
</tbody>
</table>

5 CONTRACCION

Los resultados del ensayo descrito en la norma UNE 56-533-77 se interpretarán según la Tabla IV.

<table>
<thead>
<tr>
<th>Contracción volumétrica ( C_v ) en %</th>
<th>Clase</th>
<th>Madera</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>Gran contracción</td>
<td>Grandes fendas de desecación. Debe aserrarse antes de secar.</td>
</tr>
<tr>
<td>5 - 10</td>
<td>Contracción pequeña</td>
<td>Fendas pequeñas. Puede secarse antes de despiezar.</td>
</tr>
<tr>
<td>Coeficiente de contracción volumétrica ( v ) en %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,75-1</td>
<td>Muy nerviosa</td>
<td>Para medios de humedad constante.</td>
</tr>
<tr>
<td>0,55-0,75</td>
<td>Nerviosa</td>
<td>Para despiece radial.</td>
</tr>
<tr>
<td>0,35-0,55</td>
<td>Medianamente nerviosa</td>
<td>Para construcción.</td>
</tr>
<tr>
<td>0,15-0,35</td>
<td>Poco nerviosa</td>
<td>Para carpintería, ebanistería, tornería</td>
</tr>
</tbody>
</table>

6 DUREZA

Los resultados del ensayo descrito en la norma UNE 56-534-77, se interpretarán según las Tablas V y VI.

<table>
<thead>
<tr>
<th>Dureza (resinosas)</th>
<th>Clase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>Blandas</td>
</tr>
<tr>
<td>2 - 4</td>
<td>Semiduras</td>
</tr>
<tr>
<td>4 - 20</td>
<td>Duras</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dureza (frondosas)</th>
<th>Clase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2 - 1,5</td>
<td>Muy blandas</td>
</tr>
<tr>
<td>1,5 - 3</td>
<td>Blandas</td>
</tr>
<tr>
<td>3 - 6</td>
<td>Semiduras</td>
</tr>
<tr>
<td>6 - 9</td>
<td>Duras</td>
</tr>
<tr>
<td>9 - 20</td>
<td>Muy duras</td>
</tr>
</tbody>
</table>
7 COMPRESION AXIAL

Los resultados del ensayo descrito en la norma UNE 56-535-77 se interpretarán como se indica en la Tabla VII para madera con el 12% de humedad.

<table>
<thead>
<tr>
<th>Cota de dureza</th>
<th>Clase</th>
<th>Madera</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 6</td>
<td>Baja</td>
<td>Para carpintería</td>
</tr>
<tr>
<td>6 - 9</td>
<td>Mediana</td>
<td>Para industria</td>
</tr>
<tr>
<td>9 - 12</td>
<td>Alta</td>
<td>Para usos especiales.</td>
</tr>
</tbody>
</table>

8 RESISTENCIA A LA FLEXION DINAMICA

Los resultados del ensayo descrito en la norma UNE 56-536-77 se interpretarán, según la Tabla VIII para madera con el 12% de humedad.

9 RESISTENCIA A LA FLEXION ESTATICA

Los resultados del ensayo descrito en la norma UNE 56-537-77 se interpretarán según Tabla IX para ...
10 RESISTENCIA A LA TRACCION PERPENDICULAR A LAS FIBRAS

Los resultados del ensayo descrito en la norma UNE 56 538 se interpretarán del modo descrito en las Tablas X y XI, para madera con el 12\% de humedad.

Tabla X

<table>
<thead>
<tr>
<th>$\sigma_{12}$</th>
<th>Clase</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 25</td>
<td>Baja</td>
</tr>
<tr>
<td>25-45</td>
<td>Mediana</td>
</tr>
<tr>
<td>&gt; 45</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Tabla XI

<table>
<thead>
<tr>
<th>$C_a$</th>
<th>Clase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,15 - 0,30</td>
<td>De baja adherencia</td>
</tr>
<tr>
<td>0,30 - 0,45</td>
<td>De mediana adherencia</td>
</tr>
<tr>
<td>0,45 - 0,60</td>
<td>De alta adherencia</td>
</tr>
</tbody>
</table>

11 RESISTENCIA A LA HIENDA

Los resultados del ensayo descrito en la norma UNE 56-539-77 se interpretarán del modo descrito en las Tablas XII y XIII para madera con el 12\% de humedad.

Tabla XII

<table>
<thead>
<tr>
<th>$R_{12}$</th>
<th>Clase</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 15</td>
<td>Baja</td>
</tr>
<tr>
<td>15 - 30</td>
<td>Mediana</td>
</tr>
<tr>
<td>&gt; 30</td>
<td>Alta</td>
</tr>
</tbody>
</table>
12 NORMAS PARA CONSULTA

UNE 56-529-77 - Características físico-mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el estado anhídrico.

