Identification of a biomarker panel for colorectal cancer diagnosis

García Bilbao, Amaia; Armañanzas Arnedillo, Ruben; Ispizua, Ziortza; Calvo, Begoña; Alonso Varona, Ana; Inza Cano, Iñaki; Larrañaga Múgica, Pedro; López Vivanco, Guillermo; Suárez Merino, Blanca y Betanzos, Mónica (2012). Identification of a biomarker panel for colorectal cancer diagnosis. "Bmc Cancer", v. 12 (n. 43); pp. 1-13. ISSN 1471-2407.


Título: Identification of a biomarker panel for colorectal cancer diagnosis
  • García Bilbao, Amaia
  • Armañanzas Arnedillo, Ruben
  • Ispizua, Ziortza
  • Calvo, Begoña
  • Alonso Varona, Ana
  • Inza Cano, Iñaki
  • Larrañaga Múgica, Pedro
  • López Vivanco, Guillermo
  • Suárez Merino, Blanca
  • Betanzos, Mónica
Tipo de Documento: Artículo
Título de Revista/Publicación: Bmc Cancer
Fecha: 2012
Volumen: 12
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa


Background Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955)

Más información

ID de Registro: 13937
Identificador DC:
Identificador OAI:
Identificador DOI: 10.1186/1471-2407-12-43
URL Oficial:
Depositado por: Memoria Investigacion
Depositado el: 21 Dic 2012 11:37
Ultima Modificación: 21 Abr 2016 13:22
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM