eprintid: 38093 rev_number: 12 eprint_status: archive userid: 2544 dir: disk0/00/03/80/93 datestamp: 2015-10-15 06:40:13 lastmod: 2015-10-15 06:40:13 status_changed: 2015-10-15 06:40:13 type: thesis metadata_visibility: show creators_name: Martín Segovia, Sara contributors_name: Mínguez Olivares, Antonio title: Algoritmos genéticos en control activo de ruido rights: by-nc-nd ispublished: unpub subjects: fisica subjects: informatica full_text_status: public abstract: Este proyecto se centra en la implementación de un sistema de control activo de ruido mediante algoritmos genéticos. Para ello, se ha tenido en cuenta el tipo de ruido que se quiere cancelar y el diseño del controlador, parte fundamental del sistema de control. El control activo de ruido sólo es eficaz a bajas frecuencias, hasta los 250 Hz, justo para las cuales los elementos pasivos pierden efectividad, y en zonas o recintos de pequeñas dimensiones y conductos. El controlador ha de ser capaz de seguir todas las posibles variaciones del campo acústico que puedan producirse (variaciones de fase, de frecuencia, de amplitud, de funciones de transferencia electro-acústicas, etc.). Su funcionamiento está basado en algoritmos FIR e IIR adaptativos. La elección de un tipo de filtro u otro depende de características tales como linealidad, causalidad y número de coeficientes. Para que la función de transferencia del controlador siga las variaciones que surgen en el entorno acústico de cancelación, tiene que ir variando el valor de los coeficientes del filtro mediante un algoritmo adaptativo. En este proyecto se emplea como algoritmo adaptativo un algoritmo genético, basado en la selección biológica, es decir, simulando el comportamiento evolutivo de los sistemas biológicos. Las simulaciones se han realizado con dos tipos de señales: ruido de carácter aleatorio (banda ancha) y ruido periódico (banda estrecha). En la parte final del proyecto se muestran los resultados obtenidos y las conclusiones al respecto. Summary. This project is focused on the implementation of an active noise control system using genetic algorithms. For that, it has been taken into account the noise type wanted to be canceled and the controller design, a key part of the control system. The active noise control is only effective at low frequencies, up to 250 Hz, for which the passive elements lose effectiveness, and in small areas or enclosures and ducts. The controller must be able to follow all the possible variations of the acoustic field that might be produced (phase, frequency, amplitude, electro-acoustic transfer functions, etc.). It is based on adaptive FIR and IIR algorithms. The choice of a kind of filter or another depends on characteristics like linearity, causality and number of coefficients. Moreover, the transfer function of the controller has to be changing filter coefficients value thought an adaptive algorithm. In this project a genetic algorithm is used as adaptive algorithm, based on biological selection, simulating the evolutionary behavior of biological systems. The simulations have been implemented with two signal types: random noise (broadband) and periodic noise (narrowband). In the final part of the project the results and conclusions are shown. date_type: published date: 2015-07-09 pages: 84 institution: ETSIS_Telecomunicacion department: Teoria_2014 thesis_type: masters referencetext: [1] Lueg P., “Process of silencing sound oscillations,” U.S. Patent 2,043,416 27, 1933. [2] Olson H.F., “Electronic Control of Noise, Vibration, and Reverberation,” J. Acoustic. Soc. Am., Vol. 28, 966-972, 1956. [3] Conover W.B., “Fighting Noise with Noise”, Noise Control 2, pp. 78-82, 1956. [4] Nelson P.A. and Elliott S.J., “Active Control of Sound”, Academic Press, 1992. [5] Lueg P., “Process of silencing sound oscillations,” U.S. Patent 2,043,416 27, 1933. [6] Garcia-Bonito J. and Elliott S.J., “Strategies for Local active Control in Diffuse Sound Fields”, Proc. of ACTIVE 95, pp. 561-572, July 1995. [6] Elliot S.J. and Nelson P.A., “Active Noise Control,” IEEE Signal Processing Magazine, pp. 12-35, Octuber 1993. [7] Liu C.Y., and Ma Y.L., “An Acoustic Field-Fitting Method for Free Field Active Noise Control”, Proc. of Inter-Noise 89, pp. 505-508, Dec. 1989. [8] Guicking D., Karcher K. and Rollwage M., “Coherent Active Methods for Applications on Room Acoustics”, J. Acoustic. Soc. Am., 87, pp. 2251-2254, 1990. [9] Nelson P.A. and Elliott S.J., Active Control of Sound, Academic Press, 1990. [10] Guicking D., Karcher K. and Rollwage M., “Coherent Active Methods for Applications on Room Acoustics”, J. Acoustic. Soc. Am., 87, pp. 2251-2254, 1990. [11] Widrow B., Glover J.R., McCool J.M. et al. “Adaptive noise cancelling principles and applications,” Proceedings of the IEEE 63, pp. 1692-1716, 1975. [12] Olson H.F., “Electronic Control of Noise, Vibration, and Reverberation,” J. Acoustic. Soc. Am., Vol. 28, 966-972, 1956. [13] Sievers L.A. and Flotow A.H., “Comparisons and Extensions of Control Methods for Narrow-Band Disturbance Rejection”, IEEE Trans. on Signal Processing, Vol. 40, No. 10, pp. 2377-2391, Octuber 1992. [14] Sievers L.A. and Flotow A.H., “Comparisons and Extensions of Control Methods for Narrow-Band Disturbance Rejection”, IEEE Trans. on Signal Processing, Vol. 40, No. 10, pp. 2377-2391, Octuber 1992. [15] Elliot S.J. and Nelson P.A., “Active Noise Control,” IEEE Signal Processing Magazine, pp. 12-35, Octuber 1993. [16] Mínguez A. and Recuero M, “Auriculares Activos de Protección contra el Ruido Acústico”, Proc. of URSI 94, Valencia, Spain, Sept. 1994. [17] Lueg P., “Process of Silencing Sound Oscillations,” German Patent 655.508, 1933. [18] Elliott S.J. et al., “A multiple error LMS algorithm and its application to the active noise control od sound and vibration”, IEEE Trans. on ASSP, ASSP-35, 1987, pp. 1423-1434. [19] Snyder S.D. and Tanaka N., “A neural network for feedforward controlled smart structures”, Journal of Intelligent Material and Structures, 4, pp. 373-378, 1993. [20] Wangler C.T. and Hansen C.H., “Genetic algorithm adaptation of nonlinear filter structures for active sound and vibration control”, IEEE Inter. Conf. On ASSP, 3, pp. 505-508, 1994. [21] Darwin, C. “On the Origin of Species by Means of Natural Selection”, 1859. [22] Goldberg D.H., Genetic Algorithms in Search Optimization and Machine Learning, New York: Addison-Wesley, 1989. [23] Goldberg D.H., Genetic Algorithms in Search Optimization and Machine Learning, New York: Addison-Wesley, 1989. [24] Darwin, C. “On the Origin of Species by Means of Natural Selection”, 1859. [25] De Jong K., “Learning with the genetic algorithm: an overview”, Machine Learning, vol. 3, pp. 121-137, Oct. 1988. [26] Mínguez A. “A Simple Genetic Algorithm for Active Noise Control”, Proceedings of ICA1998. Seattle 1998. master_title: Ingeniería Acústica de la Edificación y Medio Ambiente citation: Martín Segovia, Sara (2015). Algoritmos genéticos en control activo de ruido. Thesis (Master thesis), E.T.S.I. y Sistemas de Telecomunicación (UPM) . document_url: https://oa.upm.es/38093/1/TESIS_MASTER_SARA_MARTIN_SEGOVIA.pdf