51461
27
393155
2
1019645
document
393155
TFM_JAVIER_HERNANDO_AYUSO.pdf
application/pdf
89ab6ad86c4e0ce0916a65ecf8ea3f8f
MD5
1678031
20180710 08:27:05
https://oa.upm.es/51461/1/TFM_JAVIER_HERNANDO_AYUSO.pdf
51461
1
1
application/pdf
application/pdf
en
public
TFM_JAVIER_HERNANDO_AYUSO.pdf
archive
5154
disk0/00/05/14/61
20180710 08:27:14
20180712 05:14:23
20180712 05:14:23
thesis
show

Hernando Ayuso
Javier
javier.hernando.ayuso@gmail.com

Bombardelli
Claudio
Collision Avoidance Maneuver Optimization: A Fast and Accurate Semianalytical Approach
unpub
 aeronautica
Collision avoidance, Collision Probability, Optimization, OCCAM, Orbit Uncertainty
In this graduation thesis, a novel semianalytical method for collision avoidance maneuver optimization is presented. It is based on a linearization of the accurate Dromo orbital elements formulation, which allows to write the optimization problem in a simple way. Predicted direct impacts have analytical solution, while nondirect impacts are reduced to a simple nonlinear equation easily solvable. In this way, maximum achievable miss distance or minimum Gaussian collision probability for a fixed deltaV magnitude, or minimum deltaV magnitude for a fixed Gaussian collision probability are calculated. The accuracy of the algorithm is verified in representative mission scenarios including real cases with actual data. The method can be used for collision avoidance maneuver planning with reduced computational cost, compared to fully numerical algorithm, and is implemented in the software tool OCCAM (Optimal Computation of Collision Avoidance Maneuvers). A demo version of OCCAM is available at: http://sdg.aero.upm.es/index.php/onlineapps/occamlite
201409
completed
public
73
Aeronauticos
Fisica2
masters
TRUE
[1] Klinkrad, Heiner. Space debris: models and risk analysis. Springer, 2006.
[2] Committee on the Peaceful Uses of Outer Space, various authors. Towards longterm sustainability of space activities: overcoming the challenge of space debris. A report of the International interdisciplinary congress on Space debris. a/AC.105/C.1/2011/CRP.14. Available online at http://www.oosa.unvienna.org/pdf/limited/AC105_C1_2011_CRP14E.pdf (accessed on September 3 2014).
[3] D. J. Kessler, B. G. CourPalais. Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research: Space Physics (1978–2012) 83.A6 (1978): 26372646.
[4] D. J. Kessler; N. L. Johnson, J,C. Liou, M. Matney The Kessler Syndrome: Implications to Future Space operations. Advances in the Astronautical Sciences, No. AAS 10016, Breckenridge, Colorado, USA, AAS/AIAA, February 610 2010.
[5] Conjunction Summary Message Guide. https://www.spacetrack.org/documents/CSM_Guide.pdf (accessed on June 24, 2014).
[6] J. L. Foster, J. H. Frisbee. Comparison of the Exclusion Volume and Probability Threshold Methods for Debris Avoidance for the STS Orbiter and International Space Station. NASA/TP2007214571
[7] N. SanchezOrtiz, I. GrandeOlalla, J. A. Pulido, K. Merz. Collision Risk Assessment and Avoidance Manoeuvres  The new CORAM tool for ESA. 64 th International Astronautical Congress, Beijing, China, 2013.
[8] S. Alfano. Collision avoidance maneuver planning tool. 15th AAS/AAIA Astrodynamics Specialist Conference, No. AAS 05308, Lake Tahoe, California, USA, AAS/AIAA, February 610 2005.
[9] JaeDong Seong, HaeDong Kim Collision avoidance maneuvers for multiple threatening objects using heuristic algorithms Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 0954410014530678, first published on April 2, 2014 doi:10.1177/0954410014530678
[10] A. Morselli , R. Armellin, P. Di Lizia ,F. BernelliZazzera Collision Avoidance Maneuver Design Based on Multiobjective Optimization . Advances in the Astronautical Sciences, No. AAS 14148, Santa Fe, New Mexico, USA, AAS/AIAA, January 2630 2014.
[11] C. Bombardelli. Analytical Formulation of Impulsive Collision Avoidance Dynamics. Celestial Mechanics and Dynamical Astronomy, Vol. 118, No. 2, 2013, pp. 99114, 10.1007/s1056901395263.
[12] F. Kenneth Chan. Spacecraft Collision Probability. Aerospace Press, 2008.
[13] C. Bombardelli, J. HernandoAyuso, R. Garcı́aPelayo. Collision Avoidance Maneuver Optimization. Advances in the Astronautical Sciences, No. AAS 14335, Santa Fe, New Mexico, USA, AAS/AIAA, January 2630 2014.
[14] C. Bombardelli, J. HernandoAyuso. Optimal Impulsive Collision Avoidance in Low Earth Orbit. Journal of Guidance, Control and Dynamics, in Press (accepted on July 22, 2014).
[15] G. B. Valsecchi, A. Milani , G. F. Gronchi , and S. R. Chesley. Resonant returns to close approaches: Analytical theory. Astronomy and Astrophysics, Vol. 408, No. 3, 2003, pp. 1179–1196. DOI: 10.1051/00046361:20031039.
[16] SOCRATES: Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space. http://celestrak.com/SOCRATES/. (accessed on July 15, 2014).
[17] J. Pelaez, J. Hedo, P. de Andres. A special perturbation method in orbital dynamics. Celestial Mechanics and Dynamical Astronomy February 2007, Volume 97, Issue 2, pp 131150
[18] K. Yamanaka, F. Ankersen. New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit . Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1 (2002), pp. 6066.
[19] G. Grimmett, D. Stirzaker. Probability and Random Processes, Second Edition. Oxford Science Publications, 1992.
[20] Wiesel, William E. Modern Orbit Determination, Second edition. Aphelion Press, 2010.
[21] J. L. Foster and H. S. Estes. A Parametric Analysis of Orbital Debris Collision Probability and Maneuver Rate for Space Vehicles. NASA/JSC25898. Houston, Texas: NASA Johnson Space Flight Center, August 1992
[22] R. P. Patera. General Method for Calculating Satellite Collision Probability. Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4 (2001), pp. 716722. doi:10.2514/2.4771
[23] S. Alfano. A Numerical Implementation of Spherical Object Collision Probability. The Journal of the Astronautical Sciences, Vol. 53, No. 1, JanuaryMarch 2005, pp. 103109
[24] M.R. Akella, K.T. Alfriend. The probability of Collision Between Space Objects. Journal of Guidance, Control, and Dynamics, Vol. 23, No. 5 (2000), pp. 769772. doi:10.2514/2.4611
[25] S. Alfano Satellite Conjunction Monte Carlo Analysis. Advances in the Astronautical Sciences, No. AAS 09233, Savannah, Georgia, USA, AAS/AIAA, February 812, 2009
[26] S. Alfano Review of Conjunction Probability Method for Shortterm Encounters. Advances in the Astronautical Sciences, No. AAS 07148, Sedona, Arizona, USA, AAS/AIAA, January 28 February 01, 2007
[27] D. Lázaro, P. Righetti. Evolution of EUMETSAT LEO Conjunctions Events Handling Operations. The 12th International Conference on Space Operations, No. 1287272, 2012. DOI: 10.2514/6.20121287272.
[28] V. T. Coppola, J. Woodburn, R. Hujsak. Effects of cross correlated covariance on spacecraft collision probability. Advances in the Astronautical Sciences, No. AAS 04181, Maui, Hawaii, USA, AAS/AIAA, February 812, 2004
[29] B. A. Conway. Nearoptimal deflection of Earthapproaching asteroids. Journal of Guidance , Control and Dynamics, Vol 24, No. 5, 2001, pp. 10351037.
[30] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[31] C. Martel. Advanced Scientific Computations with MATLAB. Notes for the graduate course, ETSI Aeronáuticos, Technical University of Madrid (UPM), 2014.
[32] C. Wen, Z. Xu, Y. Zhao, Peng Shi Precise Determination of the Reachable Domain for a Spacecraft with a single impulse .Advances in the Astronautical Sciences, No. AAS 14371, Santa Fe, New Mexico, USA, AAS/AIAA, January 2630 2014.
[33] Ellipse Evolute. http://mathworld.wolfram.com/EllipseEvolute.html (accessed on July 23, 2014).
[34] Celestrack: Iridium 33/Cosmos 2251 Collision. http://celestrak.com/events/ collision.asp (accessed on September 8, 2014).
[35] N. Bérend. Improvement of collision risk indicators. P2ROTECT FP7Space26820. First P2ROTECT Workshop, Tubitak Uzay, Ankara, 20 March 2012.
[36] D. A. Vallado. Fundamentals of Astrodynamics and Applications, 3rd edition Springer Science & Business Media 2007.
none
Ingeniería Aeroespacial