Full text
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview |
González Taboada, Alfonso, Sanchez, A.M., Beltran, A.M., Bozkurt, M., Alonso Alvarez, Diego, Alén Millán, Benito, Rivera de Mena, Antonio, Ripalda Cobián, Jose María, Llorens, J.M., Martín-Sánchez, J.A., González Diez, M. Yolanda, Ulloa Herrero, José María, García Martín, Jorge Miguel, Molina Rubio, Sergio Ignacio and Koenraad, P.M. (2010). Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots. "Physical Review B", v. 82 (n. 23); pp. 235316-1. ISSN 1550-235X. https://doi.org/10.1103/PhysRevB.82.235316.
Title: | Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots |
---|---|
Author/s: |
|
Item Type: | Article |
Título de Revista/Publicación: | Physical Review B |
Date: | December 2010 |
ISSN: | 1550-235X |
Volume: | 82 |
Subjects: | |
Faculty: | E.T.S.I. Industriales (UPM) |
Department: | Ingeniería Nuclear [hasta 2014] |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview |
We present experimental evidence of Sb incorporation inside InAs/GaAs(001) quantum dots exposed to an antimony flux immediately before capping with GaAs. The Sb composition profile inside the nanostructures as measured by cross-sectional scanning tunneling and electron transmission microscopies show two differentiated regions within the quantum dots, with an Sb rich alloy at the tip of the quantum dots. Atomic force microscopy and transmission electron microscopy micrographs show increased quantum-dot height with Sb flux exposure. The evolution of the reflection high-energy electron-diffraction pattern suggests that the increased height is due to changes in the quantum-dot capping process related to the presence of segregated Sb atoms. These structural and compositional changes result in a shift of the room-temperature photoluminescence emission from 1.26 to 1.36 μm accompanied by an order of magnitude increase in the room-temperature quantum-dot luminescence intensity.
Item ID: | 8442 |
---|---|
DC Identifier: | https://oa.upm.es/8442/ |
OAI Identifier: | oai:oa.upm.es:8442 |
DOI: | 10.1103/PhysRevB.82.235316 |
Official URL: | http://prb.aps.org/abstract/PRB/v82/i23/e235316 |
Deposited by: | Memoria Investigacion |
Deposited on: | 23 Aug 2011 10:08 |
Last Modified: | 20 Apr 2016 17:13 |