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ABSTRACT   

A method to design isotropic inhomogeneous refractive index distribution is presented, in which the scalar wave field 
solutions propagate exactly on an eikonal function (i.e., remaining constant on the Geometrical Optics wavefronts). This 
method is applied to the design of “dipole lenses”, which perfectly focus a scalar wave field emitted from a point source 
onto a point absorber, in both two and three dimensions. Also, the Maxwell fish-eye lens in two and three dimensions is 
analyzed. 
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1. INTRODUCTION  
It is common to deduce Geometrical Optics as a limit case of Scalar Wave Optics, for instance, when the wavenumber 
k=ω/c is very large. In that limit, the propagation of the scalar field can be calculated with good approximation using 
rays. There are, however, some trivial cases in which the ray trajectories guide the scalar field in an exact manner (i.e. 
with no restriction to large k) so that the field is constant on the Geometrical Optics wavefronts. For instance, a 
(monopole) point source emitting from the center of a spherical symmetric refractive index distribution n(r) will generate 
a field which will depend on the radial coordinate only. In this paper we are going to discuss about isotropic 
inhomogeneous refractive index distributions that propagate nontrivial scalar fields exactly on eikonals (i.e., remaining 
constant on the Geometrical Optics wavefronts), and we will find media that produce perfect focusing of rays and waves, 
perfect in the sense explained next. 

In Geometrical Optics, an optical system is said to produce a perfect focus (or sharp image) of an object point P onto an 
image point Q when any ray trajectory emitted from P through the optical system will pass through Q in an exact way. 
Such points P and Q are said to be perfect conjugates [1]. A device is called an Absolute Instrument in Geometrical 
Optics if it produces perfect focusing of rays not just from a single object point, but of all points in a three-dimensional 
domain (i.e., one with non-null volume) [1].  

The ellipsoidal mirror is a well known example of perfect focusing of rays, but only for points P and Q coincident with 
the foci of the ellipsoid (i.e., it is not an Absolute Instrument). Non-trivial examples of Absolute Instruments are based 
on non-homogeneous media [2], the most famous being the Maxwell fish-eye lens [1]. Unlike conventional imaging 
optics systems, in the Maxwell fish-eye lens the refractive index in the volume containing the object and image points is 
inhomogeneous, (i.e., spatially varying) . There are, however, examples of Absolute Instruments in which the refractive 
index distribution in that volume is homogeneous [3].  

An analogous concept to the performance of an Absolute Instrument in Scalar Wave and Electromagnetic Optics has 
been introduced by Pendry [4] in the field of metamaterials, under the rubric of Perfect Imaging, meaning image 
formation with unlimited resolution. It disclosed a specific device made of a negative refractive index slab with n = ε = μ 
= –1, the capacity of which for perfect imaging has been explained by the amplification of evanescent waves in the 
negative index material.  

Recently, Leonhardt [5] has proven that Perfect Imaging for 2D Helmholtz scalar fields is also achieved by the 
cylindrical Maxwell fish-eye lens, and the mirrored version referred to as the Maxwell fish-eye mirror. In three 
dimensions, Leonhardt and Philbin have proven very recently [6] that the spherical Maxwell fish eye lens is perfect for 
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focusing electromagnetic waves (not Helmholtz scalar wave fields) if the medium is impedance-matched (n=ε=μ).  
These results are especially relevant because it uses isotropic positive refractive index.  

The fact that the cylindrical Maxwell fish-eye lens is perfect for focusing both rays and scalar field waves in two 
dimensions is not a general result. For instance, even though the elliptic mirror is ideal for rays when P and Q coincide 
with the foci, it is well known that it does not focus waves perfectly (neither in two nor in three dimensions) due to the 
coma of the mirror.   

In this paper we are going to discuss about the design of a class of isotropic inhomogeneous media that perfectly focus 
Helmholtz scalar field waves emitted from a point source at P onto a point drain at Q, problem that we introduced in [7].  
This means that the local behavior of the field around Q will coincide asymptotically with a spherical converging wave 
in three dimensions. In general, such a media will have no particular symmetry (nor spherical neither rotational). The 
two-dimensional case for cylindrical waves will be also considered. 

Section 2 deals with the conditions that must be fulfilled for the Helmholtz scalar wave field to propagate exactly on an 
eikonal function, leading to a novel constructive design method. In section 3, this method is applied to cylindrical lenses, 
in particular to reproduce with a different approach the performance of the cylindrical Maxwell fish-eye in reference [5]. 
Section 4 will consider the three dimensional case, concluding with the design of a “3D dipole lens”, which perfectly 
focuses a point source P upon a point drain Q in three dimensions. Finally, Section 5 shows other examples with 
multiple sources or drains. 

As a clarification, throughout this paper the term ‘Maxwell fish-eye’ will refer to the spatially unbounded refractive 
index distribution in the cylindrical and spherical symmetric cases, respectively, and not to the mirror bounded version 
discussed in references [3] and [5]. 

2. HELMHOLTZ FIELDS THAT PROPAGATE EXACTLY ON EIKONALS 
2.1 Statement of the problem 

Consider a scalar field U(r) ∈ Χ, r ∈ D ⊂ R3 in a medium with refractive index distribution n(r): 

 2 2( ) ( ) ( ) 0U k n UΔ + =r r r  (1) 

where k=ω/c. As with [5] and [8], Eq.(1) is herein referred to as Helmholtz equation for inhomogeneous media (or just 
the Helmholtz equation for short) and its solution U(r) is referred to a Helmholtz scalar wave field. Note that the name 
Helmholtz equation is sometimes reserved to the case n=constant (i.e., the case of homogeneous media), while Eq.(1) is 
formally equivalent to the time-independent Schrödinger equation. This equation is relevant in other areas of physics, 
such as acoustics or optics. In optics, this equation in 2D is exact for describing TE polarized light in cylindrical media 
(in which electric field vector E points orthogonal to the cross section of the cylinder). It is not exact but approximate, 
however, for describing electromagnetic fields in 3D.  

Consider a function S(r) ∈ Ρ that is a particular solution of the eikonal equation in the domain D: 

 ( )2 2 ( )S n∇ = r  (2) 

The integral curves of the vector field ∇S(r) are the geometrical optics rays associated with the eikonal function S(r), 
which measures the advance of the optical path length along the rays. We can create the tri-orthogonal curvilinear 
coordinates (S,u,v) where u and v are the coordinates defined on the surfaces S(r)=constant. This coordinate system is 
used to express the transport equations in the Geometrical Optics approximation, and has been specifically used in 
Electromagnetic Optics by Stavroudis [9]. Additionally, it is also commonly applied in the method of characteristics for 
solving the time-dependent wave equation. In these new coordinates S=S(r), u=u(r), v=v(r), Eq. (1) becomes:  

 ( ) ( ) ( )
2 2 2

2 2 2 2 2
2 2 2 0U U U U U US u v S u v k n U

S u v S u v
∂ ∂ ∂ ∂ ∂ ∂

∇ + ∇ + ∇ + Δ + Δ + Δ + =
∂ ∂ ∂ ∂ ∂ ∂

 (3) 

Here U=U(S,u,v) and n=n(S,u,v). If there were solutions of U depending on S only, then (3) reduces to:  
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2

2 2 2
2 0d U dUn S k n U

dS dS
+ Δ + =  (4) 

For this to be possible, it must be that 
2 ( )  (independent of  and )S F S u v

n
Δ

= . 

Given this, the field U(S) will be a solution of the following ordinary differential equation:  

 
2

2
2 ( ) 0d U dUF S k U

dS dS
+ + =  (5) 

Note that since ( )2 2 ( )S n∇ = r we can state that there are solutions of U depending solely on S if (and only if) S fulfills:  

 
( )2 ( )    (independent of  and )S F S u v

S
Δ

=
∇

 (6) 

Note that any solution of Eq. (6) provides wavefronts for which U=U(S) exists and the refractive index is calculated 
as ( )n S= ∇r . As can be easily checked, Eq. (6) is also valid for two dimensions, i.e., when the previous reasoning is 
followed with the Helmholtz equation (1) in two dimensions.  

2.2 Solutions of Eq. (6) 

We will prove next that a function S is a solution of functional equation (6) in the domain D  if and only if there is a real 
increasing function V(S) which is harmonic in D, i.e., whose Laplacian is zero (∆V =0): 

 ( )
( )

2
20 (ln )SS S S S

SV V S V S V
S

Δ
Δ = ∇ + Δ = ⇔ = −

∇
 (7) 

The function F(S) of Eq (6) is thus  

 ( ) (ln )S SF S V= −  (8) 

Since VS is the argument of a logarithm, it must be positive, which implies that V(S) is monotonically increasing (and 
therefore invertible). 

This solution gives a constructive method to calculate the refractive index distributions that propagate fields U exactly on 
eikonals. The design method comprises the following steps: 

• Select a harmonic function V(r) on D 

• Choose an increasing function S(V) 

• Compute F(S) via Eq. (8) 

• Compute n(r) = |∇S| 

Field U(r) can finally be obtained by solving Eq. (5) for U(S), and then calculating U(S(V(r))). 

3. PERFECT FOCUSING IN TWO DIMENSIONS  
3.1 The cylindrical Maxwell fish-eye lens 

Consider first the cylindrical Maxwell fish-eye lens case with refractive index distribution:  

 2 2

2( , ) aLn z
a

ρ
ρ

=
+

 (9) 
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Here L and a are positive real constants and ρ, z are cylindrical coordinates (ρ2=x2+y2). As mentioned in the introduction, 
the Maxwell fish-eye lens is an Absolute Instrument in geometrical optics, and thus the rays contained in planes z=z0 
passing through any point P will focus again at its conjugate point Q. The position of Q in the x-y plane can be obtained 
as the transformation from P by an inversion with respect to the circle of radius a centered at O, followed by central 
symmetry with respect to O. Therefore, P·Q = −a2.  

Leonhardt has recently proven in [5] that such ideality for focusing rays of the cylindrical Maxwell fish-eye lens also 
occurs for 2D Helmholtz fields. Leonhardt solved it by using the classical stereographic projection between the sphere 
and the plane, which Luneburg used as well to explain the ideality of the Maxwell fish-eye lens in ray optics [10]. We 
will confirm Leonhardt’s result here by using the approach of the previous section: showing that the function S of the 
rays emitted from P in the cylindrical Maxwell fish-eye lens fulfills Eq.(6). 

Without loss of generality (due to the cylindrical symmetry), let us consider P=a(−cosh α − sinh α,0,0) and Q= 
a(cosh α − sinh α,0,0) for a given real constant α. Note that P·Q = −a2cosh2α + a2sinh2α = −a2. In the case α =0, 
P=(−a,0,0) and Q=(a,0,0). 

Apply the following change of variables to the following decentered cylindrical bipolar coordinates (σ, τ, z) [11]:  

 

sinhcosh sinh
cosh cos

sincosh
cosh cos

x a

y a

z z

τα α
τ σ

σα
τ σ

⎛ ⎞= −⎜ ⎟−⎝ ⎠

=
−

=

 (10) 

where , , ,
2 2

z Rπ πσ τ⎧ ⎫∈ − ∈⎨ ⎬
⎩ ⎭

.  

The cross section of surfaces of constant σ and constant τ are circles that intersect at right angles. As shown in Figure 1, 
curves of constant σ (in blue) correspond to circles that intersect at the two points P and Q, while the curves of constant τ 
(in red) are non-intersecting circles of different radii that surround the points P and Q. In this coordinate system, the 
gradient and Laplacian operators take the forms [11]:  

 cosh cos cosh cos, ,
cosh cosha a z
τ σ τ σ

α σ α τ
− ∂ − ∂ ∂⎛ ⎞∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (11) 

 
( )2 2 2 2

2 2 2 2 2

cosh cos
cosha z
τ σ

α σ τ
− ⎡ ⎤∂ ∂ ∂

Δ = + +⎢ ⎥∂ ∂ ∂⎣ ⎦
 (12) 

 

 y 

P Q
x

 
Figure 1. Cross section at z=constant of the σ (in blue) and τ (in red) isosurfaces of the decentered cylindrical bipolar 

coordinate system. 
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The refractive index distribution of the Maxwell Fish Eye (Eq. (9)) is written in these coordinates (σ, τ, z) as: 

 
( )cosh cos

( , , )
cosh cosh( )
L

n z
a

τ σ
σ τ

α τ α
−

=
−

 (13) 

We can confirm that the τ isosurfaces coincide with Geometrical wavefronts by the fact that the eikonal equation 
(∇S)2=n2 has particular solutions depending only on τ, i.e., S=S(τ), which are calculated with Eq. (11) and Eq. (13):  

 ( )( ) 2 arctan exp( )
cosh( )

dS L S L C
d

τ τ α
τ τ α

= ± ⇒ = ± − +
−

 (14) 

This utilizes the principal value of the arctangent function. Choose the solution with positive sign (so the optical path 
length S increases with τ) and C=0. The minimum value of S(τ) is reached at the P where τ→ −∞ and S(−∞)=0, while the 
maximum value is achieved at  the Q where τ→∞ and S(∞)=πL. Therefore 0 ≤ S ≤ π L. 

We can invert S(τ) to obtain:  

 ( ) ln tan
2
SS
L

τ α ⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (15) 

By (12):  

 
( ) ( )2 22

2 2 2 2 2 2

cosh cos cosh cos sinh( )
cosh cosh cosh ( )

d S LS
a d a

τ σ τ σ τ α
α τ α τ α

− − −
Δ = = −

−
 (16) 

Then we can easily check that equation (6) is fulfilled, since:  

 
( )2

1 1 1sinh( ) sinh ln tan ( )
2 tan

S S F S
SL L LS L
L

τ α
⎛ ⎞⎛ ⎞Δ ⎛ ⎞= − − = − = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠∇ ⎝ ⎠⎝ ⎠ ⎜ ⎟

⎝ ⎠

 (17) 

This uses Eq.(15). Therefore, there is a solution of the field U which is function of S only, and it fulfils the ordinary 
differential Eq. (5): 

 
2

2
2

1 0
tan

d U dU k U
SdS dSL
L

+ + =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (18) 

Using the change of variables tan
2
Sp
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

(i.e., exp( )p τ α= − ), we obtain: 

 ( )
22

2
2 2

1 2 0
1

d U dU kL U
dp p dp p

⎛ ⎞
+ + =⎜ ⎟+⎝ ⎠

 (19) 

This is Equation (9) of reference [5], with the wavenumber scaled by the factor L (which was normalized to 1 in that 
reference). The resolution was described in detail there but is not pertinent and so will not be continued here. 

V(S) is obtained by integrating Eq. (8) with F(S), given by Eq. (17) as:  
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 ( ) ln tan ( )
2sin

dS SV S A AL B S
S L
L

τ
⎛ ⎞⎛ ⎞⎛ ⎞= = + =⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

∫  (20) 

Here the last equality is valid for A=1/L and B=α (see Eq. (15)). This indicates that the function τ(x,y) is harmonic, which 
is in fact well known, since the mapping of the planes x-y to τ-σ produced by the bipolar coordinate transformation (10) 
is conformal [11], and therefore both τ(x,y) and σ(x,y) are harmonic functions. 

3.2 The general cylindrical case: The “2D dipole lens” 

The method of section 2.2 can find a more general solution of a device that focuses perfectly the scalar waves emitted by 
a point source a P at a point drain at Q. For that task, consider again the following harmonic function in Ρ3, valid except 
at the lines x=-a; y=0 and x=-a; y=0  

 
2 2

2 2

1 ( )( , , ) ln
2 ( )

x a yV x y z
x a y

⎛ ⎞+ +
= ⎜ ⎟− +⎝ ⎠

 (21) 

This harmonic function is (up to a multiplicative constant) equal to the electrostatic potential created by an electric dipole 
with cylindrical symmetry along the z axis, i.e., two line charges of equal magnitude but opposite sign crossing the z=0 
plane on the points P=(-a,0,0) and Q=(a,0,0). The function (21) coincides with function τ(x,y) of the previous section for 
the case α=0 (as can be checked by inverting the mapping (10)), which is well known in electrostatic theory [11].  

According to the method described in section 2.2, we can select an arbitrary monotonic function S(V).  We will call this 
family of solutions the “2D dipole lens”. Different functions S(V) lead to different refractive index distributions, but all 
of them have the same wavefronts and rays defined by the coordinate lines of the bipolar reference system (10). One 
distinguished solution of this family is the cylindrical Maxwell fish-eye lens discussed in the previous section. In 
general, the refractive index distribution will not be a function of ρ only, as was the case for the cylindrical Maxwell 
fish-eye lens. Also unlike the Maxwell fish-eye lens, a general 2D dipole lens will not produce perfect focusing of the 
cylindrical scalar waves emitted by a point source different than P or Q (which are focused one into the other). 
Therefore, no perfect imaging for a volumetric region is expected in the general case. 

In the selection of S(V) care must be taken with its asymptotic values when |V|→∞. This care is needed for the resulting 
refractive index (given by |∇S|) to be bounded, considering that V is unbounded around P and Q. In that case we must 
choose that when |V|→∞, i.e. for r close to P (or Q):  

 ( )1~ 1 ~ ~ ~ expV Vn S S V S r V
V

= ∇ = ∇ ⇒ −
∇

 (22) 

Here r denotes the distance from r to P (or Q).  

4. PERFECT FOCUSING IN THREE DIMENSIONS  
Note that, in order to simplify the nomenclature, in this section the points P and Q are placed on the z axis, whereas in 
the previous section they were on the x axis.  

We will see next that the “dipole lens” concept introduced in section 3.1 can be analogously defined in 3D, and it will 
lead to refractive index distributions which are not spherical symmetric but that produce the perfect focusing of the 
Helmholtz scalar wave field from P to Q in three dimensions. It must be noticed the spherical Maxwell fish eye lens, 
besides its ideal properties in Geometrical Optics, does not belong to the class of media discussed here in three 
dimensions, as proven in [7]. This means that there is not field that propagates on eikonals. Leonhardt and Philbin, 
however, have proven recently [6] that the spherical Maxwell fish eye lens can perfectly focus electromagnetic waves 
(not Helmholtz scalar wave fields) in three dimensions if the medium is impedance-matched (n=ε=μ).   
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4.1 The general rotational case: The “3D dipole lens” 

Consider the following harmonic function in Ρ3 except at the points (x,y,z) given by P=(0,0,-a) and Q=(0,0,a) (so that D 
= R3\{P,Q}) 

 
2 2 2 2

( , )
( ) ( )
a aV z
z a z a

ρ
ρ ρ

= −
+ − + +

 (23) 

Here ρ, z are again cylindrical coordinates (ρ2=x2+y2). This harmonic function is (up to a multiplicative constant) equal 
to the electrostatic potential created by an electric dipole (two point charges of equal magnitude but opposite sign) 
located on the points P and Q. That potential distribution has rotational symmetry with respect to the z axis, and the 
cross sections of the V=constant surfaces and electrostatic field lines are shown in Figure 2 (see also an animation in 
[13]). In our case, the V=constant surfaces are the wavefronts and the electrostatic field lines correspond to the ray 
trajectories and energy flux lines. Note that both families of curves are not circumferences, as occurred in the 2D case. 
Particularly, the V=constant surfaces are octics (8-degree algebraic curves) that belong to the family of Generalised 
Cayley’s ovals [14]. 

As in the 2D case, for the refractive index n=|∇S| to be bounded, we must select S(V) with the appropriate asymptotic 
behavior when |V|→∞, which in this 3D case is:  

 
221~ ~ ~VS r V

V
−

∇
 (24) 

This is achieved for instance by the function:  

 ( ) arctan( )
2

S V L Vπ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (25) 

Here again the principal value of the function arctan is used. The minimum value of S(ρ,z) is only reached at P, S(0,–a)= 
0, while the maximum value is achieved at Q, S(0,a)= πL. Therefore 0 ≤ S ≤ π L. 

 

z

x

P Q

 
Figure 2. Section at y=0 showing the wavefronts (in red) and rays (in blue) associated with the 3D dipole lens. The system 

has rotational symmetry with respect to the z axis. Unlike in the 2D dipole lens (Figure 1), neither is it true that the ray 
trajectories are arcs of circumferences nor that the wavefront surfaces are spheres. 
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The refractive index distribution can be computed as: 

 ( ) ( ) ( )

( )

4 2 2 2 2 2 2 2

2
2 2 2

2 6
( , ) 2

2

a a z s z z sLn z S
a s a z s

a

ρ ρ ρ
ρ

ρ

+ + + + + + −
= ∇ =

⎛ ⎞ + + + −⎜ ⎟
⎝ ⎠

 (26) 

Here ( ) ( )24 2 2 2 2 22s a a z zρ ρ= + + − + + . Such a rotationally symmetric distribution is even in z (as expected by the 

symmetries of V(r) and of S(V)) and is shown in Figure 3. At P and Q, /( 2 )n L a= ; at (ρ,z)=(0,0), 2 /n L a= , which is 
the maximum value of n. For large values of |r|, n(r) is smaller than one (as also occurs in the Maxwell fish eye lens).  

In order to calculate the field U(S), first calculate F(S) using Eq. (8) and (25): 

 
2 2( ) (ln ) ( )

tan
S SF S V V S

S LL
L

= − = = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (27) 
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Figure 3. Normalized refractive index distribution (a/L)n(ρ,z) of the selected example.  

The field U(S) is a solution of Eq. (5), which in this case is:  

 
2

2
2

2 0
tan

d U dU k U
SdS dSL
L

+ + =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (28) 

This is close to equation (18) except for the factor of 2. The general solution of equation (28) has the following simple 
closed form [12]:  

 1 2sin( ) cos( )( )
sin

C S C SU S
S
L

κ κ+
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (29) 

Here C1 and C2 are arbitrary constants and:  

SPIE-OSA/ Vol. 7652  765222-8



 
211k

kL
κ ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 (30) 

Note that that κ →k when k→∞. Select the particular solution C2 = 1/(4πa); C1= i/(4πa), which leads to  

 ( )
4 sin

i SeU S
Sa
L

κ

π
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (31) 

The field can be expressed in cylindrical coordinates as U(S(V(ρ,z)), so that from equations (31), (25) and (23):  

 
( )arctan ( , )

2 21( , ) 1 ( , )
4

i L V z
U z V z e

a

πκ ρ
ρ ρ

π

⎛ ⎞+⎜ ⎟
⎝ ⎠= +  (32) 

Figure 4 shows the real part of U(ρ, z)exp(ωt) for ωt =1.033π, a=1, L=1,κ=9.5.  

 
Figure 4. Real part of U(S) of selected 3D dipole lens with ωt =1.033π, a=1, L=1, k=9.5 on the plane y=0. Due to the 

rotational symmetry, this graph also applies for any other plane containing the z axis.  

The field diverges at both points P and Q, since at S(P)=0 and S(Q)= πL the sine function vanishes in (31) and 
asymptotically behaves as:  
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( )

( )  (around )
4 ( / )

( )  (around )
4 ( / )

i S

i S

eU S
a S L

eU S
a S L

κ

κ

π

π π

≈

≈
−

P

Q
 (33) 

This is because function S given by Eq. (25) approximates to:  

 

2 2

2 2

( , ) ( )  (around )

( , ) ( )  (around )

LS z z a
a

LS z L z a
a

ρ ρ

ρ π ρ

≈ + +

≈ − + −

P

Q
 (34) 

Calling r the distance from a point (ρ, z) to P and r’ the distance to Q, i.e. 

 2 2 2 2( ) ' ( )r z a r z aρ ρ= + + = + −  (35) 

the asymptotic behavior of the field around P and Q can be written as:  

 

1

1 '

( , ) (around )
4

( , ) (around )
4 '

i r

i r
i L

eU z
r

eU z e
r

κ

κ
κπ

ρ
π

ρ
π

−

≈

≈

P

Q
 (36) 

where: 

 1
L
a

κ κ=  (37) 

These expressions are identified as the field of a point source at P emitting radiation and point drain at Q receiving said 
radiation, so no flux is radiated towards infinity. In the absence of the drain at Q, the field amplitude there will not 
diverge, because the wave will pass through the focus Q, expand from it and converge back upon P. In such a case, an 
three-dimensional Airy type pattern will appear at Q [7]. This seems to indicate that both the amplitude at focus and the 
resolution capacity of the 3D dipole lens (and the Maxwell fish eye in two dimensions [5]) is limited by the wavelength. 
However, we expect that using subwavelength absorbers as detectors, to emulate the point drain, it will be possible to 
resolve two point sources separated by a distance much smaller than the wavelength. 

5. DESIGNS WITH MULTIPLE POINT SOURCES OR DRAINS 
The design procedure for refractive indices described in section 2.2 can be applied to any harmonic function. Therefore, 
with the help of basic knowledge of electrostatic, we can easily compute, for instance, refractive index distributions that 
take focus the scalar waves emitted from one or multiple point sources towards one or several point drains.   

Two beautiful examples are shown in Figure 5. These are the field lines and equipotential surfaces (rays and wavefronts 
for us) calculated by Maxwell and published in 1873 [15]. The example on the left is a positive charge at A four times a 
negative charge at B. If the positive charge is consider as the source in our problem, we see in the figure that the power 
emitted from A in the solid angle θ <60º is coupled to fill the full solid angle around the drain at B (the θ =60º field line 
is the one passing through the equilibrium point P). This defines, as expected, exactly 1/4 of the total solid angle, i.e, 
2π(1-cosθ)= ¼(4π).  The remaining ¾ is emitted towards the infinity. In the example on the right, two unequal positive 
charges and a negative one are aligned. Both positive charges, seen are point sources, will transfer a fraction of their 
emitted power to fully feed the drain.  
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Note that equation (25) and (32) also apply to these examples (L and a are normalization constants with no specific 
meaning here): the first to calculate the eikonal function S from V (and then n(r) as |∇S|), and the second to calculate the 
field. Note that the resulting refractive index distribution will general not be rotational symmetric. 

 
Figure 5. Example of field lines and equipotential surfaces (rays and wavefronts for us) with several unequal charges 

calculated by Maxwell and published in 1873. 

6. CONCLUSIONS 
We have found non-trivial isotropic non-homogenous refractive-index distributions that propagate Helmholtz fields U(r) 
exactly on eikonals in that medium, in the sense that that U(r)=U(S(r)), where S(r) is a particular solution of the eikonal 
equation in that medium.  

As an example, we have found a (positive) refractive index distribution n(r), the “3D dipole lens”, which in three 
dimensions perfectly focuses a point source at P, emitting a Helmholtz scalar wave field, onto a point drain at Q. To our 
knowledge this is the first example of such a system with a positive refractive index. Apart from the difficulty of making 
the 3D dipole lens (because eventually n(r) goes below 1), they have a clear theoretical interest. Perfect focusing of 
Helmholtz fields in 3D is particularly relevant to acoustics (for example, to ultrasound imaging), turning the sound 
waves of an explosion into an implosion. 

The cylindrical Maxwell fish eye lens in two dimensions has shown to be a particular example of the “2D dipole lens”, 
although it has the very remarkable property that produces the perfect focusing for the point source P located in any 
arbitrary position, which makes it a perfect imaging device in two dimensions [5]. We have also shown that the spherical 
Maxwell fish eye lens does not belong to the family of refractive indices discussed here, that is, there is no solution of 
the Helmholtz equation in three dimensions that propagates exactly on eikonals in the spherical Maxwell fish eye 
medium.  

60° 
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The constructive procedure developed here opens the possibility of designing other interesting novel refractive-index 
distributions that propagate fields exactly on eikonals. For instance, perfect scalar wave focusing from a point source into 
multiple point drains (or from multiple point source into a single point drain) is obtained when the harmonic function 
V(r) is selected as that produced by several electric charges.   
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