eprintid: 51461 rev_number: 27 eprint_status: archive userid: 5154 dir: disk0/00/05/14/61 datestamp: 2018-07-10 08:27:14 lastmod: 2018-07-12 05:14:23 status_changed: 2018-07-12 05:14:23 type: thesis metadata_visibility: show creators_name: Hernando Ayuso, Javier creators_id: javier.hernando.ayuso@gmail.com contributors_name: Bombardelli, Claudio title: Collision Avoidance Maneuver Optimization: A Fast and Accurate Semi-analytical Approach ispublished: unpub subjects: aeronautica keywords: Collision avoidance, Collision Probability, Optimization, OCCAM, Orbit Uncertainty abstract: In this graduation thesis, a novel semi-analytical method for collision avoidance maneuver optimization is presented. It is based on a linearization of the accurate Dromo orbital elements formulation, which allows to write the optimization problem in a simple way. Predicted direct impacts have analytical solution, while non-direct impacts are reduced to a simple non-linear equation easily solvable. In this way, maximum achievable miss distance or minimum Gaussian collision probability for a fixed delta-V magnitude, or minimum delta-V magnitude for a fixed Gaussian collision probability are calculated. The accuracy of the algorithm is verified in representative mission scenarios including real cases with actual data. The method can be used for collision avoidance maneuver planning with reduced computational cost, compared to fully numerical algorithm, and is implemented in the software tool OCCAM (Optimal Computation of Collision Avoidance Maneuvers). A demo version of OCCAM is available at: http://sdg.aero.upm.es/index.php/online-apps/occam-lite date: 2014-09 date_type: completed full_text_status: public pages: 73 institution: Aeronauticos department: Fisica2 thesis_type: masters refereed: TRUE referencetext: [1] Klinkrad, Heiner. Space debris: models and risk analysis. Springer, 2006. [2] Committee on the Peaceful Uses of Outer Space, various authors. Towards long-term sustainability of space activities: overcoming the challenge of space debris. A report of the International interdisciplinary congress on Space debris. a/AC.105/C.1/2011/CRP.14. Available on-line at http://www.oosa.unvienna.org/pdf/limited/AC105_C1_2011_CRP14E.pdf (accessed on September 3 2014). [3] D. J. Kessler, B. G. Cour-Palais. Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research: Space Physics (1978–2012) 83.A6 (1978): 2637-2646. [4] D. J. Kessler; N. L. Johnson, J,-C. Liou, M. Matney The Kessler Syndrome: Implications to Future Space operations. Advances in the Astronautical Sciences, No. AAS 10-016, Breckenridge, Colorado, USA, AAS/AIAA, February 6-10 2010. [5] Conjunction Summary Message Guide. https://www.space-track.org/documents/CSM_Guide.pdf (accessed on June 24, 2014). [6] J. L. Foster, J. H. Frisbee. Comparison of the Exclusion Volume and Probability Threshold Methods for Debris Avoidance for the STS Orbiter and International Space Station. NASA/TP-2007-214571 [7] N. Sanchez-Ortiz, I. Grande-Olalla, J. A. Pulido, K. Merz. Collision Risk Assessment and Avoidance Manoeuvres - The new CORAM tool for ESA. 64 th International Astronautical Congress, Beijing, China, 2013. [8] S. Alfano. Collision avoidance maneuver planning tool. 15th AAS/AAIA Astrodynamics Specialist Conference, No. AAS 05-308, Lake Tahoe, California, USA, AAS/AIAA, February 6-10 2005. [9] Jae-Dong Seong, Hae-Dong Kim Collision avoidance maneuvers for multiple threatening objects using heuristic algorithms Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 0954410014530678, first published on April 2, 2014 doi:10.1177/0954410014530678 [10] A. Morselli , R. Armellin, P. Di Lizia ,F. Bernelli-Zazzera Collision Avoidance Maneuver Design Based on Multi-objective Optimization . Advances in the Astronautical Sciences, No. AAS 14-148, Santa Fe, New Mexico, USA, AAS/AIAA, January 26-30 2014. [11] C. Bombardelli. Analytical Formulation of Impulsive Collision Avoidance Dynamics. Celestial Mechanics and Dynamical Astronomy, Vol. 118, No. 2, 2013, pp. 99-114, 10.1007/s10569-013-9526-3. [12] F. Kenneth Chan. Spacecraft Collision Probability. Aerospace Press, 2008. [13] C. Bombardelli, J. Hernando-Ayuso, R. Garcı́a-Pelayo. Collision Avoidance Maneuver Optimization. Advances in the Astronautical Sciences, No. AAS 14-335, Santa Fe, New Mexico, USA, AAS/AIAA, January 26-30 2014. [14] C. Bombardelli, J. Hernando-Ayuso. Optimal Impulsive Collision Avoidance in Low Earth Orbit. Journal of Guidance, Control and Dynamics, in Press (accepted on July 22, 2014). [15] G. B. Valsecchi, A. Milani , G. F. Gronchi , and S. R. Chesley. Resonant returns to close approaches: Analytical theory. Astronomy and Astrophysics, Vol. 408, No. 3, 2003, pp. 1179–1196. DOI: 10.1051/0004-6361:20031039. [16] SOCRATES: Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space. http://celestrak.com/SOCRATES/. (accessed on July 15, 2014). [17] J. Pelaez, J. Hedo, P. de Andres. A special perturbation method in orbital dynamics. Celestial Mechanics and Dynamical Astronomy February 2007, Volume 97, Issue 2, pp 131-150 [18] K. Yamanaka, F. Ankersen. New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit . Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1 (2002), pp. 60-66. [19] G. Grimmett, D. Stirzaker. Probability and Random Processes, Second Edition. Oxford Science Publications, 1992. [20] Wiesel, William E. Modern Orbit Determination, Second edition. Aphelion Press, 2010. [21] J. L. Foster and H. S. Estes. A Parametric Analysis of Orbital Debris Collision Probability and Maneuver Rate for Space Vehicles. NASA/JSC-25898. Houston, Texas: NASA Johnson Space Flight Center, August 1992 [22] R. P. Patera. General Method for Calculating Satellite Collision Probability. Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4 (2001), pp. 716-722. doi:10.2514/2.4771 [23] S. Alfano. A Numerical Implementation of Spherical Object Collision Probability. The Journal of the Astronautical Sciences, Vol. 53, No. 1, January-March 2005, pp. 103-109 [24] M.R. Akella, K.T. Alfriend. The probability of Collision Between Space Objects. Journal of Guidance, Control, and Dynamics, Vol. 23, No. 5 (2000), pp. 769-772. doi:10.2514/2.4611 [25] S. Alfano Satellite Conjunction Monte Carlo Analysis. Advances in the Astronautical Sciences, No. AAS 09-233, Savannah, Georgia, USA, AAS/AIAA, February 8-12, 2009 [26] S. Alfano Review of Conjunction Probability Method for Short-term Encounters. Advances in the Astronautical Sciences, No. AAS 07-148, Sedona, Arizona, USA, AAS/AIAA, January 28- February 01, 2007 [27] D. Lázaro, P. Righetti. Evolution of EUMETSAT LEO Conjunctions Events Handling Operations. The 12th International Conference on Space Operations, No. 1287272, 2012. DOI: 10.2514/6.2012-1287272. [28] V. T. Coppola, J. Woodburn, R. Hujsak. Effects of cross correlated covariance on spacecraft collision probability. Advances in the Astronautical Sciences, No. AAS 04-181, Maui, Hawaii, USA, AAS/AIAA, February 8-12, 2004 [29] B. A. Conway. Near-optimal deflection of Earth-approaching asteroids. Journal of Guidance , Control and Dynamics, Vol 24, No. 5, 2001, pp. 1035-1037. [30] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. [31] C. Martel. Advanced Scientific Computations with MATLAB. Notes for the graduate course, ETSI Aeronáuticos, Technical University of Madrid (UPM), 2014. [32] C. Wen, Z. Xu, Y. Zhao, Peng Shi Precise Determination of the Reachable Domain for a Spacecraft with a single impulse .Advances in the Astronautical Sciences, No. AAS 14-371, Santa Fe, New Mexico, USA, AAS/AIAA, January 26-30 2014. [33] Ellipse Evolute. http://mathworld.wolfram.com/EllipseEvolute.html (accessed on July 23, 2014). [34] Celestrack: Iridium 33/Cosmos 2251 Collision. http://celestrak.com/events/ collision.asp (accessed on September 8, 2014). [35] N. Bérend. Improvement of collision risk indicators. P2ROTECT FP-7-Space-26820. First P2ROTECT Workshop, Tubitak Uzay, Ankara, 20 March 2012. [36] D. A. Vallado. Fundamentals of Astrodynamics and Applications, 3rd edition Springer Science & Business Media 2007. rights: none master_title: Ingeniería Aeroespacial citation: Hernando Ayuso, Javier (2014). Collision Avoidance Maneuver Optimization: A Fast and Accurate Semi-analytical Approach. Thesis (Master thesis), E.T.S.I. Aeronáuticos (UPM) . document_url: https://oa.upm.es/51461/1/TFM_JAVIER_HERNANDO_AYUSO.pdf