DAEDALUS at ImageCLEF 2011 Plant Identification Task: Using SIFT Keypoints for Object Detection

Villena Román, Julio; Lana Serrano, Sara y González Cristóbal, José Carlos (2011). DAEDALUS at ImageCLEF 2011 Plant Identification Task: Using SIFT Keypoints for Object Detection. En: "CLEF 2011 Labs and Workshop, Notebook Papers", 19/09/2011 - 22/09/2011, Amsterdam, Holanda. pp. 26-32.

Descripción

Título: DAEDALUS at ImageCLEF 2011 Plant Identification Task: Using SIFT Keypoints for Object Detection
Autor/es:
  • Villena Román, Julio
  • Lana Serrano, Sara
  • González Cristóbal, José Carlos
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: CLEF 2011 Labs and Workshop, Notebook Papers
Fechas del Evento: 19/09/2011 - 22/09/2011
Lugar del Evento: Amsterdam, Holanda
Título del Libro: Proceedings of CLEF 2011 Labs and Workshop, Notebook Papers
Fecha: 2011
Materias:
Escuela: E.U.I.T. Telecomunicación (UPM) [antigua denominación]
Departamento: Ingeniería y Arquitecturas Telemáticas [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (517kB) | Vista Previa

Resumen

This paper describes the participation of DAEDALUS at ImageCLEF 2011 Plant Identification task. The task is evaluated as a supervised classification problem over 71 tree species from the French Mediterranean area used as class labels, based on visual content from scan, scan-like and natural photo images. Our approach to this task is to build a classifier based on the detection of keypoints from the images extracted using Lowe’s Scale Invariant Feature Transform (SIFT) algorithm. Although our overall classification score is very low as compared to other participant groups, the main conclusion that can be drawn is that SIFT keypoints seem to work significantly better for photos than for the other image types, so our approach may be a feasible strategy for the classification of this kind of visual content.

Más información

ID de Registro: 13317
Identificador DC: http://oa.upm.es/13317/
Identificador OAI: oai:oa.upm.es:13317
Depositado por: Memoria Investigacion
Depositado el: 28 Nov 2012 09:48
Ultima Modificación: 21 Abr 2016 12:37
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM