Full text
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (289kB) | Preview |
Escribano Iglesias, M. del Carmen and Gonzalo Palomar, Raquel and Torrano Gimenez, Emilio (2011). Small eigenvalues of large Hermitian moment matrices. "Journal of mathematical analysis and applications", v. 374 (n. 2); pp. 470-480. ISSN 0022-247X. https://doi.org/10.1016/j.jmaa.2010.07.053.
Title: | Small eigenvalues of large Hermitian moment matrices |
---|---|
Author/s: |
|
Item Type: | Article |
Título de Revista/Publicación: | Journal of mathematical analysis and applications |
Date: | February 2011 |
ISSN: | 0022-247X |
Volume: | 374 |
Subjects: | |
Freetext Keywords: | Complex moment problem; Orthogonal polynomials; Smallest eigenvalue; Measures; Approximation by polynomials |
Faculty: | Facultad de Informática (UPM) |
Department: | Matemática Aplicada |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (289kB) | Preview |
We consider an infinite Hermitian positive definite matrix M which is the moment matrix associated with a measure μ with infinite and compact support on the complex plane. We prove that if the polynomials are dense in L2(μ) then the smallest eigenvalue λn of the truncated matrix Mn of M of size (n+1)×(n+1) tends to zero when n tends to infinity. In the case of measures in the closed unit disk we obtain some related results.
Item ID: | 8630 |
---|---|
DC Identifier: | https://oa.upm.es/8630/ |
OAI Identifier: | oai:oa.upm.es:8630 |
DOI: | 10.1016/j.jmaa.2010.07.053 |
Official URL: | http://www.sciencedirect.com/science/journal/0022247X |
Deposited by: | Memoria Investigacion |
Deposited on: | 08 Aug 2011 10:01 |
Last Modified: | 20 Apr 2016 17:20 |