Glottal Parameter Estimation by Wavelet Transform for Voice Biometry

Gómez Vilda, Pedro; Muñoz Mulas, Cristina; Mazaira Fernández, Luis Miguel; Rodellar Biarge, M. Victoria; Martínez Olalla, Rafael y Álvarez Marquina, Agustin (2011). Glottal Parameter Estimation by Wavelet Transform for Voice Biometry. En: "2011 IEEE International Carnahan Conference on Security Technology (ICCST)", 18/10/2011 - 21/10/2011, Barcelona, España. ISBN 978-1-4577-0902-9.

Descripción

Título: Glottal Parameter Estimation by Wavelet Transform for Voice Biometry
Autor/es:
  • Gómez Vilda, Pedro
  • Muñoz Mulas, Cristina
  • Mazaira Fernández, Luis Miguel
  • Rodellar Biarge, M. Victoria
  • Martínez Olalla, Rafael
  • Álvarez Marquina, Agustin
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 2011 IEEE International Carnahan Conference on Security Technology (ICCST)
Fechas del Evento: 18/10/2011 - 21/10/2011
Lugar del Evento: Barcelona, España
Título del Libro: Proceedings of 2011 IEEE International Carnahan Conference on Security Technology (ICCST)
Fecha: 2011
ISBN: 978-1-4577-0902-9
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Arquitectura y Tecnología de Sistemas Informáticos
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (419kB) | Vista Previa

Resumen

Voice biometry is classically based on the parameterization and patterning of speech features mainly. The present approach is based on the characterization of phonation features instead (glottal features). The intention is to reduce intra-speaker variability due to the `text'. Through the study of larynx biomechanics it may be seen that the glottal correlates constitute a family of 2-nd order gaussian wavelets. The methodology relies in the extraction of glottal correlates (the glottal source) which are parameterized using wavelet techniques. Classification and pattern matching was carried out using Gaussian Mixture Models. Data of speakers from a balanced database and NIST SRE HASR2 were used in verification experiments. Preliminary results are given and discussed.

Más información

ID de Registro: 13606
Identificador DC: http://oa.upm.es/13606/
Identificador OAI: oai:oa.upm.es:13606
URL Oficial: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6095951
Depositado por: Memoria Investigacion
Depositado el: 21 Nov 2012 11:57
Ultima Modificación: 21 Abr 2016 12:56
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM