Some geometrical methods for constructing contradiction measures on Atanassov's intuitionistic fuzzy sets

Castiñeira Holgado, Elena; Torres Blanc, Carmen y Cubillo Villanueva, Susana (2011). Some geometrical methods for constructing contradiction measures on Atanassov's intuitionistic fuzzy sets. "International Journal of General Systems", v. 40 (n. 6); pp. 577-598. ISSN 0308-1079. https://doi.org/10.1080/03081079.2011.592040.

Descripción

Título: Some geometrical methods for constructing contradiction measures on Atanassov's intuitionistic fuzzy sets
Autor/es:
  • Castiñeira Holgado, Elena
  • Torres Blanc, Carmen
  • Cubillo Villanueva, Susana
Tipo de Documento: Artículo
Título de Revista/Publicación: International Journal of General Systems
Fecha: 2011
Volumen: 40
Materias:
Palabras Clave Informales: Atanassov's intuitionistic fuzzy sets, contradiction measures, semicontinuous measures, semilattices, order isomorphism and automorphism
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Matemática Aplicada
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (4MB) | Vista Previa

Resumen

Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures.

Más información

ID de Registro: 12103
Identificador DC: http://oa.upm.es/12103/
Identificador OAI: oai:oa.upm.es:12103
Identificador DOI: 10.1080/03081079.2011.592040
URL Oficial: http://www.tandfonline.com/doi/abs/10.1080/03081079.2011.592040
Depositado por: Memoria Investigacion
Depositado el: 11 Sep 2012 13:07
Ultima Modificación: 21 Abr 2016 11:17
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM