Physics of Vibrating Airfoils at Low Reduced Frequency

Vega Coso, Almudena and Corral García, Roque ORCID: https://orcid.org/0000-0001-9993-6535 (2013). Physics of Vibrating Airfoils at Low Reduced Frequency. En: "ASME Proceedings | Aerodynamic Excitation and Damping (With Turbomachinery)", June 3-7, 2013, San Antonio, Texas, USA. ISBN 978-0-7918-5527-0. pp. 176-190.

Descripción

Título: Physics of Vibrating Airfoils at Low Reduced Frequency
Autor/es:
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: ASME Proceedings | Aerodynamic Excitation and Damping (With Turbomachinery)
Fechas del Evento: June 3-7, 2013
Lugar del Evento: San Antonio, Texas, USA
Título del Libro: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
Fecha: Junio 2013
ISBN: 978-0-7918-5527-0
Volumen: 7B
Materias:
ODS:
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[thumbnail of INVE_MEM_2013_201756.pdf]
Vista Previa
PDF (Portable Document Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The unsteady aerodynamics of low pressure turbine vibrating airfoils in flap mode is studied in detail using a frequency domain linearized Navier-Stokes solver. Both the travelling-wave and influence coefficient formulations of the problem are used to highlight key aspects of the physics and understand different trends such as the effect of reduced frequency and Mach number. The study is focused in the low-reduced frequency regime which is of paramount relevance for the design of aeronautical low-pressure turbines and compressors. It is concluded that the effect of the Mach number on the unsteady pressure phase can be neglected in first approximation and that the unsteadiness of the vibrating and adjacent airfoils is driven by vortex shedding mechanisms. Finally a simple model to estimate the work-per-cycle as a function of the reduced frequency and Mach Number is provided. The edge-wise and torsion modes are presented in less detail but it is shown that acoustic waves are essential to explain its behaviour. The non-dimensional work-per-cycle of the edge-wise mode shows a large dependence with the Mach number while in the torsion mode a large number of airfoils is needed to reconstruct the work-per-cycle departing from the influence coefficients.

Proyectos asociados

Tipo
Código
Acrónimo
Responsable
Título
Gobierno de España
DPI2009-14216
Sin especificar
Sin especificar
Sin especificar

Más información

ID de Registro: 37666
Identificador DC: https://oa.upm.es/37666/
Identificador OAI: oai:oa.upm.es:37666
URL Oficial: http://proceedings.asmedigitalcollection.asme.org/...
Depositado por: Memoria Investigacion
Depositado el: 05 Feb 2016 17:54
Ultima Modificación: 12 Nov 2024 14:23