Lazy Lasso for local regression

Vidaurre Henche, Diego; Bielza, Concha y Larrañaga Múgica, Pedro (2011). Lazy Lasso for local regression. "Computational Statistics" ; pp. 1-20. ISSN 0943-4062. https://doi.org/10.1007/s00180-011-0274-0.

Descripción

Título: Lazy Lasso for local regression
Autor/es:
  • Vidaurre Henche, Diego
  • Bielza, Concha
  • Larrañaga Múgica, Pedro
Tipo de Documento: Artículo
Título de Revista/Publicación: Computational Statistics
Fecha: 2011
Materias:
Palabras Clave Informales: Lasso – l1-regularization – Variable selection – Loess – Locally weighted regression – Sparse models – Lazy lasso – Nonparametric variable selection
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Locally weighted regression is a technique that predicts the response for new data items from their neighbors in the training data set, where closer data items are assigned higher weights in the prediction. However, the original method may suffer from overfitting and fail to select the relevant variables. In this paper we propose combining a regularization approach with locally weighted regression to achieve sparse models. Specifically, the lasso is a shrinkage and selection method for linear regression. We present an algorithm that embeds lasso in an iterative procedure that alternatively computes weights and performs lasso-wise regression. The algorithm is tested on three synthetic scenarios and two real data sets. Results show that the proposed method outperforms linear and local models for several kinds of scenarios

Más información

ID de Registro: 11002
Identificador DC: http://oa.upm.es/11002/
Identificador OAI: oai:oa.upm.es:11002
Identificador DOI: 10.1007/s00180-011-0274-0
URL Oficial: http://www.springerlink.com/content/qr202q5851334085/
Depositado por: Memoria Investigacion
Depositado el: 05 Jun 2012 08:34
Ultima Modificación: 20 Abr 2016 19:11
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM