Soil water percolation at different bulk densities

Ruiz Ramos, Margarita and Grinev, Dimitri and Valle, Daniel del and Baveye, Philippe and Tarquis Alfonso, Ana Maria (2010). Soil water percolation at different bulk densities. In: "European Geosciences Union General Assembly 2010", 02/05/2010 - 07/05/2010, Viena, Austria.


Title: Soil water percolation at different bulk densities
  • Ruiz Ramos, Margarita
  • Grinev, Dimitri
  • Valle, Daniel del
  • Baveye, Philippe
  • Tarquis Alfonso, Ana Maria
Item Type: Presentation at Congress or Conference (Poster)
Event Title: European Geosciences Union General Assembly 2010
Event Dates: 02/05/2010 - 07/05/2010
Event Location: Viena, Austria
Title of Book: Geophysical Research Abstracts
Date: 2010
Volume: 12
Faculty: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Department: Matemática Aplicada a la Ingeniería Agronómica [hasta 2014]
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (36kB) | Preview


Soil structure, and specifically bulk density, porosity and connectivity have strong influence on water transport in the soil. In this work we describe the percolation of a fluid particle through a soil simulating its movement through voxel-thick images of the soil, imposing a downwards movement as a fluid particle randomly delivered from the top of a soil image. From the simulation, porosity, frequency distribution of random walk time (expressed as number of simulation steps), and depth reached by random walks was obtained. This work extended the analysis presented in Ruiz-Ramos et al. (2009). An arable sandy loam soil was packed into polypropylene cylinders of 6 cm diameter and 5 cm high at five different bulk densities: 1.2, 1.3, 1.4, 1.5 and 1.6 Mgm3. The image stacks of 260x260x260 with voxel-thick slices were generated from the 3D volumes by using VGStudioMax v.1.2.1. Simulation of the percolation was done applying a set of 5 to 7 threshold values based on the analysis of the histogram region corresponding to 5 voxels. From each image, corresponding to a bulk density, percolation speed distribution in depth was estimated from the simulation outputs. Consequences and relationships among density, grey threshold, porosity and connectivity were discussed. Obtained distributions did not fit to a normal equation, preventing from applying the Darcy’s Laws for describing water movement on these soils.

More information

Item ID: 8086
DC Identifier:
OAI Identifier:
Deposited by: Memoria Investigacion
Deposited on: 03 Jan 2012 11:56
Last Modified: 20 Apr 2016 17:00
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM