eprintid: 5983 rev_number: 18 eprint_status: archive userid: 2043 dir: disk0/00/00/59/83 datestamp: 2011-02-14 09:07:26 lastmod: 2016-04-20 14:38:57 status_changed: 2011-02-14 09:07:26 type: article metadata_visibility: show item_issues_count: 0 creators_name: Vega de Prada, José Manuel title: Invariant Regions and Global Asymptotic Stability in an Isothermal Catalyst publisher: SIAM - Society for Industrial and Applied Mathematics rights: by-nc-nd ispublished: pub subjects: aeronautica subjects: fisica full_text_status: public keywords: global stability, invariant regions, porous catalysts, isothermaJ catalysts abstract: A well-known model for the evolution of the (space-dependent) concentration and (lumped) temperature in a porous catalyst is considered. A sequence of invariant regions of the phase space is given, which converges to a globally asymptotically stable region $B$. Quantitative sufficient conditions are obtained for (the region $B$ to consist of only one point and) the problem to have a (unique) globally asymptotically stable steady state. date_type: published date: 1988-07 publication: SIAM Journal on Mathematical Analysis volume: 19 number: 4 pagerange: 774-796 id_number: 10.1137/0519054 institution: Aeronauticos department: Fundamentos refereed: TRUE issn: 0036-1410 citation: Vega de Prada, José Manuel (1988). Invariant Regions and Global Asymptotic Stability in an Isothermal Catalyst. "SIAM Journal on Mathematical Analysis", v. 19 (n. 4); pp. 774-796. ISSN 0036-1410. https://doi.org/10.1137/0519054 . document_url: https://oa.upm.es/5983/1/Vega_11.pdf