UNE 56-531-77 - Características físico-mecánicas de la madera. Determinación del peso específico.

UNE 56-532-77 - Características físico-mecánicas de la madera. Determinación de la higroroscopicidad.

UNE 56-533-77 - Características físico-mecánicas de la madera. Determinación de la contracción lineal y volumétrica.

UNE 56-534-77 - Características físico-mecánicas de la madera. Determinación de la dureza.

UNE 56-535-77 - Características físico-mecánicas de la madera. Determinación de la resistencia a la compresión axial.

UNE 56-536-77 - Características físico-mecánicas de la madera. Determinación de la resistencia a la flexión dinámica.

UNE 56-537-77 - Características físico-mecánicas de la madera. Determinación de la resistencia a la flexión estática.

UNE 56-538-77* - Características físico-mecánicas de la madera. Determinación de la resistencia a la tracción perpendicular a las fibras.

UNE 56-539-77 - Características físico-mecánicas de la madera. Determinación de la resistencia a la hendidura.
CARACTERÍSTICAS FÍSICO-MECÁNICAS DE LA MADERA.
DETERMINACIÓN DEL ESFUERZO CORTANTE.

PROPUESTA
UNE 56543

1 - OBJETO

Esta norma tiene por objeto indicar el modo de realizar el ensayo para determinar la resistencia al esfuerzo cortante de la madera.

2 - APARATOS NECESARIOS

Para la realización del ensayo se necesitan unos útiles de carga y apoyo de las probetas con la forma y disposición que indica la figura nº 1.

Un aparato de carga que permita aplicar esta de forma contínua, con una velocidad de avance de 0,6 mm/min., con una precisión de 0,1 Kg.

Se necesitan asimismo instrumentos para medir las dimensiones de las probetas, con aproximación de 0,1 mm., así como elementos necesarios para medir su humedad, de acuerdo con la norma UNE 56 529.

3 - PROBETAS

Las probetas se prepararan de acuerdo con la norma UNE 56 528. Tendrán forma y dimensiones indicadas en la figura nº 2. La altura deberá ser paralela a la dirección de las fibras.

4 - PROCEDIMIENTO OPERATORIO

Las probetas se colocarán en la máquina de ensayos de forma que el útil de carga caiga perfectamente en el rebaje de la probeta y que parte de la cara inferior de la probeta apoye sobre la mesa del soporte, quedando 3 mm. separada del plano de rotura del esfuerzo cortante.

Colocada la probeta, se aplicará la carga de forma contínua hasta rotura, con una velocidad de avance de 0,6 mm/min. Se anota la carga de rotura.

Con la misma probeta que se ha roto, se determina el contenido de humedad de la madera, de acuerdo con la norma UNE 56 529.

5 - OBTENCION DE RESULTADOS

La resistencia de la madera al esfuerzo cortante se calcula por la fórmula siguiente:
\[ Z_H = \frac{Z_r}{S} \]

en la que

\( Z_H \): resistencia al esfuerzo cortante de la madera a la humedad del \( H \) %.

\( Z_r \): carga de rotura en Kg.

\( S \): área de la sección de cizalladura.

La resistencia al esfuerzo cortante de la madera a la humedad normal se calcula mediante la fórmula siguiente:

\[ Z_{12} = Z_H \left( 1 + \frac{Z}{100} \right) \]

siendo

\( Z_{12} \): la resistencia al esfuerzo cortante al 12 % de humedad.

\( Z \): coeficiente de variación del esfuerzo cortante con la humedad. Determinado experimentalmente, tiene como valor medio \( \frac{1.43}{100} \) en frondosas y \( \frac{1.37}{100} \) en coníferas.

El resultado se expresa con aproximación de una unidad.
ANEXO Núm. VII

REPORTAJE FOTOGRAFICO
ÍNDICE

Foto no 1: Aspecto del pinar de Aramañona (Alava). Muestra no 32

Foto no 2: Trozos de madera en la Escuela Técnica Superior de Ingenieros de Montes.

Foto no 3: Madera de pino insignis ya despiezada en tablas radiales y restos de las trozas.

Foto no 4: Tablas reducidas a listones de 2 x 2 cm. de sección.

Foto no 5: Aspecto de las probetas de hienda.

Foto no 6: Máquina de carga para la realización de los ensayos físico-mecánicas.

Foto no 7: Detalle del ensayo de tracción perpendicular a las fibras.

Foto no 8: Ensayo de compresión axial.

Foto no 9: Gráficos carga-deformación del ensayo de flexión estática.

Foto no 10: Ensayo de flexión estática.

Foto no 11: Probeta y dispositivo de ensayo del esfuerzo cortante.

Foto no 12: Ensayo de compresión perpendicular a las fibras.

Foto no 13: Detalle de la disposición de los anillos.

0000 O 0000