eprintid: 11506 rev_number: 25 eprint_status: archive userid: 1903 dir: disk0/00/01/15/06 datestamp: 2012-07-25 10:39:16 lastmod: 2023-04-01 08:10:30 status_changed: 2023-04-01 08:10:30 type: article metadata_visibility: show item_issues_count: 0 creators_name: Fernàndez-Moncada, P.E. creators_name: García, A.G. creators_name: Hernández Medina, Miguel Ángel title: The Zero-Removing Property and Lagrange-Type Interpolation Series ispublished: pub subjects: matematicas keywords: Analytic Kramer kernels, Lagrange-type interpolation series, Zero-removing property abstract: The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros. date: 2011 date_type: published publisher: Taylor & Francis, Ltd. official_url: http://www.tandfonline.com/doi/abs/10.1080/01630563.2011.587076 id_number: 10.1080/01630563.2011.587076 full_text_status: public publication: Numerical Functional Analysis And Optimization volume: 32 number: 8 pagerange: 858-876 institution: Telecomunicacion department: Matematica_Aplicada7 refereed: TRUE issn: 0163-0563 rights: by-nc-nd citation: Fernàndez-Moncada, P.E., García, A.G. and Hernández Medina, Miguel Ángel (2011). The Zero-Removing Property and Lagrange-Type Interpolation Series. "Numerical Functional Analysis And Optimization", v. 32 (n. 8); pp. 858-876. ISSN 0163-0563. https://doi.org/10.1080/01630563.2011.587076 . document_url: https://oa.upm.es/11506/2/INVE_MEM_2011_105478.pdf