MIRACLE at ImageCLEFannot 2008: Nearest Neighbour Classification of Image Feature Vectors for Medical Image Annotation

Lana Serrano, Sara; Villena Román, Julio; González Cristóbal, José Carlos y Goñi Menoyo, José Miguel (2009). MIRACLE at ImageCLEFannot 2008: Nearest Neighbour Classification of Image Feature Vectors for Medical Image Annotation. En: "Evaluating Systems for Multilingual and Multimodal Information Access". Lecture Notes in Computer Science (5706). Springer, Berlin, Alemania, pp. 728-731. ISBN 978-3-642-04446-5. https://doi.org/10.1007/978-3-642-04447-2_93.

Descripción

Título: MIRACLE at ImageCLEFannot 2008: Nearest Neighbour Classification of Image Feature Vectors for Medical Image Annotation
Autor/es:
  • Lana Serrano, Sara
  • Villena Román, Julio
  • González Cristóbal, José Carlos
  • Goñi Menoyo, José Miguel
Tipo de Documento: Sección de Libro
Título del Evento: 9th Workshop of the Cross-Language Evaluation Forum, CLEF 2008
Fechas del Evento: 17/09/2008-19/09/2008
Lugar del Evento: Aarhus, Dinamarca
Título del Libro: Evaluating Systems for Multilingual and Multimodal Information Access
Fecha: 2009
ISBN: 978-3-642-04446-5
Materias:
Escuela: E.U.I.T. Telecomunicación (UPM) [antigua denominación]
Departamento: Ingeniería y Arquitecturas Telemáticas [hasta 2014]
Grupo Investigación UPM: Grupo de Sistemas Inteligentes
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
Pdf - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (123kB) | Vista Previa

Resumen

This paper describes the participation of MIRACLE research consortium at the ImageCLEF Medical Image Annotation task of ImageCLEF 2008. During the last year, our own image analysis system was developed, based on MATLAB. This system extracts a variety of global and local features including histogram, image statistics, Gabor features, fractal dimension, DCT and DWT coefficients, Tamura features and co-occurrence matrix statistics. A classifier based on the k-Nearest Neighbour algorithm is trained on the extracted image feature vectors to determine the IRMA code associated to a given image. The focus of our participation was mainly to test and evaluate this system in-depth and to compare among diverse configuration parameters such as number of images for the relevance feedback to use in the classification module.

Más información

ID de Registro: 1479
Identificador DC: http://oa.upm.es/1479/
Identificador OAI: oai:oa.upm.es:1479
Identificador DOI [BETA]: 10.1007/978-3-642-04447-2_93
URL Oficial: http://www.springerlink.com/content/mq10174797220625/
Depositado por: José Miguel Goñi Menoyo
Depositado el: 13 Jul 2012 11:00
Ultima Modificación: 20 Abr 2016 11:23
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM