Four Decades of Studying Global Linear Instability: Progress and Challenges

Gómez, F.; Le Clainche Martínez, Soledad; Paredes Garcia, Pedro; Hermanns Navarro, Miguel y Theofilis, Vassilios (2012). Four Decades of Studying Global Linear Instability: Progress and Challenges. "AIAA Journal", v. 50 (n. 12); pp. 2731-2743. ISSN 0001-1452. https://doi.org/10.2514/1.J051527.

Descripción

Título: Four Decades of Studying Global Linear Instability: Progress and Challenges
Autor/es:
  • Gómez, F.
  • Le Clainche Martínez, Soledad
  • Paredes Garcia, Pedro
  • Hermanns Navarro, Miguel
  • Theofilis, Vassilios
Tipo de Documento: Artículo
Título de Revista/Publicación: AIAA Journal
Fecha: Diciembre 2012
Volumen: 50
Materias:
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Motopropulsión y Termofluidodinámica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers

Más información

ID de Registro: 16146
Identificador DC: http://oa.upm.es/16146/
Identificador OAI: oai:oa.upm.es:16146
Identificador DOI: 10.2514/1.J051527
URL Oficial: http://arc.aiaa.org/doi/abs/10.2514/1.J051527
Depositado por: Memoria Investigacion
Depositado el: 07 Nov 2014 16:30
Ultima Modificación: 07 Nov 2014 16:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM