Selection of human embryos for transfer by Bayesian classifiers

Dinora A. Morales Endika Bengoetxea Pedro Larrañaga

In this work we approach by Bayesian classifiers the selection of human embryos from images. This problem consists of choosing the embryos to be transferred in human-assisted reproduction treatments, which Bayesian classifiers address as a supervised classification problem. Different Bayesian classifiers capable of taking into account diverse dependencies between variables of this problem are tested in order to analyse their performance and validity for building a potential decision support system. The analysis by receiver operating characteristic (ROC) proves that the Bayesian classifiers presented in this paper are an appropriated and robust approach for this aim. From the Bayesian classifiers tested, the tree augmented naive Bayes, k-dependence Bayesian and naive Bayes classifiers showed to perform almost as well as the semi naive Bayes and selective naive Bayes classifiers.

1. Introduction

Developments in medical technology have led to a number of methods designed for assisted human reproduction. Procedures such as artificial insemination, in vitro fertilisation (IVF) and embryo transfer increasingly provide new options in assisted reproductive technology. Assisted human reproduction deals with the social infertility problem. For various reasons, the number of embryos developed through the assisted reproductive techniques is usually greater than the number of the ones that can be transferred. This is the case for instance in Spain, where the law only permits three embryos to be transferred at most in each treatment. As another example, Italian law also permits up to three oocytes to be fertilised, although it is not allowed to freeze them for a possible future treatment.

Many studies have shown that morphological structures in the embryo can be used as bio-markers of embryonic quality [1–4], and that embryo selection based on morphology assessment is relevant to improve implantation and pregnancy rates [1,5]. Most of the existing scoring systems are based on combinations of several morphological parameters such as cleavage stage, embryonic fragmentation and blastomere uniformity [1,2,6]. In particular, the morphology of pronuclear oocyte has been linked with implantation and development to the blastocyst stage [7]. Embryologists select the embryos on the basis of subjective light microscopic morphological analysis.

Data mining techniques such as decision trees and the construction of predictive statistical models have been used previously on IVF to assist on the selection of the most promising oocyte for implantation. The literature contains a number of such studies with this goal. Saith et al. [8] apply decision trees to investigate the relationship of the features of the embryo, oocyte and follicle to the successful outcome of the embryo transfer. Trimarchi et al. [9] studied the models based on data mining techniques, in particular applying the C5.0 algorithm for inferring classification trees [10]. Jurisica et al. [11] presented an application of the TA3 system as an intelligent decision support system for IVF practitioners that, in some situations, can suggest possible treatments to improve the success rate. Patrizi et al. [12] presented a pattern recognition algorithm to select embryos from images, which tries to classify the objects given into a number of classes and to formulate from those
The aim of the study is to apply for the first time Bayesian classifiers to information extracted from embryo images in order to predict their viability to succeed implantation on women’s uterus, as well as to overcome the unbalanced data set problem that is so common in clinical databases of infertility treatments. In other works in the literature Bayesian classifiers are applied for identifying the most relevant morphological and clinical variables that determine the outcome of IVF treatments [14], but the use of Bayesian classifiers to embryo images for classifying embryos according to the estimation of their implantation probability has not been analysed previously. The final objective is to develop a system able to do it automatically which could be used as a decision support system, based on non-invasive, precise and detailed analysis of human embryo morphology. This decision support system could at the same time be used as a training tool for novel embryologists, and therefore to help on improving success rates of infertility treatments.

The paper is organised as follows: the next section revises the problem of selecting embryos for transfer on infertility treatments as a supervised classification one. Section 3 describes digital acquisitions and provides a brief overview of the Bayesian classifiers used in this work. Section 4 shows experimental results and their interpretation. Finally in Section 5 conclusions and some future work lines are presented.

2. The problem in selection of human embryos

Infertility is defined as the state that normal couples, not using any form of contraceptive measures, fail to become pregnant over at least one year. Human-assisted reproduction methods like IVF through insemination of oocyte and sperm and the process called intracytoplasmic sperm injection (ICSI)—where the sperm is injected into oocyte—have been widely used to treat infertility. Oocyte and sperm are obtained separately in fertilisation treatment process. In order to obtain a sufficient number of oocyte ovulatory stimulants are used. These stimulants make pituitary to increase secretion of follicle stimulating hormones. Later, the first days after the fertilisation embryos are developed in an embryo culture medium under a controlled atmosphere. A few embryos, the ones deemed best by the clinician and embryologist regarding the likelihood of bringing forth a child, are chosen and transferred to the woman’s uterus within 12–72 h from their formation.

An essential problem in human-assisted reproduction is the selection of the embryos suitable to be transferred in a patient. Embryologists analyse the embryo by non-invasive techniques by inverted microscopy with Hoffman contrast. In usual practice the selection of human embryos—as well as their morphological characterisation—is based on the subjective judgement of the embryologist. Furthermore, the time is a limiting factor when analysing the embryo, which makes it difficult to investigate embryo morphology in detail for its transfer. That is why, the training of embryologists and the need to establish homologated criteria are essential to avoid as much as possible the subjectivity of the evaluation and selection of embryos. At the same time, the objectives of the task are more complex since we want to maximise implantation rates while limiting the incidence of multiple pregnancies.

The aim of intelligent methods is to support the selection process and to choose from the available embryos the few of them which have a good quality and the greatest potential to implant in the uterus. Even if the final objective is that the embryo will later develop into a live child, on IVF treatments implantation is regarded by itself as a success since later pregnancy follow up is considered as a different gynaecological question.

In the present study we apply for the first time Bayesian classifiers to recognise potentially good embryos on the basis of a training sample set of images, in order to predict for each new embryo its outcome (if it will succeed on implanting or not). The supervised classification decision is based on the feature vector extracted from embryos morphology of a database of previous treatments and their class (outcome). Bayesian classifiers have demonstrated good precision in complex medical problems [15], which makes them likely to be applied on this new complex domain. In particular, the use of Bayesian classifiers able to consider higher degree dependencies is especially suited for obtaining better classification results in this type of complex problems in which the features are not conditionally independent given the class.

2.1. Selection of embryos as a supervised classification problem

In order to apply Bayesian classifiers, we regard the embryo selection as a supervised classification problem in which, having as a starting point an embryo image, the classifier has to provide an estimate on its potential or suitability to achieve successful implantation if it is transferred to the uterus.

In order to build the classifiers from a database of embryo images selected on IVF treatments—i.e. with known outcome—we propose to divide all images on two classes: images of embryos that managed to implant to class 1, and to class 0 otherwise. For each image a pattern vector of embryo features is defined by regarding each image as an array of intensities of grey-levels from which the frequency distribution of the grey tones for each image was obtained.

A comprehensive procedure to extract embryo characteristics from an image is defined in [12]. These authors propose to apply to the embryo image a procedure that takes into account the central moments or moment invariants which was first proposed in [16] to extract the shape and texture features of an image. These central moments are invariant with respect to translation, rotation and scaling of the pattern represented in an image, and they can also be applied to binary or grey level images. In Biomedical research the central moments have been applied to obtain the characteristics of cell images [17] or medical images [18, 19].

Given the image of an embryo, the marginal distribution of pixel values in the horizontal and vertical directions is determined and from each distribution the first six central moments
(polynomial functions of central tendency and spread) were calculated. This pixel-intensity profile indicates the homogeneity of the image—whether it has many dark and light spots and how they are distributed. The first moment was ignored, since it is zero. These values were used to form the pattern vector of each embryo that consists of eleven values: the ten central moments (extracted from its image) and the embryo class (1 or 0, i.e. implanted or not implanted). This data acquisition is the one proposed in the literature by Patrizi et al. [12].

More formally, the problem of predicting the outcome of a human embryo by means of supervised classification can be defined as follows. We denote by \(x = (x_1, \ldots, x_n) \) the vector of predictor variables—representing the characteristics of a concrete embryo—for the problem of classifying an embryo image into one of the two classes of variable \(C \). The true class—i.e. the real outcome if we transfer this embryo—is denoted by \(c \) and it takes values in the domain set \(\{0, 1\} \); Each pattern vector represents the embryo morphological features, assigned to class 1 if the embryo is suitable for transfer, and to class 0 otherwise. The supervised classification problem consists on creating a model that assigns any pattern vector \(x = (x_1, \ldots, x_n) \) to one of the two classes of variable \(C \). Statistical classifiers such as Bayesian classifiers provide an estimate of \(p(c|x) \), the probability that an embryo image with predictor vector \(x = (x_1, \ldots, x_n) \) belongs to class \(c \in C \). We can regard the classifier as a \(y : (x_1, \ldots, x_n) \rightarrow \{0, 1\} \) function that assigns labels to observations. In supervised classification the objective is to build a classifier that minimises the total error cost by taking into account the joint probability distribution \(p(x_1, \ldots, x_n, C) = p(c|x_1, \ldots, x_n)p(x_1, \ldots, x_n) = p(x_1, \ldots, x_n|c)p(c) \) which is unknown a priori. According to [20], for the particular case of a symmetric cost function, the total error cost is minimised when assigning to the example \(x = (x_1, \ldots, x_n) \) the class \(y(x) \) with the highest a posteriori probability:

\[
y(x) = \arg \max_c p(c|x_1, \ldots, x_n)
\]

In the case of having different misclassification costs, the a posteriori probability is compared to a threshold \(t \) to predict the class of \(x \). This threshold is usually chosen to minimise the expected misclassification loss [21], resulting in the following classification rule: classify \(x \) to class 1 if and only if \(p(C = 1|x) \) is greater or equal than threshold \(t \).

3. Material and methods

3.1. Selection of embryos and recording of digital images

The embryo images in our experiments as well as their characterisation by central moments are the ones obtained for the study presented by Patrizi et al. [12] in which the data and its validation are approached in a different way. The treatment of artificial insemination was conducted at the Genesis Center in Rome during the period January 1998 to December 2001, whose database included 275 cycles of ICSI for 195 patients [12]. Note that one of the limitations of our study is that we could not fully ensure complete independence of samples (i.e. some different embryo images correspond to a same couple).

For this study 249 embryos were selected and photographed. Embryo images at the 4-cell stage were taken 40–50h after fertilisation and before transfer. Embryos were catalogued according Mils’s score [22]. Fig. 1 shows examples of embryo images obtained following this procedure which were used as imported data on this study.

3.2. Bayesian classifiers

Bayesian classifiers have been chosen since they have already demonstrated a good precision in other complex medical problems [15], and also because these models are transparent and comprehensive for medical practitioners. Our concrete problem of predicting the viability to succeed implantation of an embryo is addressed as a supervised classification problem to allow the use of these classifiers. Bayesian classifiers are able to provide a concrete probability estimation of the capability of each embryo to be implanted. The final aim is to have a system able to support the selection of the most promising available embryos in order to choose the few of them which have good quality and the greatest potential for implantation based on the feature vector of embryo morphology obtained from an embryo image.

We present next some of the classifiers in the form of Bayesian networks [23] that have been proposed in the literature. Paradigms such as naive Bayes [24], selective naive Bayes [25], semi naive Bayes [26], tree augmented naive Bayes (TAN) [27] and the \(k \)-dependence Bayesian (\(k \)DB) classifier [28] are thought specifically for supervised classification problems.

Bayesian classifiers need to be constructed using a score that measures the goodness of each configuration—i.e. classifier’s structure showing relationships between all the variables. One of the main advantages of Bayesian classifiers is that their structure is an intuitive graphical representation, allowing to visualise the underlying probabilistic classification process and to provide a set of properties that can be appreciated by medical staff. Their graphical structure facilitates the interpretability and understanding by clinicians, reflecting probabilistic relationships between domain variables. In our concrete problem, the conditioned and marginal probabilities of the model can be of interest to embryologist who want to better understand the uncertainty of this medical domain.

A model hierarchy of increasing structural complexity can be established for Bayesian classifiers, where the naive Bayes is at the bottom and a general Bayesian network is at the top of this hierarchy. Fig. 2 illustrates examples of some Bayesian classifiers models due to dependencies that are used in this paper.

The naive Bayes classifier [24] applies the Bayes theorem to predict for each unseen instance \(x \), the class \(c \in C \) for which it has a higher a posteriori probability. This a posteriori probability is computed as

\[
p(c|x) \propto p(c) \prod_{i=1}^{n} p(x_i|c)
\]
In the classical literature the selective naive Bayes classifier is built following one of the following two standard ways: forwardly starting with an empty set of variables and adding them one by one, or backwardly by removing in each iteration one of the variables that is discarded. The forward sequential selection wrapper algorithm is one of the former possibilities, which starts with an empty set of variables. At each step the model adds the most accurate variable calculated by estimated accuracy [30] and stops when no improvement is obtained.

As an example of applying the selective naive Bayes classifier, if we consider the selective naive Bayes classifier illustrated in Fig. 2(b), the representation of an instance \(\mathbf{x} = (x_1, x_2, x_3, x_4, x_5) \), would be assigned to the class

\[
c^* = \arg \max_c p(c)p(x_1|c)p(x_2|c)p(x_3|c)
\]

The selective naive Bayes algorithm is able to detect irrelevant and redundant variables, although no dependency between the variables present in the structure are taken into account. However, in most of real problems relationships between variables exist and need to be considered for a good classification performance. For this reason, other Bayesian classifiers that overcome the conditional independence assumption between variables have been developed.

In semi naive Bayes [31] a new kind of variable—a joint variable—is built via the cartesian product of a subset of variables. The variable is represented as a single node in the Bayesian network, allowing to surpass the assumption of conditional independence required in the literature [26] between the variables that are included in a same node. Each joint node represent a new variable that considers all the dependencies between the original variables that form it.

The semi naive Bayes classifier requires an algorithm to build the Bayesian network structure. The forward sequential selection and joining (FSSJ) algorithm [26] is an example of techniques that can be applied for this purpose. This starts with an empty structure to which new nodes or new variables fused in existing nodes are added iteratively until non-improvement of the performance in terms of estimated accuracy is reached.

As an example, Fig. 2(c) shows a possible semi naive Bayes model that could have been induced using this approach. Under this classifier, the pattern \(\mathbf{x} = (x_1, x_2, x_3, x_4, x_5) \) will be assigned
to the following class:
\[c^* = \arg \max_c p(c) p(x_1 | c) p(x_2, x_4 | c) p(x_3 | c) \]
(5)

The tree augmented naive Bayes (TAN) [27] is another Bayesian network classifier that allows dependencies between variables. The main restriction on the dependencies of this Bayesian classifier can take into account is that each predictive variable can have a maximum of two parents: the class variable \(C \) and one of the other predictive variables \(X_1, \ldots, X_n \).

In order to build the TAN Bayes classifier’s structure we need previously to learn the dependencies between the different variables \(X_1, \ldots, X_n \). This algorithm applies a score based on the information theory, and the weight of an arc \((X_i, X_j)\) is defined by the mutual information measure conditioned to the class variable as
\[I(X_i, X_j | C) = \sum_c \sum_{x_i} \sum_{x_j} p(x_i, x_j, c) \log \frac{p(x_i, x_j | c)}{p(x_i | c) p(x_j | c)} \]
(6)

Using the mutual information of each predictive variable and the class—\(I(X_i, C) \)—and the conditional mutual information of each pair of domain variables given the class—\(I(X_i, X_j | C) \)—the algorithm builds a tree structure.

Once having computed these values, the Bayesian network structure of the TAN Bayesian classifier is built in two phases, the first of which starts from an undirected complete graph where the nodes correspond to the predictor variables \(X_1, \ldots, X_n \). The algorithm assigns the weight \(I(X_i, X_j | C) \) to the edge connecting variables \(X_i \) and \(X_j \). The tree is constructed by assigning the edge with the highest conditional mutual information. This process is repeated adding higher score edges unless a possible addition forms a loop, in which case that edge is discarded and the next edge is analysed. Finally the undirected graph is transformed in a directed one by choosing a random variable as the root.

In a second phase the structure is augmented to the naive Bayes classifier by adding a node labelled as \(C \), and adding one arc from \(C \) to each of the predictor variables \(X_i \) (\(i = 1, \ldots, n \)). Fig. 2(d) shows an example of a TAN classifier structure that could be induced using this approach, where an instance \(x = (x_1, x_2, x_3, x_4) \) would be assigned to the class
\[c^* = \arg \max_c p(c) p(x_1 | c, x_3) p(x_2 | c, x_3) p(x_3 | c) p(x_4 | c) \]
(7)

The \(k \)-dependence Bayesian classifier (\(kDB \)) [28] tries to avoid the restriction of TAN structure which limits the number of parents that each predictive variable can have to a maximum of two (the class and another predictive variable). In this approach, every predictive variable is allowed to have up to \(k \) parents besides the class-node. The main characteristic of a \(kDB \) structure is the fact that it is the user who fixes the restrictive condition of the value of \(k \) which represents the maximum number of parents per variable.

The \(kDB \) is built using mutual information—\(I(X_i, C) \)—and conditional mutual information—\(I(X_i, X_j | C) \)—scores. The procedure starts uniquely with the class-node \(C \) in the structure. Each iteration the algorithm selects the node not included in the structure with highest \(I(X_i, C) \), its corresponding arc from \(C \) to \(X_i \) is added, and the value \(I(X_i, X_j | C) \) is computed for all the possible new arcs from the \(X_j \) nodes already inserted in the structure. All these arcs are ordered from the highest to lowest, from which the highest \(k \) nodes are added to the structure (or all of them if the structure contains so far \(k \) or less nodes excluding \(C \)). Fig. 2(e) shows an example of a \(kDB \) classifier structure induced using this approach.

As an example of the result of a \(kDB \) classifier structure that could be obtained applying this procedure, if we consider the selective naive Bayes classifier illustrated in Fig. 2(e) as the representation of an instance \(x = (x_1, x_2, x_3, x_4, x_5) \), this would be assigned to the class
\[c^* = \arg \max_c p(c) p(x_1 | c, x_3) p(x_2 | c, x_1, x_5) p(x_3 | c) \]
\[\times p(x_4 | c, x_1, x_3) p(x_5 | c, x_1, x_4) \]
(8)

The main difference between all these classifiers is the number of interdependencies between variables that they can take into account, since higher order classifiers are able to consider more interdependencies between the different variables for each problem—i.e. TAN is able to consider up to 2 conditional dependencies per variable while \(kDB \) can consider up to \(k \). Therefore, in complex problems in which the features have relevant conditional dependencies—such as in our embryo selection problem in which morphological variables are conditionally dependent to each other given the class—the last classifiers are more likely to perform better.

3.3. Unbalanced data sets

The unbalanced data set issue raises from the fact of having an unbalanced class distribution, that is, when the original data set from which the classifier is to be built has different proportion of cases for each of the classes. This is the case for the embryo selection problem, since clinical data contains always many more embryos that did not manage to implant than examples of successful ones, making databases highly unbalanced. This affects directly the performance of classifiers since they usually tend to avoid the less represented class, sometimes to the extent of practically never considering it if the imbalance is high.

Many research on how to handle highly unbalanced data sets has been focused on modifying the class distribution of the training set. Since our interest is to validate Bayesian classifiers for their application to this particular problem, an alternative for evaluating the performance of the classifier under these conditions is to apply the receiver operating characteristic (ROC) analysis [32] to measure the cost-benefit ratio of diagnostic decision making. Furthermore, the ROC curve is proven to be a better evaluation measure than accuracy in problem domains with unbalanced class distributions [21,33,34].

3.4. Validation of classifiers

ROC curves are frequently used in biomedical informatics research to evaluate computational models for decision support,
diagnosis, and prognosis [34]. ROC curves were introduced in machine learning by Spackman [55]. ROC curves have properties that make them especially useful as a tool for evaluating and comparing supervised classification algorithms [36,37].

ROC curves are produced by varying the threshold \(t \) between 0 and 1. This threshold value \(t \) is usually chosen to minimise the expected misclassification loss. The ROC curve allows to view graphically the performance of a classifier by plotting the sensitivity—which in our case is the proportion of embryo images correctly classified as being suitable for implantation—versus 1-specificity—the proportion of good embryos images misclassified as no suitable. Different points in the curve correspond to different values of the threshold on the class probability model. Several different indices can be calculated in order to summarise the accuracy of a classifier.

In ROC analysis the full area under the ROC curve (AUC) is the most commonly used ROC index [38]. AUC is computed by non-parametric, parametric or re-sampling methods to evaluate and compare the performance of different classifiers. The AUC obtains some value between 0.5—associated to the diagonal of the square—and 1—corresponding to the curve that follows the top-left corner. In ROC curves, the accuracy of a classifier is estimated by the fraction of cases correctly classified and is determined by the appropriated chosen threshold. Recent years have seen an increase in the use of ROC graphs on the machine learning community. In addition to being a generally useful performance graphical method, they have properties that make them especially useful for domains with unbalanced data sets and unequal classification error costs [21,34]. These characteristics have become increasingly important as research into the areas of cost-sensitive learning and learning in the presence of unbalanced classes.

We evaluate the performance of Bayesian classifiers with ROC analysis in order to show their performance and to get the estimated accuracy of the classifier over seen instances. In our case, the areas under ROC curves were calculated by the trapezoidal rule [39] non-parametric method. This method is equivalent to the Mann–Whitney U statistics.

A technique to estimate the accuracy of classifiers is the \(k \)-fold stratified cross-validation [30]. In this method a data set \(S \) is partitioned into \(k \) folds such that each class is uniformly distributed among the \(k \) folds: As a result, the class distribution in each fold is similar to such of the original data set \(S \), and each fold can be used as a test set. The test set serves the role of providing new data and the rest of the folds are used for training. This procedure is repeated \(k \) times. In our case, we applied 10-fold cross-validation to get the estimated accuracy of each Bayesian classifier.

4. Experimental results

For our study, we applied a database containing continuous variables where each case corresponds to morphological embryo features, and the categorical variable class. The Bayesian classifiers introduced previously are implemented to manage uniquely discrete data. Therefore, a pre-process step is applied to discretise the data, by means of the equal frequency algorithm [40] into three intervals. The Elvira software [41] is used in the implementation of the previously presented Bayesian classification models. In order to validate the Bayesian classification models a \(k \)-fold stratified cross-validation method is performed [30], and the estimated accuracy for each classifier is computed using this method.

We applied a cost sensitive learning by varying the decision threshold values, in our case 1000 values have been taken into account for Bayesian learning. This process is similar to vary the prior probability of each class on the training set or the costs of errors on each class [42]. Cost sensitivity learning by varying the decision threshold allows the minimisation of the Bayes error rate, defined by the overlap between the two distributions of class values [43].

We performed our experiments with the same database used in the literature in [12], which contains the information of the six central moments extracted from a total of 249 embryo images. These are formed by a total of 35 successful—i.e. implantation was obtained—and 214 unsuccessful cases of embryos that were transferred.

We investigated the performance of different Bayesian classifiers when applied to the problem of selecting the human embryo for transfer to the uterus. Table 1 shows the results after evaluating the estimated accuracy of seven Bayesian classifiers by stratified 10-fold cross validation. In TAN and \(kDB \) algorithms introduced in Section 3.2, the search of the best model is guided by the mutual information criterion. Alternatively to this, the algorithms TAN-wrapper and \(kDB \)-wrapper models [15] have been implemented, in which the search in the space of possible graph structures of TAN and \(kDB \) models, respectively, is guided by another score based on an estimated classification goodness measure. Our experiments show that the TAN-wrapper classifier obtained the best accuracy while semi naive Bayes resulted in the worst classifier.

Fig. 3 shows the ROC analysis for evaluation of the previously defined Bayesian classifiers. The experiment was repeated ten times to calculate by \(k \)-fold cross-validation the AUC at 95% of confidence. Each figure was plotted with one hundred points and shows ten error bars at 95% confidence intervals. Looking on Fig. 3 it must be noted that TAN-wrapper, \(kDB \)-wrapper, TAN and \(kDB \) classifiers showed the highest AUC. The \(kDB \) classifier reaches the best sensibility of 82% with a specificity of 80%. The TAN-wrapper classifier reaches higher

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Bayes</td>
<td>0.8549 ± 0.1757</td>
</tr>
<tr>
<td>Selective naive Bayes</td>
<td>0.8233 ± 0.1610</td>
</tr>
<tr>
<td>Semi naive Bayes</td>
<td>0.7848 ± 0.0262</td>
</tr>
<tr>
<td>TAN</td>
<td>0.8917 ± 0.1580</td>
</tr>
<tr>
<td>(kDB)</td>
<td>0.8333 ± 0.1285</td>
</tr>
<tr>
<td>TAN-wrapper</td>
<td>0.9125 ± 0.1186</td>
</tr>
<tr>
<td>(kDB)-wrapper</td>
<td>0.8763 ± 0.1124</td>
</tr>
</tbody>
</table>
sensibility of 92% with specificity 60%, and the classifier with highest specificity of 90% and the best sensibility of 74% is kDB-wrapper.

The fact that the two Bayesian classifiers performing best are TAN and kDB is not a random. These two classifiers do not assume predictor variables to be conditionally independent to each other given the class variable, and are characterised by the fact that the resultant Bayesian classifier structure is able to represent conditional dependencies between variables. We can conclude that this information is relevant for providing a better classification result to predict the implantation outcome from data extracted out of an embryo image. Table 2 shows the areas under these curves and their confidence intervals at 95% confidence bound. The TAN-wrapper, kDB, kDB-wrapper and TAN have the highest AUC with 0.9994, 0.9991, 0.9819 and 0.9454 values, respectively. In the traditional Bayesian classifiers like semi naive Bayes, selective naive Bayes and naive Bayes, their AUCs takes values of 0.7008, 0.8483 and 0.8918, respectively.

Finally, in order to compare Bayesian classifiers to a baseline method that has been applied widely in the literature for the embryo selection problem, we performed the same experiment with logistic regression [44–46]. Using the default parameters of the WEKA workbench we applied a logistic regression model with a log-likelihood ridge estimator value of 1.0E—8 to the same data. The accuracy obtained following the same validation method as with Bayesian classifiers was 82.23%, and
with 0.535 of AUC. Since the results obtained by Bayesian classifiers improves these values—except from the accuracy of semi naïve Bayes) once again the validity of our approach is confirmed.

5. Conclusions and future work

This paper constitutes the first Bayesian approach for the estimation of the implantation probability of embryos in artificial insemination treatments as from embryo images, and we investigated here the ability of Bayesian classifiers to predict the suitability of an embryo to succeed implantation if it is chosen for being transferred. The final objective is to support the selection of the most promising available embryos in order to choose the few of them which have good quality and the greatest potential for implantation. Bayesian classifiers could be used to build decision support systems for embryologists to address the problem of selection of embryos for transfer in human-assisted reproduction treatments. Here different Bayesian classifiers have been evaluated and compared by ROC analysis to overcome the unbalance data set problem.

Our results for Bayesian classifiers are positive enough as to allow considering them satisfactorily for this problem. From all the classifiers, the ones that performed best are TAN and kDB, the only two which are able to take into account conditional dependencies between variables to bring a conclusion, which evidences the complexity of the problem and the relevance to consider in order to be able to improve the classification accuracy.

If we compare our results to the ones obtained in the literature for the embryo selection problem, we obtain a good performance of Bayesian classifiers, in particular for TAN with wrapper feature selection with 91% of accuracy. The lowest accuracy with our Bayesian classifiers the 78% of accuracy with wrapper feature selection with 91% of accuracy. The authors would also like to thank the invaluable contribution of Ph.D. G. Patrizi and M.D. C. Manna to this paper, for their provision of data and support regarding their previously published paper [12].

This work has been partially supported by the following grants: Erótik, Saiotik and Research Group Funding programs 2007-2012 (IT-242-07) (Basque Government), TIN2008-06815-C02-01, TIN2008-06815-C02-02 and Consolider Ingenio 2010-CSID2007-00018 projects (Spanish Ministry of Education and Science) and COMBIOBOMED network in computational biomedicine (Carlos III Health Institute).

Conflict of Interest Statement

None declared.

Acknowledgements

The authors would also like to thank the invaluable contribution of Ph.D. G. Patrizi and M.D. C. Manna to this paper, for their provision of data and support regarding their previously published paper [12].

References

Pedro Larràñaga received his M.Sc. degree in mathematics from the University of Valladolid, in Spain, in 1981, and his Ph.D. in computer science from the University of the Basque Country, in Spain, in 1995. He is professor at the Department of Artificial Intelligence of the Technical University of Madrid. His research topics include Bayesian networks and evolutionary computation with applications in medicine and bioinformatics.