The Optimal combination: Grammatical Swarm, Particle Swarm Optimization and Neural Networks.

Mingo López, Luis Fernando de ORCID: https://orcid.org/0000-0002-9249-6722, Gómez Blas, Nuria ORCID: https://orcid.org/0000-0001-5065-3745 and Arteta Albert, Alberto (2012). The Optimal combination: Grammatical Swarm, Particle Swarm Optimization and Neural Networks.. "Journal of Computational Science", v. 1 (n. 2); pp. 46-55. ISSN 1877-7503. https://doi.org/10.1016/j.jocs.2011.12.005.

Descripción

Título: The Optimal combination: Grammatical Swarm, Particle Swarm Optimization and Neural Networks.
Autor/es:
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Computational Science
Fecha: 2012
ISSN: 1877-7503
Volumen: 1
Número: 2
Materias:
ODS:
Escuela: E.U. de Informática (UPM) [antigua denominación]
Departamento: Organización y Estructura de la Información [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[thumbnail of INVE_MEM_2012_130939.pdf]
Vista Previa
PDF (Portable Document Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Social behaviour is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks.

Más información

ID de Registro: 15816
Identificador DC: https://oa.upm.es/15816/
Identificador OAI: oai:oa.upm.es:15816
Identificador DOI: 10.1016/j.jocs.2011.12.005
URL Oficial: http://www.journals.elsevier.com/journal-of-comput...
Depositado por: Memoria Investigacion
Depositado el: 07 Nov 2013 09:53
Ultima Modificación: 30 Ene 2025 09:43