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In this paper, we address the calculation of geometric characteristics of conic sections (axes, asymptotes, 
centres, eccentricity, foci) given in Bézier form in terms of their control polygons and weights, making use 
of real and complex projective and affine geometry and avoiding the use of coordinates. 

1. Introduction 

Arcs of conic sections are easily represented as quadratic 
rational curves and this is the way they have been implemented 
in Computer Aided Geometric Design in exact form. Since they 
appear in almost every branch of industry, conic sections by 
themselves justify the inclusion of weights and denominators to 
extend polynomial curves in Bézier representation to rational ones. 

Deriving closed formulae for geometric characteristics of conies 
given in Bézier form, that is, in terms of their control polygon and 
weights, was first accomplished in some cases in [1] by the use of 
metric or Euclidean geometry. They may be found also in [2]. 

In [3], a different approach is followed, grounded in the 
calculation of the foci as intersections of the tangents to the conic 
from the circular or absolute points. The main advantage of this 
approach is that the results are common for ellipses, hyperbolas 
and parabolas. 

In [4], closed formulae are obtained for computing geometric 
characteristics of conies from the invariants of rational quadratic 
parameterisations under rational linear reparameterisations in
stead. 

On the other hand, in [5], recipes are produced for constructing 
Bézier representations of conies when some of their geometric 
characteristics are known. In [6], complex arithmetic is used to 
calculate some geometric characteristics of conic sections. 

Most recently, in [7], the eccentricity of conies in Bézier form 
is formulated and this result is used for deriving the range and 
extreme values of this parameter. 

As a different approach, we resort to projective and affine 
geometry to calculate geometric characteristics of conic sections in 

Bézier form. Some concepts such as centre, foci and asymptotes can 
be defined at this level without introducing additional structure 
(scalar product, angles and lengths), though other geometric 
characteristics, such as axes, semi-axis lengths and eccentricity 
require calculation of angles and lengths and require therefore 
resorting to Euclidean geometry. The novel point in our approach 
is the possibility of writing the implicit equation of the conic 
in a coordinate-free expression that just uses the vertices and 
sides of the control polygon and the weights. This enables us to 
write geometric characteristics in closed form in a coordinate-free 
fashion. 

In Section 2, we provide a quick review of some concepts of 
projective and affine geometry, which we use in Section 3 to write 
down the implicit equations of a conic arc in Bézier form. This form 
of writing the equations is determinant for deriving expressions for 
geometric characteristics of conies in Section 4. 

2. Preliminaries and notation 

We start by reviewing some concepts of projective geometry, 
that may be checked in more detail elsewhere (cf. for instance 
[8,9]). Previous applications of projective geometry and point-line 
dual representations maybe found in [10,11]. 

In affine geometry, the Euclidean concepts of angle and length 
are lost and vector lengths can be compared only along parallel 
directions through the ratio of two vectors or three collinear points. 
Parallelism remains as an affine notion whereas perpendicularity 
does not. In projective geometry, the cross ratio of four collinear 
points is preserved instead of the ratio. The notion of parallelism 
is lost since every pair of lines on the projective plane meet at one 
point. The projective plane may be modelled by adding a line at 
infinity to the affine plane, formed by the points where parallel 
lines meet. 



a+p+y=0 

Fig. 1. The affine plane as subset of the projective plane. 

The projective plane is the set of vector lines of R3. Each point 
X of the projective plane is then characterised by a vector v or its 
multiples Xv, for any X=£ 0. 

A frame of the projective plane is a set {P, Q, R] of non-aligned 
points. That is, if we choose vectors {v-i, v2, v3] along these lines as 
their respective representatives, they form a basis of R3. Hence, we 
may write any point X of the projective plane as a combination 

X = aP + PQ_ + yR, (1) 

which just states that there is a representative v ofX which satisfies 

v = ai\ + Pv2 + yv3. 

Expression (1) is unambiguous provided that the choice of 
vectors {v\,v2,v3} is fixed. However, the set of coordinates 
(a, p, y) ofX in this frame is equivalent to (Xa, Xp,Xy) fori ^ 0, 
since this linear combination produces a vector Xv which is also a 
representative ofX. Hence, the coordinates of a point X in a frame 
are defined up to a non-zero multiplicative factor. 

Once a frame has been chosen, we may distinguish two types of 
points of the projective plane: 

- Points with coordinates (a, p, y) such that a + p + y ^ 
0. We may choose another set of coordinates (a, p, y) = 
(Xa, X/3, Xy), with X = l / ( a + p + y) so that these points are 
viewed as bary centric combinations áP + PQ + yR,á + p + y = 
1, of {P, Q, R}; see Fig. 1. The frame in the projective plane 
provides a frame in the affine plane. 

Hence the plane in R3 of equation a + p + y = l i s a n affine 
plane and its points are written as barycentric combinations of 
the frame {P, Q, R}. 

- Points with coordinates (a, p, y) such that a + p + y = 0. 
It is clear that these are not points of the affine plane. These 
points of the projective plane form the line at infinity of equation 
a + P + y = 0 . They are the directions of vectors of the affine 
plane introduced in the previous paragraph; see Fig. 1. 

We use capital letters for points in the projective plane, which 

may be either points in the affine plane or points at infinity. ByXY 
we denote the vector linking the points X and Y in the affine plane. 

A line / in the projective plane is a vector plane of R3. We may 
assign to it a linear map / so that /(X) = 0 is fulfilled by points X 
of the projective plane on the line /. For simplicity in the notation, 
we denote then by / both the line and a linear map that vanishes at 
points of the line /.that is, /(X) = OforX e /.Aline in the projective 
plane is formed by its points in the affine plane and a point at the 
line at infinity, which is the direction of the line. We use lower case 
letters for lines. 

Now we consider conic arcs in Bézier form, 

Fig. 2. Conic arc in Bézier form. 

defined by their control polygon, {c0, C\, c2) (in what follows, we 
denote P = c0, Q = Ci,R = c2), and their normalised weights, 
{1, w, 1}. The arc starts at P = c(0) and ends at R = c(l). Our 
frame is then the control polygon of the conic arc. 

We denote by p the line through P and Q, r is the line through 
R and Q and q is the line through P and R. This choice reflects that 
p, q, r are respectively the polar lines of P, Q, R, as will be shown 
below. 

Since c'(0) = 2wPQ andc'(l) = 2wQR, the conic arc is tangent 
to p and r at P and R, respectively (see Fig. 2). 

The linear maps p, q, r are fixed up to a multiplicative factor, 
which we may fix requiring that 

p(R) = l, q(Q) = l, r(P) = l. (2) 

This means that {r, q, p] is the dual basis for {P, Q, R) since 

p(P) = 0 = p(Q), q(P) = 0 = q(R), r(Q) = 0 = r(R). 

To avoid lengthy expressions, we shall denote the directions of 
the lines p, q, r as 

••OP, RP, QR. (3) 

A quick way to obtain the direction of a straight line I = jtp + 
pq + or, with real coefficients it, p, a, is looking for a point at 
infinity aP + /3Q + yR, a + /3 + y = 0 along the line, 

0 = (np + pq + or)(uP + PQ + yR) =icy + pf3 + era. 

A simple way of writing the solution to these equations is 

a = X(p — TC), p = X(TC — a), y = X(a — p), 

where X is a nonvanishing factor that we may take equal to one if 
we are just interested in the direction of the line: 

Lemma 1. The direction of a straight line 1 = jtp + pq + ar is given 
by 

(p - Tt)P + (?r - er)Q + (a - p)R, 

or in terms of p and f, 

(p - Tt)p + (a - p)r. 

Conversely, the equation of a straight line through two points is 
readily written: 

Lemma 2. The straight line I through two points, a^P + fiiQ. + y\R, 
a2P + p2Q + y2R, is given by 

I = jtp + pq + ar, 

c(t) 
c0(l - r)2 + 2wc1r(l - t) + c2t

2 

(1 - r ) 2 + 2wr(l -t) +t2 t 6 [0, 1], 
«i u2 Y\ Y2 

«i u2 

P\ P2 
Y\ Y2 



Fig. 3. Examples of polar lines of points. 

just finding solutions of the system of equations, i = 1,2, 

0 = (?rp + pq + or) (a¡P + # Q + y{R) = u{a + frp + y¡jr. 

The line at infinity is z = p + q + r, since its points are 
combinations aP + /3Q + yR with a + /3 + y = 0. 

For a conic section, the polar line (cf. for instance [9] or [12]) of 
a point A is defined as: 

- If A lies on the conic, the polar line of A is the tangent line at A. 
For instance, p is the polar line of P and r is the polar line of R. 

- If A lies out of the conic, we trace both tangents to the conic 
through A. They meet the conic at two points. The line linking 
both tangency points is the polar line of A. For instance, q is the 
polar line of Q. If we cannot draw the tangents to the conic from 
a point A, we may obtain its polar line a by linking two points B 
and D with polar lines b, d meeting at A; see Fig. 3. 

In what follows, the polar line of a point and the point will be 
denoted by the same letter in lower and upper case respectively, 
as we have already done in the previous paragraphs. 

We may obtain the polar line a of point A analytically: if C is the 
symmetric bilinear form associated to the conic, so that C(X, X) = 
0 for points X on the conic, the pointsX of a satisfy 0 = C(A,X). 

