eprintid: 947 rev_number: 5 eprint_status: archive userid: 378 dir: disk0/00/00/09/47 datestamp: 2008-04-26 lastmod: 2016-04-20 06:36:14 status_changed: 2009-09-23 16:41:12 type: other metadata_visibility: show creators_name: Díaz-Ambrona Tabernilla, Luis creators_id: luis.dat@gmail.com contributors_name: Pérez Costoya, Fernando contributors_id: fperez@fi.upm.es contributors_orcid: 0000-0003-1526-9574 title: Sistema de localización en interiores ispublished: unpub subjects: telecomunicaciones subjects: informatica keywords: Localización, Sistema de localización, Redes inalámbricas, Localización en interiores abstract: Estudio, desarrollo y validación de un sistema de localización en interiores basado en redes inalámbricas. Se efectúa un resumen sobre diversas tecnologías que pueden emplearse para el posicionamiento de objetos y/o personas en un entorno, y se describen distintas técnicas que permiten la localización en interiores usando los protocolos 802.11b y 802.11g. A continuación se describen los distintos algoritmos y aplicaciones que se han implementado en el desarrollo del software para la localización en interiores, comentando las ventajas e inconvenientes de este sistema de localización frente a otros ya existentes. date: 2008-04-23 date_type: published publisher: Facultad de Informática (UPM) full_text_status: public place_of_pub: Madrid, España institution: Informatica department: Arquitectura3 refereed: TRUE referencetext: [1] G. Nuño-Barrau y J.M. Páez-Borrallo, “Algoritmos para localización en interiores mediante WLAN comerciales basados en funciones discriminantes lineales y modelos ocultos de Markov” Tesis Doctoral ETSI Telecomunicación, Madrid, 2006. [2] R. Martín Yagüe, “Localización inteligente en interiores mediante tecnologías basadas en el estándar IEEE 802.11b: implementación y validación del modelo” PFC Ingeniería de Telecomunicaciones, 2006. [3] IEEE Std 802.11-1997, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”. [4] IEEE Std 802.11b-1999/Cor 1-2001, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications speed Physical Layer (PHY) - Amendment 2: Higher extension in the 2.4 GHz band”. [5] IEEE Std 802.11g-2003, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications - Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band”. [6] M. Weiser, “Hot Topics – Ubiquitous Computing”. [7] L. E. Miller, “Indoor Navigation for First Responders: A Feasibility Study”. [8] S. Fischer, H. Grubeck, A. Kangas, H. Koorapaty, E. Larsson, P. Lundqvist, “Time of Arrival Estimation of Narrowband TDMA Signals for Mobile Positioning” Personal Indoor and Mobile Radio Communications, 1998. [9] “Wireless Indoor Positioning System”, http://csd.ssvl.kth.se/2000/group12/ [10] J. Hallberg, M. Nilsson, K. Synnes, “Bluetooth Positioning”. [11] Z. Weissman, “Indoor Location”. [12] IEEE Std 802.16-2004, “Air interface for fixed broadband wireless access systems”. [13] FCC 02-48: Federal Communications Commission, “UWB report and order”. [14] S. Ingram, “UltraWideBand Indoor Positioning”. [15] S. Tadakamadla, “Indoor Local Positioning System for Zigbee, Based on RSSI”. [16] P. Bahl y V.N. Padmanabhan, “Radar: An In-building RF-Based User Location and Tracking System” Proc. IEEE INFOCOM 2000, Tel Aviv, Israel, 2000. [17] P. Castro, P. Chiu, T. Kremenek, R. A. Muntz, “Probabilistic Location Service for Wireless Network Environments” UbiquitousComputing2001, Sept. 2001. [18] E. Nebot, “Simultaneous Localization and Mapping 2002 Summer School”, Australian Centre for Field Robotics, University of Sydney, Australia, 2002. [19] “Ekahau Positioning Engine 4.0”, http://www.ekahau.com/?id=4500 [20] I.Cortázar, P.Sanz, “Localización en entornos WiFi”, Comunicaciones de Telefónica I+D. Telefónica I+D, 2005. [21] R. Battiti, T. Le Nhat, A. Villani, “Location-aware computing: a neural network model for determining location in wireless LANs”. [22] ISO/IEC 7498-1:1994, “Information technology - Open Systems Interconnection - Basic Reference Model: The Basic Model”. [23] J. Hightower, B. Brumitt, G. Borriello, “The Location Stack: A Layered Model for Location in Ubiquitous Computing”. [24] R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen, D. Goldberg, J. Ellis, M. Weiser, “The Parctab Ubiquitous Computing Experiment”, Technical Report CSL-95-1, Xerox Palo Alto Research Center, March 1995. [25] B. Brumitt, B. Meyers, J. Krumm, A. Kern, S. A. Shafer, “Easyliving: Technologies for intelligent environments” Proc. of Handheld and Ubiquitous Computing '00, 2000. [26] IEEE Std 830-1998, “IEEE Recommended Practice for Software Requirements Specification” ANSI/IEEE 830 1998. [27] “OmniAnalysis Platform Wireless Drivers”, http://www.wildpackets.com/support/downloads/drivers [28] “NdisWrapper”, http://ndiswrapper.sourceforge.net/ [29] S. Shin, A. G. Forte, H. Schulzrinne, “Seamless Layer-2 Handoff using Two Radios in IEEE 802.11 Wireless Networks”. [30] H. Velayos, G. Karlsson, “Techniques to Reduce IEEE 802.11b MAC Layer Handover Time”, Royal Institute of Technology, Stockholm, Sweden, April 2003. [31] “IEEE 802.11 Network Adapter Design Guidelines for Windows XP”. [32] “AirPCap: USB 2.0 Wireless Capture Adapter User’s Guide”, CACE Technologies, LLC, 2006. [33] “Airodump”, http://wirelessdefence.org/Contents/Aircrack_airodump.htm [34] “Wireless Zero Configuration Reference”, http://msdn2.microsoft.com/en-us/library/ms706593.aspx [35] R. O. Duda, P. E. Hart y D. G Stork, “Pattern Classification” (2ndEdition), Wiley-Interscience, 2000. [36] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speeck Recognition”. [37] P. Kontkanen, P. Myllymaki, T. Roos, H. Tirri, K. Valtonen and H. Wettig, “Probabilistic Methods for Location Estimation in Wireless Networks”. [38] G. D. Forney, “The Viterbi Algorithm”. [39] Naval Air Warfare Center, “Electronic Warfare and Radar Systems Engineering Handbook”, Tech. report. TP 8347, Apr. 1997. [40] T. S. Rappaport, “Wireless Communications: Principles and Practice” Upper Saddle River, Prentice Hall, 1996. [41] B. Sklar, “Rayleigh Fading Channels in Mobile Digital Communications Systems: I. Characterization” IEEE Communications Magazine, vol. 35, no. 7, pp. 90-100, Jul. 1997. [42] K. Kaemarungsi, and P. Krishnamurthy, “Properties of Indoor Received Signal Strength for WLAN Location Fingerprinting” IEEE MOBIQUITOUS 2004, pp. 14-23, Boston, MA, Aug. 2004. [43] “AeroScout Visibility System”, http://www.aeroscout.com/content.asp?page=SystemOverview [44] IEEE Std 830-1998, “Carrier sense multiple access with collision detection”. [45] A. Dabagh, “NDIS 6.0 Technical Update”. [46] Y. Ho, R. L. Kashyap, “An Algorithm for Linear Inequalities and its Applications” Electronic Computers, IEEE Transactions on , vol.EC-14, no.5, pp.683-688, Oct. 1965. [47] R. Akl, D. Tumala, X. Li, “Indoor Propagation Modeling at 2.4GHz for IEEE 802.11 Networks”. [48] J.M. Paéz, F. García y A. Fernández, Seminario Técnico “Tecnologías inalámbricas en domótica” Junio, 2004. Tema: propagación y planificación radioeléctrica. [49] AWE Communications, Germany, Software tool “WinProp for the planning of mobile communication networks” (incl. demo-version), www.awe-communications.com, Marzo 2003. [50] Hightower, J.; Borriello, G., “Location Systems for Ubiquitous Computing”, Aug. 2001. [51] “MSDN Home Page”, msdn2.microsoft.com/es-es/default.aspx rights: by-nc-sa citation: Díaz-Ambrona Tabernilla, Luis (2008). Sistema de localización en interiores. Proyecto Fin de Carrera / Trabajo Fin de Grado, Facultad de Informática (UPM) , Madrid, España. document_url: https://oa.upm.es/947/1/PFC_LUIS_DIAZ_AMBRONA.pdf