3. Implicit equations of conic sections 

For determining a conic section we require five points. 
Providing the tangents p at P and r at R amounts to four points, 
since P and R are then double points. There are two degenerate 
conies that satisfy these conditions: the intersecting pair of lines 
C\ = p U r of quadratic form p • r (pr + rp as symmetric bilinear 
form), which fulfils the tangency conditions at P and R, and the 
double line C2 = q U q of quadratic form q2, for which P and R 
are double points. 

Hence, all conies satisfying these conditions are members of a 
pencil of conies 

, /pr + rp , \ 
pr + Xq , ( h Xq as a symmetric form I (4) 

in terms of both degenerate conic sections. 
It is obvious that P and R belong to the conies in the pencil, that 

is 

p(P)r(P) + kq(P)2 = 0 = p(R)r(R) + kq(R)2. 

Using the symmetric form of the pencil of conies (4), we show 
that a point X is on the polar line of P if and only if 

r(P)p(X)+p(P)r(X) p(X) 
0 = + kq(P)q(X) = —^-, 

and hence p is the polar line of P. Similarly, we get r as the polar 
line of R and q as the polar line of Q, 

r(Q)p + p(Q)r , . . . . 
+ Xq(Q)q = Xq. 

A fifth condition fixes the pencil parameter k and is obviously 
related to the weight w, which has not appeared so far. We may 
check it with the help of the shoulder point S [13], 

S : = c ( l / 2 ) =
 P / 2 + W Q + * / 2 , 

1 + w 
which satisfies the conic equation, 

\/4 + kw2 

0 = p(S)q(S) + kq(Sy X: 
1 

Aw2' (1 + w)2 

The w = oo case corresponds to the degenerate conic p U r, 
whereas the w = 0 case is the double line (¡Uq. 

The polar line s of the shoulder point, 

r(S)p + p(S)r 
+ ^q(S)q 

4(1 
- — - (p + r ) 

is parallel to the line q, 

s(9) = 7 7 7 ^ ^ (P(R) - r(P)) 0, 
4(1 + w) 

since it contains the direction q of q (see Fig. 2). 
Analogously, we may think of a dual representation, exchanging 

the roles ofpoints and lines: a point /of the dual projective plane is 
a line and a line P of the dual projective plane is the pencil of lines 
through the point P. A line belongs to a conic C if it is a tangent to 
the conic. 

We look for the tangential equation of our conic arc. That is, the 
implicit equation for the tangent lines to the conic. 

Since p and r are respectively the tangents to the conic at P 
and R, there are already defined four conditions for the pencil of 
tangential conies. 

We proceed again searching for two degenerate conies satisfy
ing these conditions: 

The degenerate conic C\ = P U R of quadratic form PR (or 
(PR + RP)/2 as a symmetric form) contains both p and r, 

p(P)p(R) = 0 = r(P)r(R), 

and p is the polar line of P, 

p(P)R + p(R)p = p, 

and analogously r is the polar line of R. 
The other degenerate conic is C2 = Q U Q of quadratic form Q2, 

since it contains both p and r, 

P(Q)P(Q) = 0 = r(Q)r(Q), 

twice. 
The pencil of conies tangent to p at P and to r at R is formed, 

then by linear combinations of both degenerate conies, 

, {PR + RP 
PR + /xQ2, + /¿QQ as a symmetric form J . 

Obviously, the line p, 

p(R)P+p(P)R P 
+ MP(Q)Q = - , 

is the polar line of P and r is the polar line of R and q 

g(R)P+q(P)R , 
+ M ( Q ) Q = nQ. 

is the polar line of Q. 
Again, we can fix again the free parameter ¡i making use of the 

shoulder point S. 
We already know that the tangent line s at the shoulder point 

has linear map s = p + r — q/w. Hence, from 

0 = s{R)s{P) + /j,s(Q.y 1 + 

we learn that ¡i = —w2. 
Summarising, we have obtained the implicit equation of a conic 

in terms of its control polygon and weights: 



Proposition 1. The implicit equation of a conic arc defined by its 
control polygon, {P, Q, R], and its normalised weights, {1, w, 1} is 
given by 

p(X)r(X) 
g(X)2 

Aw2 0. 

Analogously, the tangential equation of the conic is 

x{P)x{R) -w2x(Q_)2 = 0, 

(5) 

(6) 

where p, q and r are respectively the linear maps corresponding to the 
polar lines of P, Q, R, as described in (2). 

These expressions allow us to write in a straightforward and 
elegant manner the implicit equations of conies given in terms 
of their control polygons and weights, without making use of the 
coefficients of the conic equation, 

a00 + amx + a02y + anx
2 + anxy + a22y

2 0, 

The implicit equation of the conic in barycentric coordinates 
referred to the frame {P, Q, R] is the direct result of applying the 
implicit equation to a point X = aP + /3Q + yR, 

0 = p{X)r{X) 
q{X)2 

•• ay 
Aw2 Aw2' 

or for a straight line as a combination of p, q and r, x = 7tp + 
pq + or, to be a tangent line to the conic, 

0 = x{P)x{R) - w2x(Q_)2 : no — w2p2. 

Corollary 1. The implicit equation of a conic arc defined by its 
control polygon, {P, Q, R], and its normalised weights, {1, w, 1} in 
barycentric coordinates referred to the vertices of the control polygon, 
aP + /3Q + yR,is given by 

ay Aw2 0. (7) 

Analogously, the equation for tangent lines to the conic in barycentric 
coordinates, referred to the sides of the control polygon, 7tp + pq 
+ or, is 

2 2 W p o, (8) 

where p, q and r are respectively the linear maps corresponding to the 
polar lines of P, Q, R, as described in (2). 

4. Geometric characteristics of conies 

4.1. Centres and diameters 

A first instance of geometric characteristic of a conic which 
we characterise without making use of Euclidean geometry is the 
centre. 

The centre C is, to this end, defined as the point of intersection of 
the diameters of the conic. Note that the diameters of the conic are 
the polar lines of the points on the line at infinity, since the tangents 
to the conic at the intersections with a diameter are parallel. Hence, 
the polar line of the centre is the line at infinity, z = p + q + r (see 
Fig. 4). 

Hence using the tangential equation (6) of the conic, we get the 
centre as the point which has the line at infinity as polar line, 

z(R)P+z(P)R , P + R 
C w¿z(Q.)Q. 

2 2 
or writing it as a barycentric combination, 

P +R-2w2(l 

• u r Q , 

C 

Fig. 4. The centre of the conic as the intersection of diameters. 

Fig. 5. The centre of a parabola lies at infinity. 

for w ^ 1. The case w = 1 corresponds to the parabola. Another 
simple reasoning for calculating the centre of a conic is found in [ 1 ]. 

Diameters are straight lines passing through the centre. Hence 
a line 7tp + pq + or is a diameter if 

0 = (jrp + pq + O T ) ( C ) 
7t + o — 2w2p 

2-2w2 

The case of the parabola, w = 1, can also be included here 
from this perspective, though within Euclidean geometry it is a 
noncentral conic section. In this case, the centre 

C 
P + R p + r 

is a direction, not a point, since it is written as a barycentric 
combination in which the sum of the coefficients is zero. Hence, 
the centre of the parabola is its only point on the line at infinity, 
which is the direction of the axis of the parabola. The parabola is 
tangent to the line at infinity at its centre. Since all diameters meet 
at the centre of the conic, the diameters of the parabola are straight 
lines parallel to the axis (see Fig. 5). 

Proposition 2. The centre of a nondegenerate conic arc defined by 
its control polygon, {P, Q, R], and its normalised weights, {1, w, 1} is 
given by 

C 
P + R -2w2d 

2-2w2 : (p + r if 1 (9) 

and the diameters are straight lines of equation Jtp(X) + pq(X) + 
or(X) = 0 satisfying 

jt + o — 2w2 p = 0, (10) 

2w2 

where p, q and r are respectively the linear maps corresponding to the 
polar lines of P, Q, R, as described in (2). 

4.2. Asymptotes 

Another interesting geometric characteristic of a conic section 
is its asymptotes, defined as its tangent lines at infinity. They 
are real for hyperbolas and complex for ellipses. Parabolas just 
have a double asymptote which is the line at infinity. Again, 
since they are not an Euclidean feature of conic sections, they 



have a simple derivation within projective and affine geometry. 
A different approach to calculate them is used in [4]. More on 
asymptotes of rational Bézier curves maybe found in [10]. 

We get the directions of the asymptotes as the intersections of 
the conic with the line at infinity, searching for solutions 

v = aP + PQ + yR, a + p + y = 0, 

of Eq. (7). Taking ¡3 = —2w to avoid denominators, 

v± = (w ± jw2 - i\ P - 2wQ + (w =F \IVJ2 - \ \ R 

= (w ± Vio2 — l ) p + ( u ; = F V»)2 — 1) r, 

Of course, for the parabola, w = 1, we get the centre twice, 
v = p + r. 

The asymptotes are easily computed now as the tangents or 
polar lines to these points at infinity, 

0 = r(v±)p + p(v±)r q(y±)q 
2w2 

= (w ± V»)2 — 1) p + (w =p V»)2 — 1) r H . 

For the parabola we get p + q + r = 0 twice, the line at infinity, 
as expected. 

Proposition 3. The asymptotes of a nondegenerate conic arc defined 
by its control polygon, {P, Q, R},anditsnormalisedweights, {1, w, 1} 
have implicit equations 

(w ± jw2 - \\ p(X) + (w T Vw2 - l ) r(X) + — = 0, (11) 

where p, q and r are respectively the linear maps corresponding to the 
polar lines of P, Q, R, as described in (2). 

The directions of the asymptotes are 

v± = (w ± -Jw2 — 1) p + (w =p -Jw2 — 1) r, (12) 

where p = QP and f = QR. 

4.3. Axes 

For obtaining the axes, we finally need Euclidean geometry, but 
we may make use of our previous results. We denote by {v, w) the 
scalar product of two vectors v, w. 

An axis is a diameter which is orthogonal to the tangent lines at 
the intersection points with the conic. 

The axis of a conic is one of the diameters d = 7tp + pq + or 
satisfying Eq. (10), 

jr + a — 2w2p = 0. 

Following Lemma 1, its direction is 

v = (p - Jt)p + (a - p)r, 

On the other hand, a diameter d is the polar line of a point D at 
infinity, 

d{R)P + d{P)R 
D = = w d(Q_)Q_ 

jtP +aR 
w2pQ, 

2 ^ ' ^ 2 
which is the direction of the tangents to the conic at the points 
where it intersects the diameter (see Fig. 4). 

If these points are vertices of the conic section, the direction v 
of the diameter is orthogonal to the direction D of the tangents at 
the vertices, 

0 = (jrp + or, {p - Tt)p + {a - p)r) 

= 7t(p — jr)||p||2 + p{a — jr)(p, r) + a{a — p)\\r\\ 

We may solve (10) and remove the ambiguity in the coefficients 
n,p,a by fixing 

jr — a = 2, jr = w2p + 1, a = w2p — 1, 

so that Eq. (13) takes the form 

Sl|2 

w2(w2 - \)p2 + 
2w2( | |r | |2 + ||p||2) 

-p + 1 = 0 , (14) 

which provides the two axes: 

Proposition 4. The equations of the axes of a conic defined by its 
control polygon, {P, Q, R},anditsnormalisedweights, {1, w, 1}, w ^ 
1, are np{X) + pq(X) + ar{X) = 0, with coefficients given by 

w p + 1, 1 a = w p 

and p isa solution of (14), except for the case of an isosceles polygon, 
||p|| = \\r\\, for which the coefficients satisfy either it = —a = 1, 
p = 0orjt=a = w2, p = 1. 

The directions of the axes are 

v\ = (p — Jt)p + (a — p)r, v2 = up + or, 

as linear combinations of the vectors introduced in (3). 

The case of the parabola is simpler, since we already know that 
the axis has the direction given by the centre, a point at the line 
at infinity p + r, and is one of the diameters d = 7tp + pq + or 
satisfying (10), 

jr + o — 2p = 0. 

The diameters intersect the conic at its centre and at another 
point (see Fig. 5) and the direction of the tangent at it is 7tp + of. 
If this point is the vertex of the parabola, V, the direction p + r of 
the axis is orthogonal to the direction of the tangent at the vertex, 

0 = (jrp + of, p + r) = jr||p||2 + (jr + o)(p, f) + o\\f\\2, 

and we may read the coefficients of the equation of the axis, 

jr = 2(r,p + r) P -2{p,p + f) 

which can be obtained as the case w = 1 of (14). 
The vertex is obtained by intersecting the axis with the 

parabola: 

Proposition 5. The equation of the axis of a parabola defined by its 
control polygon, {P, Q, R] is 

2(r, p + f)p + (\\f\\2 — ||p||2) q — 2{p, p + f)r = 0, 

where p, q and r are respectively the linear maps corresponding to the 

polar lines of P, Q, R, as described in (2) and p = QP, f = QR. 
The vertex of the parabola is given by 

f,p + f)2P + 2{p, p + f){f, p + r)Q_ + (p, p + f)2R 
V 

4.4. Eccentricity 

\\p + r\\ 

Let a be the length of the semi-major axis (the one containing 
the foci), b the length of the semi-minor axis (the one containing 
the foci) and c the semi-focal distance. The eccentricity of a 
nondegenerate conic is defined as the quotient 

(13) 

0 

4a2 -b2 

a 
1 

Va2 + b2 

< 1 

circumference 

ellipse 

parabola 

> 1 hyperbola 



Fig. 6. Asymptotes of a hyperbola and its eccentricity. 

taking into account that for the ellipse a2 = b2 + c2 and for the 
hyperbola c2 = a2 + b2. 

It is possible to use our expressions for the asymptotes in order 
to calculate the eccentricity of a conic section, instead of using the 
lengths of the axes. 

If we consider a hyperbola, the angle 9 (see Fig. 6) between any 
of the asymptotes and the major axis is related to its eccentricity, 

1 
cos 9 = -. 

e 
Since the axes produce lengthy expressions in Bézier form, it is 

more convenient for our purposes to use the angle 29 between the 
asymptotes, 

n2 _b2 2 

cos 29 = cos 9 — sin 9 cr 
1, 

taking into account that we already know the asymptotic 
directions v± obtained in (12), 

{v+, t>_) = ||p||2 + ||r||2 + 2(2w2 - l)(p, r) 

= UP — ?ll2 + 4w2{p, f), 

where the sign has been chosen in order to produce the correct 
definition oí9 and not the complementary angle. 

\v±\\ (2w2 - 1) 

± 2w^w2 

\\P\\2 + 

\\P\\4 + 

+ 2{p,f) 

+ 4(p, r)2 + 2(8w4 - Sw2 + l)| |p||2 | |r | |2 

+ 4(2w2 - l )(p,r) 

( | |q | | 2 -2u; 2 ( | |p | | 

+ 4w2(l - w 2 ) ( | | p | | 

llp||2 + 

+ llrl 2)) 

Naming 

wz wz 

following the notation in [7], we get the formulae for the angle 

{v+, V-) —b 

~ JA' 
cos 29 

and the eccentricity of the conic section, 

1 + cos 26» 

2^~A 
(16) 

A similar reasoning may be applied to ellipses, with complex 
asymptotes instead, leads to the same result: 

Proposition 6. The eccentricity of a conic arc defined by its control 
polygon, {P, Q,R], and its normalised weights, {1, w, 1} is given 
by (16), where p = QP, q = RP, f = QR 

If the conic section is a hyperbola, the angle between its asymptotes 
is given by (15). 

Fig. 7. Foci and directrices of a conic. 

4.5. Foci 

A central conic has four foci (two real and two complex ones) 
which are constructed as the intersections of the isotropic lines, 
which are the tangents to the conic drawn from two complex 
points located at the line at infinity named absolute or circular 
points I, J. The polar lines of the foci are called directrices. 

The circular points [9,12] are the points at the line at infinity 
where all circumferences meet. They are also the only points 
of the projective plane which are invariant under translations 
and rotations. The invariance under translations requires that the 
circular points cannot be points of the affine plane, but vectors. 
And the invariance under rotations requires that they have zero 
length. A consequence is the remarkable property that they have 
the same coordinates in every cartesian frame. In this section, the 
bar denotes complex conjugation and i is the imaginary unit V—l". 

As we see in Fig. 7 (note that the diagram is fictitious due to the 
impossibility of drawing it in the complex plane), the polar lines 
i, j of the circular points provide the four tangency points of the 
isotropic lines. We may draw six lines through couples of these 
points. Four of them are the directrices. 

The vanishing modulus conditions allow us to write the circular 
points as complex barycentric combinations of {P, Q, R], 

aP + bQ + cR, 
- Ilrll P'V/2 r 

J aP + bQ + cR, 

\\e-i,p/2, b = 

where q> is the angle between p and r. 
Though these expressions are valid for every system of 

coordinates, it is useful for practical purposes (for instance, the 
examples at the end of the paper) to write down the expressions 
of a set of coefficients a, b, c in cartesian coordinates. 

Noticing that a, b and c are defined up to a factor, we can also 
write these coefficients as 

a = (Rx-Qx)+i(Ry-(ly), 

(15) b = (Px - Rx) + i(Py - Ry), c=(Qx-Px)+my-Py), 

where (Px,Py), (&, Qy), (Rx, Ry) are the coordinates of P, Q, R in 
any given frame. 

The linear maps of the polar lines of the circular points are then 

i = ap + cr j = ap + cr 
2w2 2w2 

in terms of the lines p, q, r. 
Hence the tangency points aP + /3Q + yR of the isotropic lines 

of/ to the conic section satisfy both 

ay + ca 0, ay 0, 
2w2 Aw2 

whereas those of/ satisfy the complex conjugate equations. 

(17) 



The simplest case is that of a parabola. The polar lines of the 
circular points are diameters of the conic section since the circular 
points lie at infinity and hence they meet at the centre of the conic. 
But the centre of a parabola is a point of the parabola. Hence, the 
four tangency points reduce to three: twice the centre and two 
other points. The parabola has then just one directrix (and one 
focus), defined by the two non-central tangency points. 

The two solutions of Eq. (17) for w = 1 are the centre C = 
P + R - 2Q and 

a c 
T = -P - 2Q + -R. 

c a 

The directrix/, the line through T and f is, following Lemma 2, 
/ = jtp + pq + or, with 

a a 

c c 

c c 

a a 

4isin<p, 

4isin<p, 

P 
ac 

at 
ac 

ac 
-2isin2<p, 

or multiplying it by ||p|| ||r||/4isin<p, in order to get simpler real 
coefficients, 

/ = \\r\\2p — (p, r)q + \\p\\2r. 

The focus F of the parabola is the point which has/ as polar line: 

Proposition 7. The equation of the directrix of a parabola defined by 
its control polygon, {P, Q, R] is 

||r||2p(X) - {p,f)q(X) + ||p||2r(X) = 0, 

where p, q and r are respectively the linear maps corresponding to the 

polar lines of P, Q, R, as described in (2) and p •• 
The focus of the parabola is 

\\r\\2P + 2(p, r)Q + ||p||2K 

QP, r = QR. 

\\p + r\\2 

The case of central conies is more involved. Taking /3 = 2w, 
y = \/a for simplicity, Eqs. (17) reduces to 

wca bu + wa = 0, (18) 

for the intersections of the polar line of/ with the conic. 
The two points T± of intersection of the polar line of/ have 

a± 

y± 

b± 

1 

a± 

Vb2 

2 

b 

— 4w2ac 

wc 

=F s/b2 - Aw 

2wa 

« 
P 

2ac 

2w, 
(19) 

as barycentric coordinates. 
Their complex conjugatesare the coordinates of the intersec

tions T± of the polar line of / with the conic. Note that this fact 
relies on keeping the same choice of the branch of the root in (19). 
Otherwise, the roles of T+ and T_ would reverse. 

In [3], the foci are constructed using the intersections of the 
tangents to the conic section from thecircular points. 

The pairs {T+, f + } , {T+, f_}, {r_, f+}, {r_, f_} define the four 
directrices of the conic section. We are interested mainly in the two 
real directrices. 

According to Lemma 2, it is clear that the two real directrices 
f± are those spanned by {r + ,T + } and {r_,T_}, since their 
expressions f± = jr±p + p±q + a±r have coefficients 

7t± = 2w(a± — a±), P± = y±«± -u±Y± 
l«±l2 

o± = 2w(y± - y±) = 2w a± — a± 

l«±l2 

Fig. 8. Geometric characteristics of a parabola. 

which may be simplified and made real dividing them by 2(a± — 
¿±)/ l«±| 2 . 

Hence, the linear maps of the real directrices of the conic 
section are 

/ ± = w\a±\ p — ÍR(a±)q + wr, (20) 

where Dt(ai±) = (a± + a±) /2 is the real part of a±. 
The real foci F± are the points which have the directrices f± as 

polar lines: 

Proposition 8. The equations of the real directrices of a central conic 
defined by its control polygon, {P, Q, R] and its normalised weights, 
{1, w, 1}, are 

w|a± |2p(X) - ÍR(a±)q(X) + wr{X) = 0, 

where the coefficients a± are defined in (19) and p, q and r are 
respectively the linear maps corresponding to the polar lines of P, Q, 
R, as described in (2). 

The respective foci of the conic are 

F± 
| a± | 2P + 2u;0fi(a<±)Q+K 

| a ± | 2 + 2u;0fi(a<±) + l 

5. Examples 

We end up with some examples of application of our results 
to the determination of geometric characteristics of conies. 
Though our formulae do not depend on the choice of coordinates 
(barycentric or cartesian) made and are valid for all of them, we 
express points in usual cartesian coordinates in the affine plane. 
That is, the coordinates of a point are of the form (1, x, y) referred 
to an orthogonal basis. 

5.1. Example of a parabola 

We consider a parabola defined by its control polygon 

P = (1,0,0) , Q = (1 ,1/2 ,0) , R = (1,1,1) , 

QP = ( 0 , - 1 / 2 , 0), QR = (0, 1/2, 1), 

P(x, y) = V, Q(x, y) = 2x - 2y, r(x, y) = 1 - 2x + y. 

The geometric characteristics of this parabola are drawn in Fig. 8. 
The cartesian equation of the parabola is 

0 = p{x,y)r{x,y) 
<i(x,y)2 

0. 

The centre (direction of the axis) of the parabola is 

C =P + R-2Q = (0, 0, 1). 



V 

Fig. 9. Geometric characteristics of a hyperbola. 

The vertex of the parabola is 

(r, p + r)2P + 2(p,p + r>(?, p + r)Q + (p, p + r)2R 

||p + r||4 

= 0 , 0 , 0 ) . 

The equation of the axis a is 

2(r, p + ?>p + (||r||2 — ||p||2) q — 2(p, p + r)r = 2x = 0. 

The focus of the parabola is 

\r\\2P + 2(p, r)Q + 2K 1 
, 1,0, 

p + r||2 \ 4 

And the equation of the directrix d is 

ll?ll2P — (P, ?)<J + llp||2r = y H— = 0. 
4 

5.2. Example of a hyperbola 

We compute the geometric characteristics of a hyperbola with 
control polygon 

(1,4,0) , Q = (1,4,1), R: 1,5, 

and normalised weight w = 3^2 /4 . Hence 

5 s 

QP = ( 0 , 0 , - 1 ) , QR. 

9" 

0, 1, 

RP 0, - 1 , 

p(x, y) = x - 4 

5x 

q{x,y) = 9+y 
9x 

r(x,y) 4 - y , 

which are drawn in Fig. 9. 
The cartesian equation of the hyperbola is 

0 = p{x,y)r{x,y) 
g(x,y)2 _ x2 2y2 

Aw2 ~ 8 9 
0. 

This is the equation of a hyperbola centred at the origin with axes 
coincident with the cartesian axes and semiaxis lengths equal to 4 
and 5. We get these results within our formulation: 

The centre of the hyperbola is 

C 
P +R-2w2Q 

(1 ,0 ,0 ) . 
2 - 2 w 2 

The asymptotes have Eqs. (11), 

V2 
24 

(3x ± Ay) = 0. 

Fig. 10. Geometric characteristics of an ellipse. 

The angle between the asymptotes has cosine 7/25 and the 
eccentricity is 5/4, respectively computed with (15) and (16). 

The equations of the axes are np{x, y)+pq(x, y) +ar(x, y) = 0, 
with coefficients ?r = w2p + \a = w2p — 1, satisfying (14), 

i 8 
9p2 - 80p + 64 = 0 =^ p = 8, -

and hence the equations of the axes read 

8y 
2x = 0, — = 0, 

9 

as expected. 
The foci of the hyperbola are 

F± 
\a±\2P + w(a± +óe±)Q_+R 

\a±\2 + w(a± +a±) + 1 
(1, ±5 ,0 ) , 

where 

3^2 ,V2 

~~A 'IT' 
3^2 3^2 

— + Í ^ ' 
are obtained through (19). 

5.3. Example of an ellipse 

Finally, we provide an example of an ellipse with vertices 

P = (1 ,3,0) , Q = ( l , 3 ,5V3) , R 

and normalised weight w = 1/2. Hence 

QP = (0, 0 , - 5 ^ 3 ) , Q R = ( 0 , -

3 5^3 

5^3 

RP 

p(x, y) 

9 5 ^ 3 
0, - , — 

2 2 

2x x 4?>y 1 
q(x, y) = - H , 

9 15 3 

t A x ^ y , 2 

r(x,y) = h - , 
9 15 3 

which are drawn in Fig. 10. 
The cartesian equation of the ellipse is 

0 = p{x,y)r{x,y) 
9(x,y)2 

Aw2 

1 x2 y2 

3 ~ 27 ~ 75 
0, 

and it corresponds to an ellipse with axes coincident with the 
cartesian axes and semiaxis lengths equal to 3 and 5, respectively. 
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The centre of the ellipse is located at 

P +R -2w 2Q 
2w2 (1,0,0), 

and the eccentricity is 4/5 according to (16). 
The equations of the axes are np{x, y)+pq(x, y) +ar(x, y) = 0, 

1, satisfying (14), with coefficients ?r = w2 p + 1( 

-3p2 + 8,0 + 16 = 0=^,0 = -

and hence they read 

4 4 ^ 3 
- - x = 0, - — v = 0. 

7 = 

4 

3 ' 

w 

4 

V 

9 15 
The foci of the ellipse are 

_ \a±\2P + w(a± +o+)Q+R 
|a± |2 + w(a± +a±) + 1 

where 

1 2^3 3V3i 
2 ' 

(1,0, ±4), 

1 2^3 3V3i 
2 + _ 5 10~ 5 10 

are obtained through (19) 

6. Conclusions 

In this paper, we have shown that projective and affine geome
try simplifies the problem of calculating geometric characteristics 
of conic sections given in Bézier form, since many of these geomet
ric characteristics can be defined without resorting to Euclidean 
geometry. Even for geometric characteristics which cannot be de
fined out of Euclidean geometry, the calculations are mitigated by 
using affine constructions. Closed formulae for implicit equations 
of conic arcs in terms of their control polygons and weights, both in 

standard and tangential form, have been provided. They have been 
used to calculate the axes, centres, diameters, foci, directrices and 
asymptotes of the arcs. 
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